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Une nouvelle approximation pour le Put
Ameéricain

Résumeé : On construit une famille de payoffs @y, (x) indexés par une mesure
h, pour le prix américains desquels on a une formule quasi-explicite, & partir
du résultat théorique de [1], qui sont trés proches du Put au sens suivant:
ils sont continus, valent (K — )" en dehors de |K*, K[ (oit K* est le strike
perpétuel), sont analytiques dans | K*, K[ avec la bonne dérivée (—1) aux deux
bouts. De plus une procédure numérique de selection du meilleur A en un
certain sens donne d’excellents résultats. On dispose ainsi de nouvelles sur et
sous-stratégies, le hedge correspondant & notre prix étant aussi quasi-explicite.
L’erreur étant lissée par la probabilité de franchir la frontiére d’exercice, on a
aussi une trés bonne approximation du prix Black-Scholes du Put Américain

Mots-clé : Options Américaines, Put Américain, modéle de Black-Scholes,
Arrét Optimal
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Introduction

Consider the classical Black-Scholes model

dXy = pX[dt+oX[dB,; (1)
Xy = x>0
p ER

where B is a standard Brownian motion, p the instantaneous interest rate and
o the volatility of X and denote by

o?x?

Af(z) = —=f"(2) + pef'(x) = pf(2)
the corresponding infinitesimal generator. Given a continuous function % :
R — R, satisfying some growth assumptions, the price of the so-called Amer-
ican option with payoff ¢, time to maturity £ > 0 and spot x is given by the

expression

vy (t,x) = sup FE [e””q/; (Xf)] (2)

T€T(0,¢)

where 7 runs across the set of stopping times of the Brownian filtration such
that 7 < ¢ almost surely. For z > 0, the function ¢ — vg™ (t,z) is
non-decreasing. Moreover, it is greater than (z) and typically the space
10, 00[ x R splits into two regions, the so-called Exercice region where by def-
inition vy™ = 1 and its complement the Continuation region where vy™ > .
In this paper, we are interested in the price v¥7,(¢,z) of the American Put
option given by ¢ (z) = (K — z)" where K is some positive constant (the
strike of the option). In case p < 0, it is obvious by a convexity argument that
the optimal stopping price is 7 = t and v¥],(¢, x) is equal to the price of the
European Put option. From now on, we suppose that p > 0. Even if there is
no closed-form expression for v¥? (¢, z), its limit as ¢ — 400, the price of the
so-called perpetual Put option, can be computed explicitly as:

am * :I/‘ @
Vpgi(00,2) = (K — K*) (K*) La>k-y + (K — 33)1{$<K*} (3)
2 K
where o = —g and K* = @
o 1+«

RR n" 3851



4 B.Jourdain, C.Martini

K* is called the perpetual strike. Moreover there is a continuous non-increasing
function ¢ :]0, +oc[— [0, +o00] with #(z) = +oc if z < K* and #(x) = 0 if
x > K such that the Exercice region of the American Put option is given by
{(t,z): 0 <t <{%(z)}. In the (¢, ) plane the situation is thus the following:

t—

Stock x

K* ...........................................................

Time to maturity ¢

The purpose of the paper is to construct an approximation of v§l, (¢, z)
thanks to the following embedding result obtained in a previous work [1]:
let ¢ : R — Ry be a continuous function such that sup,., ¢(z)/(z + z%) <
+o00 and v, (t,z) = Ele ¢ (X¥)] denote the price of the European option
with payoff ¢. If the function  — @(z) = infy>q v, (¢, 2) is continuous and if
there is a continuous function # :]0, +0o[— [0, +-00] such that Vz > 0, @(z) =
v,(t(x), ) (Convention : v,(co,z) = liminf; , . v,(t,z)), then the price of
the American option with payoff ¢ is embedded in the function v, (¢,z) in the
following sense :

~

V(t,z) € [0, +00[x]0, +oo[, v5™(t,x) = vy(t V t(z), z).
As an easy consequence, the set {(t,z) : 0 < t < #(x)} is included in the
Exercice region of the American option.
The main drawback of the above result is that we do not know, at the

moment, how to design a function ¢ such that $ matches a given target payoff
of interest. Even in the special Put case, despite many attempts, we could not

INRIA



Yet Another Approximation of the American Put 5

find any European payoff ¢ with associated American payoff §(z) = (K —x)™.
Nevertheless we rely on the above theoretical result to design closed-form prices
for a large class of payoffs very close to the Put payoff. This is done in three
steps.

First we design (section 1) a family of European payoffs which verify very
crude necessary conditions for $(z) = (K — z)* to have any chance to hold.
This is the main step, it relies on the parameterization of ¢ by a measure h
related to Ap. Then we focus on the Continuation region. Amid our family
we find out necessary and sufficient conditions which grant that the equation
infy>0 v, (t,7) = v,(t(z),r) defines a curve which displays the same features
as the free boundary of the American Put (section 2).

Unfortunately, it is easy to see that for any function amid our family @(x) =

(K — K¥) (lg*)_a 1{z>k+) below K*, which is not satisfactory. The third step,
which is easy making use of the fact that K™ is the perpetual Put strike, is
to prove that the price of the American option with modified payoff (K —
) 1{z<k+y + @(2)l{z>k+}, denoted by @), to emphasize the dependence on the
parameter h, and matching (K — z)* both for x > K and for x < K* is still
embedded in v, (¢, ) : v%;”(t, z) = (K — 2) lperey + vu(t V EH@), 7)1 gs ko)
This is done in section 3.

Since we show that @, cannot be equal to the Put payoff everywhere (indeed
GH(K*T) > 0), we believe that at this stage there is little to get from further
calculations. The last stage is to select amid our family the point h* so that,

in some sense, @y« is the closest payoff to (K — z)™. We choose the criterion

sgp ‘gﬁh (x) — (K — x)+‘

This is done in a numerical manner which is explained in detail in the last
section (section 4): choosing ¢ in a peculiar low-dimensional subclass, we
compute a discretized version of ¢ and then minimize the above criterion. The
numerical results seem very good.

