N

N
N

HAL

open science

Tight Bounds for Broadcasting in the Linear Cost Model

Bruno Beauquier, Olivier Delmas, Stéphane Pérennes

» To cite this version:

Bruno Beauquier, Olivier Delmas, Stéphane Pérennes. Tight Bounds for Broadcasting in the Linear

Cost Model. RR-3827, INRIA. 1999. inria-00072831

HAL 1d: inria-00072831
https://inria.hal.science/inria-00072831
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00072831
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--3827--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Tight Bounds for Broadcasting
In the Linear Cost Model

Bruno Beauquier — Olivier Delmas — Stéphane Pérennes

N° 3827

Décembre 1999

THEME 1

apport
derecherche







INRIA

SOPHIA ANTIPOLIS

Tight Bounds for Broadcasting
in the Linear Cost Model

Bruno Beauquier * , Olivier Delmas ', Stéphane Pérennes *

Théme 1 — Réseaux et systémes

Projet Sloop
Rapport de recherche n° 3827 — Décembre 1999 — 21 pages

Abstract: This work considers broadcast protocols made of successive communication
rounds in the linear cost model: the time needed to send a message of length L is defined
as a + L7. In this model, the communication time of any algorithm A is expressed as the
sum R4 -a+T4 -7, where R4 is the number of rounds and T 4 the transmission cost of the
algorithm. In order to design an efficient algorithm realizing a given communication pattern,
it appears that minimizing R 4 and T4 are antinomic goals. We study this trade-off issue for
broadcast protocols. Surprisingly, such a general theoretical study has almost never been
done. In the literature, only the two opposite issues are actually considered: minimizing
the number of rounds in the case of short messages, or minimizing the transmission cost in
the case of large messages. Our results concern the fully-connected N-nodes network Ky,
with N = (k + 1)T, in the bidirectional k—ports mode. We derive tight bounds on the
communication time for broadcasting in 7'+ r rounds, our lower bounds holding for any
network.
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Bornes Fines pour la Diffusion
avec Cott Linéaire

Résumé : Ce travail considére des protocoles de diffusion se déroulant en étapes successives
sous le modéle linéaire du colt de communication : le temps nécessaire pour envoyer un
message de longueur L est défini par o + L7. Dans ce modéle, le temps de communication
d’un algorithme s’exprime par la somme R4 -« + T4 - 7, ou R4 est le nombre d’étapes
et T4 le cotdt de transmission de Palgorithme. En vue de concevoir un algorithme efficace
réalisant un schéma de communication donné, il apparait que minimiser R 4 et T4 sont des
objectifs antinomiques. Nous étudions le compromis nécessaire entre ces deux coits dans
le cadre de la diffusion. Il s’avére qu’une telle étude théorique générale n’a pratiquement
jamais été entreprise. Dans la littérature, seulement les deux cas extrémes sont considérés :
minimisation du nombre d’étapes dans le cas de messages courts, ou minimisation du coat
de transmission dans le cas de messages longs. Nos résultats concernent le réseau complet
Ky, avec N = (k+1)T, sous le mode k-ports bidirectionnel. Nous dérivons des bornes fines
sur le temps de communication pour la diffusion en T+ r étapes, les bornes inférieures étant
valables dans tout réseau.

Mots-clés : réseaux de communication, diffusion, codt linéaire.
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1 Introduction

When studying information dissemination in communication networks, often considered are
protocols made of successive communication rounds with a linear model for the communi-
cation cost: the time needed to send a message of size L from a node to another is defined
as a + L7, where « stands for a start-up time while L7 represents the cost of sending L bits
of data in a channel with bandwidth 1/7. The cost of a round is defined as the maximum
of the cost of all the communications done during this round. In such a modelization, the
communication time of any algorithm A can be expressed as the sum R4 -a+ T4 -7,
where R 4 is the number of rounds and 74 the transmission cost of the algorithm. This
linear model of the communication cost is often used in the literature and references to algo-
rithmic work can be found in [6, 7]. When trying to design an optimal algorithm performing
a given communication pattern, it appears that minimizing R4 and T 4 are often antinomic
goals. In fact, in the literature many authors optimize only one of these two parameters by
considering one of the two extremal cases:

e Short messages (i.e. « > L7) — In this case, R4 - « is the leading term of the
communication time. Hence, only the number of rounds is to be minimized. Many
authors have proposed broadcast algorithms optimal with that respect (see the surveys
[10, 11], the book [14], the chapter [13] or the theses [6, 7]).

