Convergence of a Finite Volume Scheme for the One Dimensional Vlasov-Poisson System - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2000

Convergence of a Finite Volume Scheme for the One Dimensional Vlasov-Poisson System

Abstract

We propose a finite volume scheme to discretize the one-dimensional Vlasov-Po- isson system, we prove that, if the initial data is positive, bounded, continuous, and has its first moment bounded, then the numerical approximation converges to the weak solution of the system for the weak topology of $L^\infty$. Moreover, if the initial data belongs to $BV$, the convergence is strong in $C^0(0,T;L^1_loc)$. To prove the convergence of the discrete electric field, we obtain an estimation in $W^1,\infty(\Omega_T)$.}
Fichier principal
Vignette du fichier
RR-3860.pdf (304.81 Ko) Télécharger le fichier

Dates and versions

inria-00072796 , version 1 (24-05-2006)

Identifiers

  • HAL Id : inria-00072796 , version 1

Cite

Francis Filbet. Convergence of a Finite Volume Scheme for the One Dimensional Vlasov-Poisson System. [Research Report] RR-3860, INRIA. 2000, pp.25. ⟨inria-00072796⟩
53 View
75 Download

Share

Gmail Facebook Twitter LinkedIn More