1 A first set of tentative payoffs ¢

Let us now look for a class of initial payoffs ¢ for which there is some hope
that @ (z) = (K — z)" holds, at least for z between K* and K.

RR n" 3851



6 B.Jourdain, C.Martini

Notice first that the European price of ¢ should match the American Put
price in the Continuation region. In particular it should increase from 0 to

(K—K*) (%)_a as t goes from 0 to oo for x > K. This gives at once ¢(z) =0
for > K. Another condition is that the European price of ¢ decreases to
@ (z), for © between K* and K, as t goes from 0 to #(x) (the tentative free
boundary). This should also hold for z below K* with #(z) = co. Note that
these conditions are necessary only if we restrict ourselves to the simple case
of a single curve where inf;> v, (t,2) is attained which splits the (¢, z) plane
in two regions where respectively d;v, < 0 and O,v, > 0. Thanks to the
Black-Scholes PDE this gives that Ap(x) (defined in any reasonable sense)
should be non-positive between 0 and K. Now a natural way to proceed is to

parameterize ¢ by A, or in other words to solve the ODE
Ap =m.

The solutions of Ap = 0 are the functions x — az + bx~* for 2 reals (a,b). By
a straightforward integration this gives

_ 2 /e o m(dr)
S ] 4
p(z) = az + bz pe L N B (4)
or yet by Fubini’s theorem, since m should be supported in |0, K] to ensure
¢ =0 above K:
(dr)

2 o (K m
e Y A )t 27
o?(a+ 1)x /o (rAz) 72

(5)

o(x) =ax + bx™* —
as soon as the measure m satisfies [ 7*~1|m|(dr) < oco.

Now by the Lebesgue theorem, it is easy to see that a = lim,_, @ which
gives for us @ = 0. Then ¢(x) =0 for x > K gives the condition:

b= ﬁ—l—l) /OK r* 'm(dr) (6)

Observe next that since lim,_, @ = a = 0 and by Lebesgue Theorem

(6]

lim, o+ 22 = b, according to Appendix B, lim; s vy(t,z) = az + br~

br—“. Thais gives the value of b: b = II((’{‘;

INRIA



Yet Another Approximation of the American Put 7

We have not yet used the fact that m should be non-positive on |0, K[. Obvi-
ously for (6) to hold, since b is positive, m should be of the form:

o (a+1)K*
m(dr) = cdg(dr) — 1]0,K[(r)%h(dr)
where h is a positive measure on |0, K[ (we wrote the indicator function for

clarity’s sake. Also the factor °'2(a+1)K before h will lead to easier calculations

later on) and ¢ a strictly positive number.
By the way, c is related to the left derivative of ¢ at K: by (4) (¢(z)z®)" =
— 2z K % whence by ¢(K) = 0:
—O'QQOI(K_)I(Q

2
As soon as ¢ has a few regularity properties on the left of K, since #(z) goes
to 0 as x goes to K from below, @'(x) should go to ¢'(K_). But ¢'(z) should
be —1, so we get the value of ¢: ¢ = K.
The last point to check is that this is compatible with (6). This rewrites now:
KQ Ko — K*@
Ka—l _ (K _ K*) K*a — K*i
(a+1) a
In particular this is a positive quantity.
So far we have reached the following:

K
* a—1 _
K /0 r* " h(dr) =

Lemma 1 Let ¢(x) be a continuous payoff satisfying Ap = m where m is a
measure on |0, +oo[ such that [;F° r*tm|(dr) < +oo.
Then the four conditions
(7)) p(z) =0 forz > K
(it) For every x > K, v,(t,7) = (K — K*)(3)™® ast — oo
(133) In a weak sense Ap < 0 below K
(iv) ¢/ (K-) = —1
hold if and only if m(dr) = "221(2 dxc(dr) — Mh(dr) where h is a positive

measure on |0, K[ such that [ r*1h(dr) = (K* — K**)/a and

(o) = (K~ K () o - s BT e 5oy )

An additional calculation (cf Appendix A) gives also:

Lemma 2 The function ¢ in (7) is non-negative.

RR n" 3851



8 B.Jourdain, C.Martini

1.1 Computing the corresponding price

>From now on we suppose that ¢ is given by (7). Let

e(z) = 7% Ax)*H

= r*Mr 1 (z>r)+zl(z <7)

=1+

Then after (7), since the function z — 2~ is invariant, also using 7

v, ()  (35)7 1

K h (dr)
0 - v (ba) + [ v ()

r2

Ve, (,7) = e "E [eT (a: exp ((p - %2> t+ UBt))]

which gives after straightforward calculations (cf Appendix C):

where

Lemma 3 One has

_ atl —a In (%) + (QTH) o’t In (%) — (O‘TH) o2t
Ve, (t,x) =712 N(—( — )>+xN( \/ﬁ )

where N(z) = [* e‘y2/2j—% denotes the cumulative distribution function of
the Normal law.

Setting a = In(K*), b = In(K), y = In(z), v = In(r), also A = =7 and
denoting the image of the measure h(dr) by the function » — In(r) by dh(e"),
we thus get

ea(afy) 60‘(1)7:‘/)

e vy (Ay) = —— - — N<—(b—y)ﬁ—<a;1>\%)

i () )

e [ ey (- () 1)

6“

By (i (221 1)

eu

(a—1)(u—b) dh(eu)
e 2 i, we get

In terms of the measure h (du) = o

INRIA



Yet Another Approximation of the American Put 9

Lemma 4 Let a =In(K*), b =In(K), y = In(z), u = In(r), A\ = -, also

ot’

ta=1)u=v) dh (e*)

eu

h (du) = ce
Then one has:

1\ 1
Oée_a/l)(p (A, y) — ea(a—y) _ ea(b—y)N (_ (b _ y) \/X . (O{ + ) )

)V
e (55)

+e(a71)2(b7!1) /b e(a+1)(u y) \/X— (a + 1) BN
—0 2 A

a— — b a u ~ 1
Ll y>/ . wh(du)N((u—y)\/} a+ )

2 Tentative ¢’s with good-looking theta-zero curve

As we are interested in #(z) such that infov,(t,2) = v,(t(z), ), we are
going to study the so-called theta-zero points solution of d,v,(t,z) = 0. More
precisely we look for conditions on the measure h which ensure that

t(z) is continuous, ¢ *(0) = [K, +oo[, £ *(+00) =]0, K*]. (8)

2.1 The theta-zero curve

Since the price of the European option with payoff ¢ satisfies the Black-Scholes
partial differential equation 0,v,(t,z) = Av,(t,x) for t,2 > 0, in order to find
the theta-zero points, we compute Av,(, z).