e Large messages (i.e. LT > o) — In this case, only the transmission cost is to be min-
imized. Techniques, like pipelined algorithms using “disjoint” spanning trees, ensure
a nearly optimal cost for message transmission (see [8, 12, 15] for hypercube network
or [4, 9] for grids, and [10, 14] for a general survey). Note that this kind of optimality
always implies a large number of communication rounds.

Some authors considered also families of algorithms .A(p) depending on some parameter p
(for example, for pipelined algorithms p usually represents the size of packets, assuming that
all packets have the same size — see the survey [10] and the associated references). In this
case, the family A(p) uses R 4(p) rounds with a transmission cost T 4(p). Within a family, as
the functions R 4(p) and T 4(p) have usually an opposite behavior, the optimal p minimizing
the communication time can be chosen for given «, L and 7.

Here, in order to design optimal algorithms and to study this trade-off, we proceed in
a different way. Given the number of rounds, we try to determine (at least to find a tight
estimation of) the minimum transmission cost of any algorithm realizing the communication
pattern within this given number of rounds. A general theoretical study about such a trade-
off has almost never been done (except in [5]) and therefore no optimal protocol was known
but in the case of short or large messages, by optimizing only the leading term.
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4 Beauquier, Delmas € Pérennes

The determination of the minimum transmission cost of an algorithm using a given
number of rounds appears to be a difficult problem. So, we restrict ourselves to the commu-
nication scheme called broadcasting, where a single source has to send the same message of
length L to all the other nodes in the network. We also assume that links are full-duplex (i.e.
there is a bidirectional link between each pair of node) and that a node can simultaneously
send and receive data on at most k—ports. We consider the case where the network is the
complete graph Ky and we assume that N = (k + 1)T, as this is the maximum number of
nodes which can be informed in 7" rounds. With these hypotheses, any broadcast algorithm
needs at least T rounds.

In this paper, we study the antinomy between the number of rounds and the transmission
cost. When the number of rounds is small, more exactly of the form T + r with r <
log,, 1 (T')+1, we show that an estimation of the transmission cost is given by an exponential
decrease ﬁ + O(4). Conversely, for a large number of extra rounds r > T — 1, we

observe a linear decrease ,z; fl - O(T%), whereas for intermediate values no trade-off occurs,

the transmission cost remaining close to 2/k.

The article is organized as follows. In section 2 we give the definitions and hypotheses
and show why our study is valid for both the store-and-forward and the circuit-switched
routing modes. We also introduce a function allowing to study the trade-off issue formally.
In section 3 we give an upper bound for broadcasting with a few extra rounds, while we
derive tight lower bounds in section 4. Other tight bounds for many extra rounds are derived
in section 5. In conclusion we summarize our results and discuss their applications.

2 Framework

Recall that we consider synchronous protocols made of successive communication rounds.

Definition 1 The communication time of a broadcast algorithm A in a network G can
be expressed as b(A) = R4 -a+ Ty -7, where R4 is the number of rounds and T4 the
transmission cost. The minimum broadcast time over all algorithms is denoted by b(G).

For any k-ports network with N nodes, the usual lower bound on the time for broadcast-
ing a message of length L is expressed as the sum of the lower bounds valid for the number
of rounds and for the transmission cost [6]:

b(G) > [logk+1N'|-a+%~T (1)

As already noticed, existing upper bounds have quite a different form where a trade-off
appears.

INRIA



Tight Bounds for Broadcasting 5

The function defined below will be useful to derive a relation between the number of
rounds and the transmission cost.

Definition 2 Let G be a fixed network and 7' the minimum number of rounds for broad-
casting in G. Then, f(G,L,r) is defined as the minimum transmission cost of any
algorithm broadcasting in G a message of length L and completing in r extra rounds, i.e.
using T" + r rounds.

With the previous definition, we have b(G) > (T +r) -a+ f(G,L,r) - T, for any r > 0.

Hypothesis 3 Packet sizes are assumed to be continuous.

