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Etude de la stabilité exponentielle et des fonctions de

transfert pour un réseau d’échangeurs thermiques

Résumé : Dans cet article on étudie la stabilité exponentielle et les fonctions de transfert
pour un systeme de réseau d’échangeurs thermiques. Le systéme est décrit par une série
d’équations différentielles aux dérivées partielles du type hyperbolique. Du point de vue de la
théorie du controle 'opérateur de controle et celui d’observation sont tous non-borneés mais
admissibles. En utilisant la théorie classique de systémes symétriques hyperboliques (a deux
variables indépendantes) on démontre que le semigroupe est exponentiellement stable pour le
réseau d’échangeurs thermiques en considération. En méme temps on propose une approche
alternative, a savoir la méthode directe de Lyapunov pour ’étude de la stabilité pour une
class de systémes symétriques hyperboliques (non-limitée a deux variables indépendantes).
Par la théorie de la représentation de systeémes linéaires de dimension infinie on déduit
de nombreuses propriétés pour les fonctions de transfert du systeme telles que régularité,

analyticité et bornitude dans le demi plan complex.

Mots-clé : Echangeurs thermiques, systemes symétriques hyperboliques, stabilité expo-

nentielle, systeme régulier, fonctions de transfert.
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1 Introduction

In all chemical engineering processes which have heat, mass or momentum transfer, there
must exist gradients in spatial directions. Some processes are specifically designed to take
the advantage of gradients along the axis of flow. The tubular reactor, the shell and tube
heat exchangers and the packed mass exchange columns all achieve their objectives in this
way [14]. The dynamic of most of these processes, if not all, must be described by partial
differential equations (PDE’s), resulting in distributed parameter systems. On the other
hand, there are hydraulic systems such as irrigation canals which are of distinctive features
of distributed parameter dynamics, giving rise to delayed responses. The essential nature
of distributed parameter dynamics cannot be ignored if we want to do control of these
processes. The objective of our work is to develop a general framework useful for robust
control of these distributed parameter processes. In this paper we study frequency and
time domain behaviour of a class of hyperbolic systems represented by a counterflow heat
exchanger network. As the reader will see this class of systems covers the classical double
pipe heat exchangers [14], the packed mass exchange columns [14] [22] and the irrigation
canals [23]. The approach of our study is essentially infinite dimensional : the analysis will
be carried out based on PDE models in contrast to the approximation ideas, resulting in
finite-dimensional models.

The network of counterflow heat exchangers to be considered is governed by two series

of hyperbolic partial differential equations (PDE’s) :

8R1 Z, de z, -
8Ra(t Z) —m ai} t)t_ K1(Ry(z,t) — Ry(z, 1)) + by (2)u(t) o
Utn(w.) _ _py, O(0:1) | g (R (2,1) = Ra(a, 1))

for all (z,t) €]0,{1[x]0, 4+o00[, and

0T (z,1
1_(?7 ) — (1 —
8T2($,t) _ 0T2(337t)
T = —m T
.t 2 .x

g P gy (13 (2,0) = T (2, 1)) + ba(e)ult) o)

+ Ky(Ty(z,t) — Ta(z, 1))

for all (z,t) €]ly,13[x]0, +00[. The two series of PDE’s are coupled by the boundary condi-

tions :

Ri(ly,t) = (1 - B)Tu(ly, 1)

(1.3)
Ty(lg,t) =
R2(07 t) - d(t)
We consider the following output :
y(t) = Ta(ls, t). (1.4)
In the above equations m;, K;, I; with ¢« = 1,2 and 3 are positive constants such that

I >1; >0and 0 < 8 < 1. The state variables R;(z,t) and T;(z,t), i = 1,2 are deviations
of the temperatures of fluids from the steady state values in the coupled counterflow heat
exchangers (see [14] or [15]). We assume that the functions by (z) and by(z) are continuously

differentiable. They are determined uniquely from the steady state values (see [15]). The
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4 Cheng-Zhong Xu and Gauthier Sallel

control variable u(t), representing variation of the fluid flow rate, is internal and affects the
PDE’s in (1.1) and (1.2) themselves. The disturbance variable d(t), representing variation
of the fluid inlet temperature, comes through the boundary of the system and enters into
the boundary condition (1.3). So, the equations (1.1)-(1.4) describe an infinite-dimensional
linear system with boundary input and boundary output.