One main advantage of our parameterization of ¢ by Ap = m is the
simplicity of the following computations. Indeed by the semi-group property
Avy,(t,x) = va,(t,x). Since vy, solves the Black-Scholes Partial Differential
Equation

Vi, o >0, Owap(t,z) = Ava,(t, x), v4,(0,.) =m,

RR n~ 3851



10 B.Jourdain, C.Martini

by the Feynman-Kacs representation formula,
K
Vi, x >0, va,(t,x) = e_”t/ pi (z,7)m(dr)
0

where p; (z,7) is the transition density of the Black-Scholes process. If ny2 (2) =

z2
e~ 2a% [v/2ma? denotes the Gaussian density, an easy calculation yields p* (z,7) =

2o (n(2) ~ (5 7))

As a conclusion,

Lemma 5 We have

Av, (t,z) = e /0 . (ln (2) _ <,0 _ %2) t) m (:lr)_

We recall that m(dr) = "221(2 O (dr) — Mll(dr). Changing notations by
setting

y=In(z), u=In(r), A=—,a=In(K"), b=In(K).
we obtain that
O, (t,x) = Avy(t,z) = C (A, y) F (A, y)

where C(\,y) = 02v/ e (170 /8rela=1)-)/2b /(9\/27) > 0 for A > 0 and

b

F(h\y)=e 309" _ [ e MV h(du) 9)
Thus we are interested in the solutions of
F(\y)=0 (10)
>From now on, we suppose that
Ve < K, h(]z, K[) > 0 and /OK IHQ(T)T%h(dT) < 400 (11)

INRIA
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Lemma 6 The function F is C' on [0,+00) X R. Moreover, for y € R the
function A > 0 — F(\,y) vanishes at most twice. Lastly, Yy > b (resp y < b),
F(\,y) is positive (resp. negative) for A big enough.

Proof. The integrability assumption in (11) is equivalent to the convergence
of [°_ u?h(du). By Lebesgue theorem, we easily deduce that F is C.
Equation (10) writes

—%(b—yf:ln(/b e 2y h(du)>

-0

Hence for fixed y € R, the solutions are given by the intersection of a straight
line and the Log-Laplace transform of a positive measure which is strictly con-
vex under (11). We conclude that A > 0 — F(),y) vanishes at most twice.
The last assertion is a consequence of the first part of (11). =

Let us now derive necessary conditions on A for (8) to hold.

If (8) holds then ¢t — wv,(t V (z),z) is non-decreasing. As a consequence,
when z €]K*, K[, 0yv,(t,¥) > 0 for t > #(x) i.e. when y €]a,b], F(A,y) >0
for A positive and small. For z < K*, #(z) = +oo ie. infisov,(t,7) =
liminf, , ;o vy(t,2). Since A > 0 — F(A,y) vanishes at most twice, so does
t >0 — 0w,(t,z). Hence when z < K*, dyv,(t,x) < 0 for ¢ big enough i.e.
when y < a, F(A,y) < 0 for A positive and small.

Since F is continuous, to get the previous sign conditions, we need F(0,a) = 0
e.g. h is a probability measure

/b h(du) = 1 (12)

—0o0

As F(0,y) is independent of y, the sign conditions then imply respectively
©F(0,y) 2 0 for y €]a,b[ and 9 F(0,y) < 0 for y < a. Since F is C',
(a’ 0) =
b ~
/ (u — a)?h(du) = (b — a)? (13)
The necessary conditions (12) and (13) will turn out to be sufficient for (8) to
hold:

RR n~ 3851



12 B.Jourdain, C.Martini

Proposition 7 If Vy < b, h(Jy,b]) > 0 and (12) and (13) hold then

Vy €la,b[, 3N (y) >0 suchthat F (X" (y),y)=0
F(Ay)>0 for A€o, X (y)]

F(\y) <0 for A>X(y) (14)
Yy>b, VA>0,F(\y) >0 (15)
Vy<a, YA>0,F(\y) <0 (16)

Proof. By (12),Vy € R, F(0,y) = 0. It is easy then to deduce (15) from (9).
Next, Vy € R, writing (u—y)? = (u—a)*+ (a—y)?>—2(y—a)(u—a), developing
(b—y)? in a similar way and using (12) and (13) we get

nF0.9)=; |

—0o0

b b

(=) i) = 5 (b= 9)* = (y=0) [ (b= wh(du).

Hence 0,F(0,y) is positive (resp. negative) for y > a (resp. y < a), which
implies that F'(),y) is positive (resp. negative) for A positive and small when
y > a (resp. y < a). By Lemma 6, when y < b, F(\,y) is negative for A big
enough. Moreover, as A\ — F'(), y) vanishes at A = 0, this function vanishes at
most for at most one A(y) > 0 and then 0y F(\(y),y) # 0. By the intermediate
value property, we deduce (14) and (16) for y < a. As F(0,a) = O\F(0,a) = 0,
the function F'(), a) does not vanish for A > 0 and (16) also holds for y = a. m

Setting A*(y) = 0 for y < a and M (y) = 4oo for y > b, then Vy €
R, §(e¥) = v,(A*(y),y). It is enough to check that @ is continuous and that
A* is continuous and non-decreasing to conclude that (8) holds. Let us now
turn to a detailed study of \* and .