This does not hold formally in practice, as messages are made of integer numbers of bits.
However, as these numbers are generally large, the continuity assumption makes sense.

Property 4 Assuming continuous packet sizes, the function f is linear in L,i.e. f(G,L,r) =
f(G,1,r)- L. Moreover, f(G,1,r) is a non-increasing function of r.

Proof. Let M be a message of length L and let Az, be an algorithm broadcasting a
message M’ of length L' with transmission cost f(G,L',r).

Let us denote by h the function & — z - L/L' from [0, L] to [0, L]. Note that h induces
a function H from the set of submessages of M’ to the set of submessages of M. With
function H we are able to define submessages of M from submessages of M’'. By following
the same communication protocol as Ay, with the images by H, we obtain an algorithm
Ap broadcasting M with cost f(G,L',r)- L/L'. Hence, f(G,L,r) < f(G,L',r)-L/L'. By
inverting roles of M’ and M, we get the reverse inequality.

Note at last that any algorithm using r 4+ 1 rounds can emulate an algorithm using r
rounds by sending empty messages during its last round, so f(G,1,r +1) < f(G,1,7). O

Remark 5 As f(G, L,r) is linear in L, we will consider w.l.o.g. that L = 1.

Hypothesis 6 We consider the case of the complete graph K with N nodes.

Note that the behaviour of f(G,1,r) strongly depends on the topology of network G.
Any link conflict is avoided in the complete graph. Therefore we will derive lower bounds
valid for every network with N nodes. Moreover, as each pair of vertices can communicate

RR n° 3827



6 Beauquier, Delmas € Pérennes

in the complete graph, the study is also valid for both the store-and-forward and the circuit-
switched routing modes.

Finally, in order to simplify computations we will assume that:

Hypothesis 7 Under the k-ports communication mode, N = (k + 1)7.

This is not avery restrictive hypothesis, as IV is thereby the maximum number of nodes
which can be informed by a broadcast protocol completing in 7' communication rounds.

With all these hypotheses, we give in the next sections results on f(Ky,1,7), with
N = (k +1)T, that will be denoted simply by fr(r).

With this notation, we have immediately:

Proposition 8 fr(0)=1T.

Proof. As N = (k+ 1)7, every node other than the source can be informed only once
during the T rounds and must receive the whole message whose length is 1. Hence, the
size of any message sent during any round must be equal to 1, and so fr(0) > 0. A greedy
algorithm matching this bound can be defined as follows. During T' rounds every informed
node sends the whole message to k not yet informed nodes. The broadcast is thus completed
and the resulting transmission cost is 7T'. |

3 Upper bound for broadcasting with a few extra rounds

Here, we construct inductively algorithms for broadcasting with r extra rounds. We initiate
the induction by using the greedy broadcast algorithm given in Proposition 8.

Lemma 9 For T >0 andr >0, fr(r) < ,%Hwt%

Proof. For t > 0, let N; = (k+ 1), hence N = Np. The idea consists in defining an
algorithm in Ky using T+ r rounds from an algorithm in Ky,._, using T'—1+r —1 rounds.

The vertex set V(K ) of the complete graph Ky can be seen as the cartesian product
{1,2,...,k+1}x{1,2,..., Npr_1} and can be represented by the following matrix with k+1

INRIA



Tight Bounds for Broadcasting 7

rows and N7_; columns:

(171) (172> (laNT71>

N (271) (272) (27NT—1)
V(Ky) = ) : ‘ :

(k+1,1) (k+1,2) - (k+1 Nr_q)

The source (1,1) first partitions equally the message into k + 1 packets each of size
1/(k+ 1), denoted by m; for 1 <i <k + 1.

e During the first round, the source (1, 1) sends packet m; to node (i, 1), for 2 <7 < k+1.
The transmission cost of this round is 1/(k + 1).

e During the next (I' — 1+ r — 1) rounds and for 1 < i < k + 1, each packet m; is
broadcast from node (4,1) to all the vertices in line 7. This is realized by performing
k + 1 independent and parallel identical protocols broadcasting in (7' — 1) + (r — 1)
rounds a message of length 1/(k + 1) in k + 1 disjoint complete graphs of cardinality
Nr_;. By definition of fr_;, the transmission cost of this phase is fr_1(r—1)/(k+1).

e Finally, as the original message is distributed on every column, each node (4, 5) sends
in the last round packet m; to the k others nodes in column j (parallel total exchanges
of the packets m; are realized in the different columns). The transmission cost of this
last round is 1/(k + 1).

