Convergence of a Finite Volume Scheme for the One Dimensional Vlasov-Poisson System

Abstract : We propose a finite volume scheme to discretize the one-dimensional Vlasov-Po- isson system, we prove that, if the initial data is positive, bounded, continuous, and has its first moment bounded, then the numerical approximation converges to the weak solution of the system for the weak topology of $L^\infty$. Moreover, if the initial data belongs to $BV$, the convergence is strong in $C^0(0,T;L^1_loc)$. To prove the convergence of the discrete electric field, we obtain an estimation in $W^1,\infty(\Omega_T)$.}
Type de document :
Rapport
[Research Report] RR-3860, INRIA. 2000, pp.25
Liste complète des métadonnées

https://hal.inria.fr/inria-00072796
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:57:51
Dernière modification le : samedi 17 septembre 2016 - 01:06:52
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:25:26

Fichiers

Identifiants

  • HAL Id : inria-00072796, version 1

Collections

Citation

Francis Filbet. Convergence of a Finite Volume Scheme for the One Dimensional Vlasov-Poisson System. [Research Report] RR-3860, INRIA. 2000, pp.25. 〈inria-00072796〉

Partager

Métriques

Consultations de la notice

98

Téléchargements de fichiers

106