2.2 Behaviour of \*(y) for y €la, b

Proposition 8 Under the assumptions of Proposition 7, the function \* is
analytic and increasing from la, b to R’ and satisfies

lim A" (y) =0, lim \* (y) = oo.
y—b—

y—at

More precisely,
X (y) (b= )" =y 00 (17)

INRIA



Yet Another Approximation of the American Put 13

If we suppose moreover that dh is absolutely continuous in a neighborhood of
b i.e. for some b, €la,b] h(du) = h(u)du on |b,,b[ and that lim,_,- h(u) =
h(b™) > 0 exists, then

Lo Im(b-y) 1
) "

Lastly, the following equivalent holds for \*(y) asy — a™ :
* b T b 47 4
N() ~yoar 8= a) [ (b= whidn)/( [ _(u—a)(du) - (b-a)'). (19)

In case, [°, (u—a)*h(du) = +o0 (& K In*(r)r“="m(dr) = +00), (19) means
that \*(y) = o(y — a).

Before coming to the proof of the proposition let us notice that (18) is equiv-
alent to the equivalent of Barles&Alii [2] and Lamberton [3]:

Lemma 9 Let \* (y) = 0o asy — b~ . Then (18) holds if and only if
. N2
i M @) (0~ y)
y—b—  In (\* (y))

Proof. If (20) holds then In(A\*) 4+ 21In(b — y) — In(In(A*)) — 0. By dividing
by A*(b — y)?, which is far from zero since it goes to infinity by (20) we get
In(A) 4 2;,{‘((’ - ln(ln(_)\;))z) — 0 which gives (18) since 24820 _, ¢,

=1 (20)

A (b—y)? (b—y)>  A*(b In(A*))
Conversely we get from (18) In(—In(b — y)) — In(A*) + 2In(b — y) — —In(2)
whence if (18) holds ln()\* 1;1(’;)3” — /\?(llgiy))z -2 /\1?((5:5))2 — 0 then (20) since

In(— In(b—
(o)

Let us now prove the proposition:
Proof. We first compute the first order derivatives of F' :

OF ) = A=t = [ fum et i)

—0o0

1 2 -
AhF(Ny) = —i(b—y) 3(-) 2/ (u — )%~ 29" o (du).

RR n" 3851



14 B.Jourdain, C.Martini

Let y €|a, b[. Applying Jensen inequality to the strictly convex function z In(z)
and the moment equality F'(A*(y),y) = 0, we get O\F'(A\*(y),y) < 0. Moreover,
using F'(A\*(y),y) = 0, we get

b 2 @)

OF(N W), =XW) [ (b=we

—00

(=9 b (du) > 0.

Now the price v, (t, ) of the European option is analytic on R x R , therefore
04, (A, y) is analytic on R x R. Since for y €]a, b, A*(y) is the unique A > 0
solution of dyv, (A, y) = 0 and

O (Orvp (X (y), 9)) = C(N*(9), Y)OAF (X (y), y) <0, 9y (Frvp(X*(y), y)) > 0,

by the implicit functions theorem for analytic functions A* is analytic with a
positive derivative on |a, b[.

We deduce that \*(y) has a limit when y — a*. Since F' is continuous,
F(limy_,o+ A*(y),a) = 0. Now the unique A > 0 such that F'(A\,a) = 0 is 0.
Hence lim,_,,+ A*(y) = 0. By a similar reasoning, we check that lim,_,,- \*(y) =
—+00.

To precise the speed of convergence, we recall that A\*(y) is given by

* b * -
e ) :/ e 2(y)(“_y)zh(du). (21)

—00

A (y)

Asy — b, X(y) = +oo and Yu < b, e 2 “ %> - 0. Hence by Lebesgue
theorem the right-hand-side of (21) goes to 0 and A\*(y)(b — y)? — +o0.
Let us now turn to (18). By Lebesgue theorem,

. ,\*2(y) (b—y)? /2y—b - A*2(y) (u—y)? ;L(du) _ /2y—b e_#(b—u)@y—b—u)ﬁ(du) _>y—>b_ 0.

—0o0 —0o0

We now suppose that h(du) has a density & on b, b[ and that lim,_,,- h(u) =
h(b~) > 0. Setting u =y + (b — y) we get from the above remark:

b * ~
o [L S
2

= Oy [ OO DR 4 50— y)ds

.Y w282
~  (b—y)hb )/ P R OGP P

INRIA



Yet Another Approximation of the American Put 15

Therefore, by the Laplace method,

N T 2
( 1 )A we-? (ﬁ(b) /1 ex*?(m(by)?(ﬂzl)dﬂ) Fwe? sup (1) —
b p— y —1 /36]_1’1[

which gives (18).
To precise the behaviour of \*(y) as y — a™, we make Taylor expansions
in (21):

(b—y)* +o(\(y)*)
_ / ’ (1 - A*;y) (u—y)?+ A*Ely) (u—y)* /0 (1= g)e 25 <u—y>2d9> A (du)

which simplifies after (12) and (13), writing (b —y)? = (b—a)* + (y — a)? +
2(b — a)(a — y), developing (u — y)? and also (b — y)? in a similar way, to

b

o) w-a) [ o)+ YOO e

—00

* 1146 b O W) )27
= )\(y)Q/O 1 (/ (u—y)le 2z @) h(du))dﬂ

-0

In case [°_ (u — a)*h(du) < +o0 the r.h.s. is equivalent to

N [ (u a)hldu)/s

—0oQ

Since A is not a Dirac mass, by Jensen inequality

/b (v — a)*h(du) > (/b (u— a)%(du))2 = (b—a)* according to (13)

—00 —0o0

and we deduce (19). 3
This assertion still holds in case [°_(u — a)*h(du) = +oo: indeed by Fatou

lemma
11— b “(y )~
/ 1= (/ (u — y)4e_”2( {(u=y) h(du)) df — +o0.
o 4
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16 B.Jourdain, C.Martini

2.3 The price along the theta-zero curve

The interesting price is obtained by setting A = A\* (y) :

Proposition 10 Under the assumptions of Proposition 7, the payoff ¢ is given
for z between K* and K (y between a and b) by

ae G (V) = oY) — U N (_ (b—y) VA — (a ; 1) %)
Dy ((b—y)\/X_ <a+1) L)

2 /A
(== b  (a+D@E-y)~ a+1\ 1
+e /_ooe h(du)N(—(u—y)ﬁ—( 5 )ﬁ>
(a=D@=y) b _(atD@—y) ~ a+1\ 1
+e /_ooe h(du)N((u—y)\/X—( 5 >ﬁ)

where A = X* (y) > 0 is given by F(A\*(y),y) = 0.