Summarizing, we obtain the inductive inequality fr(r) < 27 + %(Tl_l) ]

Now the following proposition can be stated.

Proposition 10 Forr <T, fr(r) < (]3;_;{), +2 <1 — m)

Proof. For r = 0 we use Proposition 8. For 1 < r < T, applying inductively Lemma 9

leads to fr(r) < >I_, ﬁ— + ﬁ;"l()o) Note that the condition r < T follows from the fact

that Lemma 9 can be applied only for T' > 0. O
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8 Beauquier, Delmas € Pérennes

4 Lower bounds for broadcasting with a few extra rounds

4.1 Notation

For every t > 0, let N; = (k + 1). Then N, is an upper bound on the maximum number of
nodes having received some information after the ¢ first rounds. For 1 < ¢ < T + r, we need
the following definitions:

l; : maximum size of the messages sent during round t,
Ly =3"'_,l; : transmission cost after the first t rounds,

it : total information received during the round t,

I = Z;‘f:l i : total information received after the first t rounds,

and by convention, Ly = Zy = 0.

4.2 Preliminaries

To study the transmission cost once some vertices have already been informed, we need
a to consider particular protocols where a given number s of sources can simultaneously
broadcast information, and which we call broadcast protocols with s sources.

Lemma 11 For any broadcast protocol with s sources, for any t > 1 and for a fixed L, we
have T; < s - % - (Nt — 1). Moreover, equality holds only if all the costs l;, with 1 <1 <,
are equal.

Proof. The following holds for each round ¢ + 1 such that ¢ > 0.

e At most sNV; nodes can send messages, hence 4411 < k(8Ng)ly1.

o Let i(z,t) be the total information received by node z after ¢ rounds. The information
sent by the sources is at most s(kl;4+1) and each of the other nodes can send no more
than what it has already received, hence i111 < 8(kliy1)+k ), cqi(,t) = skl 1+kT;.

So for every ¢ such that 0 <t < T, we have:

It+1 S It + kSNtlH_l (2)
It-l—l S (k + 1)It + kSlH_l (3)

Note that the lemma is true for t = 1, as we have Ny = 1, 7y = 0, leading to 73 < ksly =
sl1 (N7 — 1). We assume that it holds for a given ¢ and we prove it for ¢ + 1.

INRIA



Tight Bounds for Broadcasting 9

We recall that L.y is fixed. For a protocol with some transmission cost /41 at round
t+ 1, we have £; = L4411 — l;41 and by induction hypothesis

LSS.@.(N}_D

From (2) and (3), we get:

Tivi < Ly +ksNiliy

< s (%(Nt -1+ thlt-H) = ©1(lig1)
It+1 S (k + I)It + k'Slt+1

< s (%(Nt —1(k+1)+ klt+1) = pa(ley1)

Functions ¢1 and @2 are two affine functions in l;41, 1 being increasing while s is non-
increasing. Therefore, min(p; (l¢+1), w2(li+1)) is smaller than the common value obtained

by solving @1 (lt4+1) = w2(li+1). The solution of this equation is l;41 = iifll and we obtain:

L
Tiv1 < @1(leg1) = p2(liyr) = t-tq-—+i “(Nigy1 = 1)

To reach this bound, we must have by induction /;,4; = €++11 for each ¢ < t, which indeed
implies that all the intermediate costs are equal. In this view, the transmission optimization

may be called greedy. O

Corollary 12 For 0 < p < ¢ < T + 1, the information transmission I, after g rounds of
every protocol having fized values of T,, L, and L, satisfies:

Ly =Ly

T, <T,+
q P q—p

(Ng = Np) (4)

Proof. First, note that after p rounds at most N, nodes can be informed. So, after
round p, an information transmission occurs from N, sources during g — p rounds and with
a fixed cost (L4 — L,). According to Lemma 11 applied with t = ¢ —p, £, = L, — L, and

s = N, we have (I, — 7,) < N, (%(Nq_p - 1)) and the result holds. ]

Remark 13 For values of ¢ greater than 7"+ 1, Lemma 11 does not give an accurate
estimation of 7Z;. This is due to the fact that for ¢ > T + 1, the maximum number of

RR n° 3827



10 Beauquier, Delmas € Pérennes

informed nodes is N, which is much smaller than N;. Nevertheless, lower bounds on fr(r)
can still be derived from inequalities (2) and (3), but they are not tight enough and the
refined analyses given in the next sections allow to obtain better results.

Consider a dissemination protocol with one source using 7'+ rounds. After round T+,
each node must have received a complete message of length 1, hence, if i(x,t) (as in the
proof of Lemma 11) denotes the total information received by node z after ¢ rounds, we
have for any node z , i(z,T + r) > 1. By summing over all the nodes (except the source)
we get the next inequality:

Ir4r 2 N7 —1 (5)

Remark 14 Using the fact that any broadcast algorithm using T rounds satisfies Zp >
N — 1, we find again Proposition 8 from Lemma 11, i.e. the transmission cost Lr is at
least T'.

4.3 One extra round

Proposition 15 fr(1) = {1

Proof. We prove that fr(1) > % by reduction to the absurd, assuming the existence

of an algorithm using T + 1 rounds with a transmission cost Lr41 < %

First we prove that I741 < . With inequalities (5) and (3) and from Lemma 11, we
have:

Nr—1 < Ipy
< (k+1)Zr + klrgs
Ir < % (Nr—1)
by hypothesis, LT = £T+1 — lT+1

el

Combining the three relations leads to lr+1 < ﬁ <
+ N-—-1

As klr41 < 1, anode without information cannot receive enough information during the

last round. So, during the first T' rounds each node must receive some information, exactly
one message as N = (k + 1)T.

INRIA



Tight Bounds for Broadcasting 11

Let ! =min{l; |1 < ¢t <T + 1} be the minimum cost of all rounds. We have (T'+1)I <
1

<
Lr41 < %, so | < z77- Now, we distinguish two cases.

e The minimum value [ is attained for 7. As a vertex can receive at most kl infor-
mation in round 7"+ 1, then it should be know at least 1 — kI information after round
T and so, according to Proposition 8 we have I[; > 1 —klfor 1 <t < T.

e The minimum value [ is attained for some tg with 1 < tg < T'. As the algorithm follows
a spanning tree pattern during the first 7' rounds, exactly (Ny, — Ny,—1) nodes receive
at most [ information during round ¢o. Let S be the set of all the descendants of these
nodes after round T'; and note that |S| = (k+1)7 "% (N, — Nyy—1) = Ng— Ny—1. So,
all the nodes in S have at most [ information after round T'. As! < 1/(k+ 1), no node
in S can receive, in the last round, k& messages from nodes in S. As k(N —|S|) = |5,
we deduce that during round T+ 1 each node in S receives (k — 1) messages of length
at most [ from nodes in S and one message of length at least (1 — kl) from a node not
in S. Consequently, any node not in S must have at least (1 — kl) information after
round T'. So, lpy1 >1—kland I, > 1 —klfor 1 <t <T, with t # tg.

In both cases we have Lry; > I+ T(1 — kl) = (I). Finally, just note that ¢(l) is a
strictly decreasing function in [. As < ,91?, we have Lp41 > @(,Clﬁ) = %, contradicting
our main hypothesis. As the conditions used in this proof are necessary to perform any
broadcast protocol, then, it is proved that fr(1) > L7q1 > % and the result follows from
Proposition 10. |

4.4 Two extra rounds

Before to state a lower bound for two extra rounds, we need to introduce a new notion about
the transmission cost.

Definition 16 Given a network G with one source vertex. A transmission algorithm
using ¢ rounds is a communication protocol such that:

e Initially the source has a message of infinite size, and all the other vertices in G have
no information.

e During the ¢t rounds of the protocol, each vertex with some information can send &
different submessages such that each size is not greater than the known information.

e At the end of the protocol, i.e. after ¢ rounds, all the vertices in G have received an
amount of information at least equal to 1.