2.4 Computation of ¢’ for K* < z < K:

By derivation of $(e¥) with respect to y (see Appendix D), we obtain :

Lemma 11 For y €]a, b,

e (V) = —e Vele W) 4 vy (_ (b—1) VA — (oz —2f— 1) %)
(o (2£2)3)

a—1 b at+1l)u ~ ]- 1
oo R (e i (S51) 1)

5

(a—1)b

+& /b e‘wﬁ(du)NQu—y)\/}—(a—H)

(6 —00 2

where A = X* (y) > 0 is given by F(\*(y),y) = 0.
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Yet Another Approximation of the American Put 17

2.5 Behaviour of ¢ as z — K*":

Proposition 12 Under the assumptions of Proposition 7,

lim §(z) =K - K".

T K*t
Moreover, lim,_, g+ @' () = —1 and

7! 1 1
lm P)+1  a+

= > 0.
=Kt 1 — K* K*

i.e. the behaviour of $(z) when x — K*™ is similar to the one of the perpetual
Put price and @ cannot be equal to K — x on [K*, K].

Proof. We recall that lim,_,,+ A\*(y) = 0. Hence, in the expression of e *@(e)
given by Proposition 10, when y — a™, the first term has a limit equal to
1/a and the second and third terms go to 0. The fourth and the fifth term
also vanish according to Lebesgue theorem and the following upper-bounds:
Vu < b, Yy > a,

e N<—(u—y)ﬁ—<a;1>%>

_(a+1)? (a+1)(b—a) a+1
e liu—y<—(atryary e > N N, Lu—y>—(a+1)/40}

_ (at1)? (a+1)(b—a) a+1
e & +4+e 2z N

A

IN

- et N((U_ym_(agl)i)

_ (et (at1-2vX)

< e T Haumyva-(2£2) -1
2
1 _(atD(u=y) -1 (ufy)\/xf(o‘Tl)ﬁ
RV, =L ( )1{<u—y)ﬁ—(a7+l)ﬁs—1}
_ (et (a+1-2VX) _ (at+1)?
e ax +e &
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18 B.Jourdain, C.Martini

Hence lim,_, g+ @(z) = e*/a = K*/a = K — K*.

Denoting by 7T;(y), 1 < i < 5 the terms of the right-hand-side of (22), we have
Ti(a) = —e™® and T{(a) = (o + 1)e~*. We conclude the proof by checking
that V2 < ¢ < 5, Vn € N, lim_,,+ Ti(y)/(y — a)” = 0 thanks to (19) and the
previous upper-bounds. m

2.6 Behaviour of p as ¢ — K

Proposition 13 If the assumptions of Proposition 7 are satisfied and
K Ko — K*©
/ r*h(dr) = ————
0 e
which s equivalent to

/b @—(M;)u ﬁ(du) = e(liza)b (e — ),

-0

where Ih (e
h (du) = ae (e")

eu
then .
lim §(x) =0 d i "(z) = —1.
lim () and  lim ¢'(z)
Proof. Since lim, ,,- VA(b — y) = +oo, taking the limit y — b~ in the
expression of e~?@(e¥) given by Proposition 10,
a(a—b) 1 1 b o b} ~
lim e @) = S +0— =+ - / ¢ (du) + 0
y—b~ (0% (6% & J—c0

_ (ea(a_b) —1+ e—ab(eab _ eaa)) /a =0

Taking the limit in (22), we obtain

—b a— b o U~
lim e7%@'(e¥) = —e*@ Vet 40— € elatipplag / B h(du) +0
y—b~ (0% —00
b €' 1)b(_ab b 1
= —etlaeb _ Z_ _ pm(afhb(gab _ gaa) — - (1 + —)
e a
= —e °
m
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Yet Another Approximation of the American Put 19

Remark 14 e In case dh is absolutely continuous in a neighborhood of b
with a density h such that lim, ;- h(u) = h(b~) > 0 ezists, it is possible
to prove that the second order derivative of ¢ at K~ depends on h(b™) :

I ~! Y _ 7 —
L F@ Ty P 1 a— )
a—»K- v — K y—=b— Yy —b K
e Under the assumptions of the Proposition, we have P(K™) = -1 =

o~

@' (K~). If moreover, thf above assumption on dh is satisfied, we can
check that ¢"(K~) = %(Ir) = ¢"(K~). The equality of the first and
second derivatives of ¢ and @ at K~ is not surprising since for y €]a, b|,

@(e¥) = v, (#(y), ey) and #(y) =o((b—y)?) asy — b .

3 The main result

We are now ready to summarize all the properties of #(z) = 1/(o?\*(In(x)) and
@ and to apply the embedding result of [1]. First we state a theorem which is
a direct application of [1], then a modification well-suited to the Put case.
Note that (12) and (13) rewrites into the two last conditions on A in the
following theorem.

Theorem 15 Assume that

x (K Az)>t K (rAxz)et!
S AL K*/ oY hd
) Tty TR 2 dr)

where h is a positive measure on |0, K| such that Yz < K, h(]z, K[) > 0 and

ol) = (K = K°)(

/Kralh(dr) — (K®— K*)/a

0

[\ han) = K/
/oKln2(r/K*)raT3h(dr) = K7 W’(K/K")/a

then §(x) = infi>v,(t,z) is continuous equal to 0 for z > K, equal to

(K—K*) (;*)m if v < K*, satisfies ' (K* ") = ¢'"(K™) = —1 and §"(K*") =
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20 B.Jourdain, C.Martini

(a+1)/K*. Moreover 3(x) = v,(t(x), x) wheret is continuous, non-increasing,
analytic on |K*, K[, equal to 0 for z > K and to +oo for x < K*. The price
of the American option with payoff ¢ is v%m(t, z) = v,(t Vt(z), ).