RR n° 3827



12 Beauquier, Delmas € Pérennes

Remark 17 Clearly, these transmission constraints are weaker than those for broadcasting.
Indeed, at the end of a transmission protocol, we make no assumption about what message
reaches each vertex. We only restrict the final amount of information in each vertex.

Definition 18 Let gr(r) be the minimal transmission cost of any transmission algo-
rithm for the complete graph Ky using 7"+ r rounds.

Property 19 As any broadcast algorithm satisfies the transmission constraints, we have

fr(r) > gr(r).

Our lower bound can now be stated.

Proposition 20 fr(2) = ﬁ + % e (%)

Proof. From Proposition 10 we have fr(2) < ﬁ + #7- We consider an optimal
broadcast algorithm using 7" + 2 rounds.

After the first round, at least (1 — kly) information remains to be broadcast from the
source in T + 1 rounds, so I3 + (1 — kly) f7(1) < L1y < ng + Nll and from Proposition 15

we deduce: P ) )
e A SRS
hz (kT —1)N, Ny © (kT) ©)

Before the last round, every node must have at least (1 — klr42) information. Therefore,

by definition of the function gr, we get that L7, is at least (1 — klr42)g7r(1). So lris
satisfies the same inequality as l1:

KT —1-k 1 1
> = - e
e (5 N A A (kT) @)

Let A be such that Lry5 =11 + TA + l742. By applying Corollary 12 with p = 1 and
q= T+ 1, we obtain IT—}—I < k+ )\(NT—}—I — Nl) Then from NT —1 < IT+2 < NIIT+1 +k

we deduce: ) .
> il
Az Ny © (N> ®

As T'/N is small compared to 1/(kT'), combining (6), (7) and (8) gives:

T 2 1
fT(Q):£T+2:l1+TA+lT+2ZE+E_®<k_T)

INRIA



Tight Bounds for Broadcasting 13

4.5 Some extra rounds

We have given in section 3 algorithms for broadcasting with r extra rounds, inducing upper
bounds on fr(r). For large enough values of T, their transmission cost can be approximated
by the sum of the two terms ﬁ and % The former is dominating for small values of r
and decreases exponentially with r. We prove in the following that in this case the upper
bounds of Proposition 10 are tight. Therefore we show the efficiency of our algorithms,
which allow to decrease significantly the transmission cost with a few additive rounds.

Theorem 21 For0<r <T, fr(r) = ﬁ +0(%).
Proof. We derive here a lower bound on fr(r) matching the upper bound given by
Proposition 10. Let consider a broadcast algorithm using 7'+ r rounds. After round r — 1

it can be seen as a broadcast protocol with (at most) N,_; sources. So from inequality (3)
witht =T +r — 1 we get:

IT-I—T S (k + ]-) : IT+’I"—1 + k- Nr—l : lT-I—'r

By iteration for T <t < T +r — 1 and as l;11 > 1, we obtain:

r—1

Irir SNp I+ Y (k- Ni-lpgr_i) < Np-Ip + (N, — 1)
1=0

Then, we apply Lemma 11 with ¢t =T,
NTSIT+T+1SNT'(IT+1)SNT' (LT_T(N_]-)+1)

and it follows that Lo > T - % = Nlr + 17\,]:” = ; +0(%).

Now, we must compare this relation with the upper bound given by Proposition 9, that
is we compare % with % As % is small compared to % the proposition holds. O

The above proposition is meaningless when r > log,, ;(T') as it reduces to fr(r) = ©(%).
In the following we investigate this case and we give a better bound.

Proposition 22 Forr <T — 1, fr(r) > 2.

Proof. We consider a broadcast algorithm using 7'+ r rounds and having a transmission
cost strictly less than 2/k, and we show that » > T'— 1. Let to be the last round after which

RR n° 3827



14 Beauquier, Delmas € Pérennes

it remains some information not yet broadcast from the source, hence L4 41 > 1/k. After
round tg, T rounds are necessary to broadcast this last piece of information in the entire
network, so tg + T < T 4+ r and ty < r. Given the assumption on the total transmission
cost, every node must have received some information after the round ty + 1, otherwise
Lryr > Lyr1 +1/k > 2/k. Therefore, we have tg + 1 > T, leading tor > T — 1. O

Corollary 23 Forlog,,;(T)+1<r<T -1, fr(r) =2+ 0 (&).