Here is now the main result:

Theorem 16 Under the assumptions of the previous theorem, the payoff n(x)
(K —2)"1z<k-} + @(2)1(z>k-} 15 continuous and its American price is given
by

(K — .7))+ 1{$SK*} + Vyp (t \% %\(.T) ,.7)) 1{$>K*}.

Proof. It is easily seen that @p(z) = (K — )" < (K — K*)(z/K*)™® =
@(z) for x < K*, therefore the American price v (t,z) is smaller than
g™ (t,z). Now in the region z > K* the American price of @, is greater
than v, (tvf(z) ,a:): indeed the latter may be written as E [e ?" @ (X7)]
where 7 is the entrance time in the region {t < tA(x)} (convention 7 = 0 if

t < #(z)) and @n(X2) = B(XF). Therefore v&™ (t,7) = v, (tVi(z),z) for
x > K* and also > K* by continuity. In particular the line x = K* is
contained in the Exercice region.

Take now a point (¢,z) with x < K*. By the optimal stopping representa-
tion of the American price, one has

vy (t,z) = sup E [e””@h (Xj_")]

TIT*

where 7 runs across the set of stopping times of the Brownian filtration less
than the crossing time 7* of the boundary {(0,z), = < K*}U{(¢t, K*), t > 0}.
In this area @ is equal to the Put payoff, therefore this quantity is less than
the American price of the Put. But by definition of K* we lie in the Exercice
region of the American Put, so vZ" (t,r) < (K —2z)" and on another hand

(K—2)"=3,(2) < vgn (t,z).m

Remark 17 The same result holds for any continuous payoff obtained by re-
placing §(x) under K* by a continuous function (z) smaller than (K —
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Yet Another Approximation of the American Put 21

K*
lies in the Ezxercice region of the modified payoff. For instance in case k < K*

it is easy to check by comparison with the Put option that the region {z < K*}
1s included in the exercise region of the American Put-Spread option with pay-
off ( K—z)t—(k—xz)t = (K—k)A(K —x)". Hence the price of the American
option with modified payoff Gr(x) = (K — k) AN (K — 2) 1 g<kx+) + 8(2) L {z> k4
s

K*) ( L )_a with Y(K*) = (K — K*) and such that the region {x < K*}

(K —k)A (K - $)+1{mSK*} + v, (t Vv %\(x)a Z)Lizs K0}

It is natural to wonder whether the payoff ¢, is non-increasing like the Put
payoff. The answer is positive at least for values of a of practical interest since

Lemma 18 There is a constant ay < 1/2, such that when o > «ap, under the
assumptions of Theorem 15, both  and @y, are non-increasing.

The proof of this Lemma is postponed to Appendix E.
4  Discretization

In this section we solve a discretized version of the program:

. ~ +
inf sup ‘SDh (z) — (K — =) ‘

where H is a low-dimensional subspace of the set of measures A which verify
the moment conditions of the theorems.

4.1 Normalization

For practical purposes, it would be interesting to get a measure A* which de-
pend on as few parameters as possible. It will certainly depend on «, but
we can design an approximation which will work for every value of K in the
following way: we normalize the situation so that K* = 1, (any other value

would work!), therefore K = k %/ 14+ 1.
This does not matter in the following sense: to emphasize the dependence on
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22 B.Jourdain, C.Martini

the strike K, we denote by v¢7, (¢, z, K) the American Put price for the matu-
rity ¢ and the underlying value z. If we manage to design an approximation
such that, for a given value of ¢ :

sup |ver, (t,z, k) — Approx (t,z, k)| < €
X

then since obviously v@? (¢, z, k) = %U%Lt (t, %x,k), the approximation by

k

%Appro:r (t, 5 T, k) will satisfy

<K
ks

Ssu
2P K

K k
U?:’Tgt (t’ z, K) - ?Approx (ta 7L, k)

In other words, the error we face in term of a percentage of the strike K is
given by .
>From now on we work thus with:

’ 1 ) 1
K=1,kYK=1+-,(K—kK *=K-K =~
(6] [0

and with the variables y = In(x) and A = 1/(0?%t)
4.2 Choice of a peculiar class of &

We further restrict ourselves to a peculiar class of measures h which lead
to easy implementation. Whatever the measure A at hand there is a priori
two steps to obtain v%;”()\,y) for given values of y €]la = 0,b = In(k)[ and
A > 0 : first compute the value of the theta-zero curve i.e. find A\*(y) €
10, +00[ solving F'(A*(y),y) = 0 then compute the price v, (A A X*(y),y) =
v%;”()\, y). In general both steps require numerical procedures, a dichotomy to
find the zero of the time derivative (there is exactly one for every y €|a, b after
the above calculations), next a numerical (one-dimensional) integration (with
respect to h) to get the price. In case y > b, only the second step is required
since A*(y) = 400 and in case y < 0, v¥4" = (k — e¥).

We choose to work with a low-dimensional family of combination of point
measures. This allows the direct computation of the price at the second step.
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Yet Another Approximation of the American Put 23

Notice that the condition &(Jy,b]) > 0 for y < b is not satisfied yet: so
we add a uniform measure €1y pdu, for which it is easily seen that the cor-
responding contribution to the price may be computed explicitly. We have
implemented the case of 3-points measures, which gives already astonishing
results. Our family may be parametrized in the following way:

h (du) = 81]0,b[du
+ﬂ 5log(r1) (du) + 75log(r2) (du)
+ (1 = &b = B =) Srog(rs) (du)

withe >0,eb<1,8>0,y>0and f+7<1—¢b.
By convention we choose log (1) < log (r2) < log (r3) .

Remember that the support of h should lie below b, so we further set

log (r3) = pb

and also

log(ri) = zipb
log(ry) = xoub

Therefore the parameter (g, i, 21, x2) should live in: 0 < e < b, p <1,z <
T9 S 1.