Proof. By Proposition 10 we have fr(r) < % + % As for r > log, 1 (T') + 2, we

have (k+1)" > T - (k+1)2, then, fr(r) < 2 + O (%) and the result holds with Proposition
22. O

Remark 24 Tt has been proved that the minimum transmission cost fr(r) decreases ex-
ponentially when a small number of extra rounds is used. However, this behaviour stops
as soon as r is greater than log,,; (T'). Indeed, the main cost becomes 2/k. This can be
explained as follows: to have an unit length message broadcast in a whole network under
the k-ports mode, a transmission cost of 1/k is required to make the message go out from
the source and also to make it enter into any other node. We could think that the pipeline
techniques could decrease this cost as they should allow to have these two costs covered by
each other, in order to go below a total cost of 2/k. Unfortunately, Proposition 22 proves
that no pipelined algorithm can be usefull if r < T — 1.

5 Broadcasting with many extra rounds

In this section, we investigate the case where many extra rounds are used, i.e. with r > T'—1.
In this range pipelined protocols are possible and we study how such techniques allow to
decrease the transmission cost.

5.1 Upper bounds: pipelined algorithms

Proposition 25 Forr >T — 1, fr(r) < 13;1-?1

Proof. This upper bound follows from an algorithm. In the following Z, will denote
the set of integers modulo g. The elements of Z, will be taken in the set {0,1,...,¢ — 1}.
The vertex set of the complete graph Ky is represented by Z{, ;. The elements in Z7,
may be expressed in the canonical base {e;}1<;<7, that is, we may denote a vertex = =

(z1,22,...,27) € Z{_I_l by 23;1 z; - e;. The source is the element with all components
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equal to 0. In the following, we need to define a labelling of the arcs to be used in our
algorithm. For each node z, for 1 < j < kand 1 < ¢ < T, the arc (z,x + J - e;) will be
labelled by i. In our algorithm, only arcs labelled by ¢ are used during a round ¢ = ¢ mod 7.

Now, let U be the set of vertices such that U = {u € V(Kn) |[u=j-€;, with 1 <j <k
and 1 < ¢ < T}. For each node u € U, let Ty(u) be simply the vertex u. Now, for
1 < h <T,let Tp(u) be the tree induced from 7, 1(u) by adding all the possible arcs
labelled by (i + h mod T'). Thus, 7r(u) is a directed spanning tree rooted in u.

In this way, we have defined k - T arc—disjoint spanning trees and the algorithm mainly
consists in pipelining concurrently in each of them. Moreover, to maintain the full use of the
bandwidth until the end of the process, the last piece of information is broadcast during the
last T rounds using a spanning tree rooted in the source. Now, we describe the algorithm.

e The source first cuts equally its unit length message into kr 4+ 1 distinct submessages,
denoted by m; with 1 <1 < kr + 1.

e For 1 <t <, at round ¢ the source sends submessage m;_1)r4;, for 1 < j < k, to
node 4 = j - €(t mod T)-

e When a submessage m;, with 1 < [ < kr, has been sent from the source to a node
u € U, it is broadcast in 77(u) during the next T rounds (using thereby all the arcs
labelled by i at each round ¢t =4 mod T').

e The last submessage myr4+1 is broadcast from the source in the T last rounds, using
all the possible arcs labelled by ¢t mod T' at round t.

The different rounds use the same transmission cost equal to 1/(kr + 1), that is the
length of each submessage. This leads to the expected total cost (T'+r)/(kr + 1). O

5.2 Lower bounds

Lemma 26 For any 1 > 0, if fr(r) > £5 then fr(r +T) > LG5

Proof. Consider an optimal algorithm broadcasting an unit length message in T+ (T'+7)
rounds. After round T, at least (1 — kL) information remains to be broadcast from the
source in T + r extra rounds, hence:

T+r

fT(T+T)Z£T+fT(T)'(1_k£T)Z£T+kr+1

(1 =kL7) = ¢1(L7)
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Note also that after time T', an amount of (N — 1 — Zr) information has to be transmitted
on at most k(N — 1) links at each round (as those incoming the source are useless). From
Lemma 11, we know that Zr < L:TT(N — 1), hence:

fr(T+r)>Lr+ % (1 — E—;) = @o(LT)