For a given value of (g, u, 21, 22) we compute the values of 3 and -y which
fit the two remaining moment conditions:

b ~
/ iR (du) = B

b ab _
(a+1)u ~ e 1
/ e 2 h(du) =

—0o0 e 2

This translates in the 2x2 linear system

1 1
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(a+1)(z1=1)pbd (at+1)(zg—1)pb
(1 —e 2 ) B+ (1 —e ? ) 0%

26‘(%2M (a+1)b (at+1) (1—p) b

a+ a+ —

=€ 7<e 2 —1)—b +1—e PR (1—@‘“”)
(a+1)

which gives close-formula for # and «. In case one of the conditions 3 > 0, v > 0
and B+ < 1—¢b is not satisfied the point (g, i, 21, z2) is rejected, otherwise
we sample the range ]0,b with n points, say y; = %b with 0 < ¢ < n and for
every y; we proceed as follows.

4.3 Calculation of \* (y)

We find A\* (y;) by a dichotomy algorithm making use of the closed formula for
F (\,y) . This is obviously very fast, altough a little care is required when y;
is near 0 or b to deal with possibly very high or small values of A* (y;) .

4.4 Computation of the price

This is also very fast since no numerical integration is required. We make use
of the standard approximation of the normal cumulative distribution which
relies on the classical series expansion.

4.5 Selection of the optimal point
Then for a given value of (&, u, 21, 22) we compute the error quantity
err (&, i, 1, Tp) = sup ‘@ (e¥) — (k — eyi)+‘

and next after a clever or systematic scan of the domain we pick the point
which minimizes this criteria, with a value err* = err (¢*, u*, 7, 23). The
corresponding American payoff is denoted by @*.

4.6 Archiving the results

The optimal point will depend on «. In practice we maintain an archive with
100 values of « equally sampled between 0.5 and 50.0 (for an annual interest
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Yet Another Approximation of the American Put 25

rate of 5%, a = 0.4 is 0 = 50%, a = 25.6 is 0 = 6.25%). The computation
of the archive is done once for all, the practical usage for the ambient value of
« consists in picking up the closest value of the table or performing a linear
interpolation since the optimal point, for our choice of the domain at least,
depends “continuously” on «.

Therefore the computation time is that of the dichotomy (typically ten
iterations. ..) and of the price, which is very fast.

4.7 Numerical Results

Let us first plot err* as a function of «, expressed in percentage of the strike
K:

0.3
0.25 \
0.2

%K 0.15 \

T T T I
Err* in % of the strike K ——

0.1

0.05
\.

Im——

—
1

—_—

0.52.55 10 15 20 25 30 50
(0%

The fact that this plot is decreasing corresponds to the fact that the size
of the range |K*, K| increases as « decreases, whereas our family of approx-
imating payoffs does not get richer as a decreases. It seems that at least for
values of a not too small, this error is relevant in practice.

Here are now the difference D(z) = ¢*(z)—(k—=z)* for @ = 1, in percentage
of the strike £ = 2 and next of the premium at maturity (i.e. (k —z)™):
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0.25 T T T T T
Error in % of K ~\

o \ /
01 [ ’
0.05 / / \
Error _0-0(; \ / \ /
o1\ / \ /

-0.15 / \ /

s IN_L/ A4

-0.25

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Spot

60 |

I | T |
Error in % of the Premium
50

40

30
Error
20

10

-10

1 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2
Spot

The price error will be much smaller since err* is the maximal error over
the underlying and since it will be smoothed by the probability law of the spot
value at the time the free boundary is reached and reduced by the correspond-
ing discounting factor. More precisely, if 7, and 7. denote respectively the
entrance times in the exercise regions of the American Put option and of the
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American option with payoff ¢*, then
vt o) = E e (k- X2 )| and v%(t,2) = E [e 7@ (XE)]
and as 7o, and 7, are optimal stopping times, we easily check that

Ve (t,7) — E [e D(XZ)] < vim(t,2) < o2t 2) + B [e 7 (—D(X2 )] .

Topt

The larger the maturity, the more effective the smoothing of the error. The
next plots show the comparison with a heavy finite-difference method (PSOR
algorithm) with a large number of steps (500), so that the yielded price may

be considered as the right one, for different values of a.
20 a:20%,p:5%,T|:1,K|:100 | |
YAAAP ——

18 PSOR 500 steps m
16

14

12

Price 10
8 ~

6
4
2
0

80 85 90 95 100 105 110 115 120
Spot
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o=20%,p=>5%"T== K=100

50°
20 I I I I
YAAAP ——

PSOR 500 steps
15
Price 10
5

0 P~
80 85 90 95 100 105 110 115 120

Spot

5 Conclusion: practical considerations

In this paper, we apply the theoretical result in [1] to the pricing of the Ameri-
can Put in the Black-Scholes model. We get a closed-formula for a payoff which
is very close to the Put payoff. Let us insist on some remarkable features of our
approximation: unlike many other kind of numerical approximation methods
there is a hedge ratio associated to our price, which can be computed through
the same type of almost-closed formula. Moreover, the YAAAP prices and
deltas are the exact Black-Scholes American prices and deltas of a contingent
claim the payoff of which matches the Put payoff below K* and above K,
is analytic within the range |K*, K[, has the right first derivative —1 at K7
and K_, and lastly which deviates at most of err* from the Put payoff within
|K*, K[. Therefore a safe way of making use of our approximation method is
to trade the corresponding sub- and super-strategies with the YAAAP deltas
and the selling price YAAAP price+err*, buying price price-err*, which leav-
ing aside discrete-time hedging and model errors considerations will allways
yield a non-negative Profit&Loss. Remember that err* is less than 0.15% of
the strike as soon as 3—’; is greater than 2.
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Because of the oscillating behavior of the difference $(z) — (K — z)™, in

case of the trading of a portfolio of Puts spread across different strikes it is
likely that the YAAAP prices may be used directly since the Profit&Loss for
the different strikes will compensate eachother.

A Proof of lemma 2

Indeed by (4):

o(z) =bx™ — 702(0424- 1)33‘0‘ /OK(T A x)aHLgT)

where by (6) b = % JEre"tm(dr). Therefore

_ 2 - K a—1 (T A x)a—kl
p(z) = 2lat1)” /0 [ro " — T]m(dr)

Now m = ”ZZKQ O (dr) — I]O,K[(T)Mh, whence

l.fa 3 K B (T A x)a—kl
_ Kot (K a+17 _ aK*/ a=1_ V% Jh(d
o) = o e = (K na) ] ek [ D (e
For z < K
z%p(x) _ 1 0 /K rotl — (r A )t h(dr)
Kotl — (K Az)etl (a4 1) o Kotl— (K Az)etl r2

rotl_(pag)et!

Now ol < 25 piugging [ po Uh(dr) = (K® — K*%)/a we get
z%p(x) 1 a .,
> >0
Kotl — (K Azx)et! = (a+ 1)(a+ 1)

and ¢ is non-negative.
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B Behaviour of the European price as the ma-
turity goes to +oo

We prove here the following:

Proposition 19 Let ¢ : R}, — R a measurable function such that

sup [¢|(z)/(z + 2%) < +o0
z>0

If a = limy,_, @ and b = limg,_,o+ % exist and are finite, then

tllglo vy(t, ) = ax + bx~
Proof.
vp (t,x) = e "E[p(X7)]

e e (007

XZF X?F —a
F [—wgo( tzz — e_”tth] + 2 *F l—ww( tcz — e (th) ]
XF 4+ (XF) X7+ (XF)

e Pt

0'2 . .
Since e "X} = e“Pt=%' by Girsanov theorem the first term is equal to

2EP lﬁ

9 o2 ~ o2 ~
— | where Y7 = geptto(Bimot)to"i=51 — gepttoBitSt and B
ve+(v7)

~ ~ ~ 2
. . . . a_
is a P Brownian motion. In particular P a.s., e/ toBt+%5t 5 o0 as t — oo.

Therefore by Lebesgue theorem limy_, EP (p(i)_a =limy_,o oY)
i+ (r?) v
020'2 . .
In the same way e #* (X})™® = e7*?5~"5~" is a martingale and the second

term is equal to

5| e (z0)7)
78 +(7F) *

~ 2 2
where 7% = g=ttooBit 5571

L(yia) =z~ %limy_g %. [ ]

=

Therefore it goes to 7% limy_,

y+y

1
o
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C Proof of lemma 3

One has

0_2
e’ (tz) = ratig—ee " (p_T)tE [exp (—a0By) 1{aoB,>ai(z)}

2

+xe (p 2 )tE [exp (0By) 1{0’Bt<l($‘)}]

where
Since a"2—2 =pand ap = @,

(a0)?
ve, (t,x) = r*tlg7% 2 'E [exp (—aoBy) 1{a03t>al(z)}]

0_2
+ze TIE [eXp (0By) 1{aBt<l(z)}]

Now,

2 2 fo's) 2 d
ef%tE [exp (_/YBt) 1{73t>ﬂ}] = e 2 / e ?e 247t 7'2
B

In the same way

—ﬁt ﬂ - 72t
e 'k [eXp (fth) 1{7Bt<ﬂ}] =N \/’W

Whence

Ve, (t,x) = r*tlzTeN (— (

aol (z) + (ao)? t)

(ao)*t

N——
+
8
=
/N
Q
&
Q
NI
o~
Q
N
~
N——
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Ve, (t,x) = r*TaT®N | - (aln (5) —a (QT_I) (0t) +a2(02t)>)

o?(02t)
In (2) = (252) (6%) — (0%)
+xN ( Joi )

D Computation of @' for K* < z < K

Fory €la, b[, p(e?) = Pp(AX*(y),y) is given in Proposition 10. Since 0 v,(A*(y),y)

S S
(X (y)

—a

(&

¥

)zat%( *(y),y) = 0, derivation with respect to y yields :

1\ 1
(e¥) = —e YeMa—y) 4 oy palb—y) <_ (b—1y) VA — (O‘ + ) >

2 )V
_76_‘1’6;@_” VAN (- (b—1y)VA— (O“QH) %)
o (2)3)

VA
1

+%b\fAN' ((b — )V - (O‘ i

) )
S

a— b a U~
et T [ S () N~ (u - ) (

— 00

—(at+l)y b (atl)u~
4 ° ~ (J—;)”/ e%h(du)\@v’( u—y)VA— (
55T b et a —|— 1
+— / e R (du) N (u = y) VA —
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(a—1)b

N (du)\/_N'<( WVA- (25

(6] —00 2

)
VA
where for notation simplicity A stands for A*(y).

Since

2
V2rN' (— (z—y) VA - (oz + 1) i) = eweﬁ(i\/‘) e—%(z—yV,

2 J VA

using the definition of A*(y), we obtain that the sum of the third and the
seventh terms of the r.h.s. is nil. Similarly the sum of the fifth and the ninth
terms is nil.

E  Proof of lemma 18

If ¢ is non-increasing then V¢t > 0, * — wv,(t,z) is non-increasing. Since
P(x) = inf;>gv,(t, z), the same property holds for ¢ and for the modified
payoff @p.

Therefore, we are gomg to study the monotony of ¢. Let x < K. We recall
that (z%¢(z)) = —Za® [K ™) — g 4 geaK [KME) A

o(@) = (K — K7) (K*)a LS (:c /f Mdr) | o /0 ra_lh(dr)) ,

T a+1 72

and 1/(a+1) = (K — K*)/K, we deduce that

¢/ (2) = (K — K") (xaa [ K*a) K

/Ow r*~h(dr).

We upper-bound f dr) thanks to the second moment assumption on A :

a+1 a—1

K a1 (Ko 2 K2
/ hldr) <z % / TTSh(dr) _r 27
z 0

72 o

Combining this inequality with 2%/ K +aK*®/z > 2z°% /aK**/K we obtain

2 (z) < (K — K*)a"“T K7 (1 - 2,/a(K*/K)a) .
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Hence ¢ is non-increasing as soon as 4o (aiﬂ)a > 1. It is easy to check that

the function a €]0,+oo[— f(a) = 4a (aiﬂ)a is increasing. Since f(1/2) =

\/4/3 > 1 and lim,_,o f(a) = 0, the equation f(«) = 1 has a unique solution
ag. Moreover ag < 1/2 and Yo > «p, ¢ is non-increasing.
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