As in the proof of Lemma, 11, ¢; is a decreasing function while 5 is an increasing function.
So min(e1 (L), e2(L1)) > v1(€), where £ satisfies p1(§) = p2(€). Solving the equation we
get:

E+E501-k) = E+101-%)
¢ = war
01 =w(8) = Fimer
SowehavefT(T—l—r)ZM O

k(r+T)+1"

Lemma 27 f7(T +2) = %

Proof. From Proposition 25 we have fr(T + 2) < % and by using the same
arguments we get:

THTE2) » f(T 4 9) Lrir+ fr(1)- (L —kLryr)

k(T+2)+1 ( ) 2
T+(T+2 T+1
k(T+2)+1 Z ['T+1 + E+1 (]. - kLT+1)
T+1
Lry 2 k(T++2)+1

Let us denote by L7, the sum of the transmission costs of the last T'+ 1 rounds, hence
fr(T+2)=Lryr + L,

T > (T +2) > fr(1)- (1= kL) + Ly
T+(T+2 T
W > (= kL) + Ly
Lry 2 k(iﬂ%
So the lemma holds. O
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Theorem 28 Forr >T, and r =0,1,2mod T, fr(r) = ]3;':_71

Proof. We use Lemma 26 inductively. To initiate the induction for r = 0 mod T, we use
Proposition 8, that is fr(0) = T verifying the condition of Lemma 26. For » = 1 mod T', we

use Proposition 15, that is fr(1) = % Finally, for r = 2 mod T', we use Lemma, 27 giving
the exact value of fr(T + 2), that verifies the needed condition too. For these three cases,
we obtain fr(r) > ,a J_T_Tl The result follows from Proposition 25. O

Corollary 29 For T € {1,2,3} and for any r > T, fr(r) = %

Corollary 30 Forr > T, fr(r) = g;irl -0 (%).

Proof. Assume that 11 =aT,r =al +bandro = (a+ 1)T witha>1and 0<b< T.
We know by Theorem 28 that fr(r1) = (k“a}llf, and fr(rz) = % As by Property 4,

fr is a non-increasing function, we have:

fr(r1) > fr(r) > fr(re)
a+1)T a+2)T
it 2 S 2 g

So we obtain for r > T,

1 1 1 1
# =+ 5o~ wma = (@)

1 T 1 1 T+r 1
fT(T)_E-’_H_W_O(T_?)_kr+1_0(r_2>

The above proposition and corollary make the following conjecture very likely to hold:

O

Conjecture 31 For any T and any r > T, fr(r) = £35.

6 Conclusion

In this paper, we have shown the existence of a trade-off between the number of rounds
and the transmission cost of broadcast protocols. We have derived tight bounds on the
minimum communication time (T +7)-a+ fr(r)- L -7 of any algorithm using T + 7 rounds
for broadcasting a message of length L in the bidirectional k-ports complete network Ky,
with N = (k 4+ 1)T. The following table summarizes the different results obtained:
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| Number of extra rounds | Minimum transmission cost [ Comment |
r=0 fr(0)=T greedy
r=1 fr(1) =
r=2 fr(2) = ﬁ + 57 — O (#7) || exponential trade-off
2 <7 <logyy (T) +1 fr(r) = g +© (%)
logp s (1) +1<r<T—1 fr(r)=2+0 (%) no trade-off
r>T,7r=0,1,2mod T fr(r) = &35
r>T-1 fr(r) = ,3;?1 -0(%) linear trade-off

Our lower bounds have been obtained for complete networks, therefore they are valid
for any topology. Conversely, our matching upper bounds derived from our algorithms
require strong connectivity to be reached. For example, we can show that the exponential
decrease of the transmission cost does not occur in a ring network. However, all routing
mechanisms based on the circuit-switched mode can take advantage of our algorithms, due
to the additional connectivity provided. In particular, the Wawvelength Division Multiplexed
(WDM) optical routing can offer full connectivity in various network topologies (see [3, 2]).
Our study has thus been fruitfully taken into account in [1] for multi-hop optical ring and
mesh networks. Further work should concentrate on other less connected topologies, for
which greater lower bounds will arise.
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