This heat exchanger network has been constructed in [15] in order to simulate the
qualitative input-output behaviour of an industrial furnace. The reader is referred to [15]
for the physical background of the problem. From [15] the system exhibits a phenomenon
of non-minimum phase : the transfer function from u to y has zeros in the right half plane.
Therefore, the H* control theory developed in [7] and [8] has been applied in [15] to this
system for minimizing the worst effect of the disturbance d(t) on the output y(¢). The
industrial interest of the designed H> controller was also explained in more details in [15].

The present paper here is to show how the network system (1.1)-(1.3) is transfor-
med into a dissipative symmetric hyperbolic system. Then, we prove that the associated
semigroup is exponentially stable using the theorem of Rauch and Taylor [18].

As a secondary result, we propose a proof of the theorem of Rauch and Taylor by using
the direct method of Lyapunov. Although we have not proved the theorem as generally as
in [18] with the method of characteristics, the advantage of the direct method of Lyapunov
is its simplicity and a priori not limited to one space variable. The direct method of Lyapu-
nov allows us to attack symmetric hyperbolic systems in higher dimension and degenerate
hyperbolic cases that the theory in [18] cannot treat (see our example 1 in Section 2). In
particular, the heat exchanger network system (1.1)-(1.3) fits into our formulated framework.

We prove also that the system (1.1)-(1.4) is regular in the sense of Weiss [2]. The
regularity of the controlled and observed system with exponential stability of the semigroup
guarantees that the transfer functions P(s) and W (s) (corresponding to the input-output
mappings u — y and d — y, respectively) are in H> (that is, analytic and bounded in the
open right-hand half plane). This gives a positive answer to some of the open questions in
[15]. The fact that the system under consideration is regular has useful consequences on the
design of feedback controllers for the system. The cascade connection of two regular systems
is again regular. The class of regular linear systems is closed under feedback. The most
important consequence is that internal stability and external stability are equivalent for a
regular system which is both stabilizable and detectable as proved in Rebarber [12].

Classical counterflow heat exchanger systems are usually supposed to be stable by
process engineers without mathematical proof. The exponential stability of the classical heat
exchangers has been proved in [17] by the direct method of Lyapunov when the diffusion term
is taken into account in the flow. In the hyperbolic case without diffusion only strong stability
has been obtained in [17] using the decomposition theorem of semigroups of contractions [1].
Then, exponential stability has been proved to be true with the help of Huang’s theorem
(see [28]). Here, using the theory of symmetric hyperbolic systems in [26] and [18] we prove
exponential stability for a much wider class of heat exchanger networks. As mentioned above
many dynamical processes such as tubular reactors, gas absorbers and irrigation canals could
be put into the form of symmetric hyperbolic systems (see [19], [13], [14],[3] and [17]). Using

the recent representation theory developed in Weiss [2] we are able to characterize the transfer

INRIA



Ezxponential Stability and Transfer Functions of a Heal Exchanger Network System 5

functions in terms of the semigroup operator, input operators and the output operator. This
characterization is useful for controller design purpose.

Our paper is organized as follows. In Section 2 the stability result of Rauch and
Taylor is presented for a class of symmetric hyperbolic systems. There, we propose Lyapunov
function candidates for proving exponential stability of some hyperbolic systems. In the first
subsection of Section 3 we transform the equations (1.1)-(1.3) into the form of symmetric
hyperbolic systems. Exponential stability is obtained for the system by applying the result
presented in Section 1. The second subsection of Section 3 is devoted to characterizing the
transfer functions of the system. Various properties are derived for the transfer functions.

Section 4 contains our conclusions.

2 Symmetric Hyperbolic Systems

Consider a symmetric hyperbolic system of the form :
Uet) _ g(o) 2L | BayR(z,1),  (2,0) € (0,1) x RY
R™(0,t) = DoR*(0,t) (2.1)
RT(1,t) = D1R™(1,t)
R(z,0) = Ro(z),

where R(z,t) is a n x 1 vector function for (z,t) € (0,1) x R*, B(z) is a real n x n matrix
function and A(z) is a diagonal matrix function for z € [0,1], and Dy and D; are real

constant matrices. The diagonal matrix A(z) is partitioned as

with
A7 (z) = diag(Ai(z), Aa(z), ..., Ap(2))
and

A* (2) = diag(Apt1(2), Ap+2(@), oory Apag (@)

(p+ ¢ =n), and the vector R(z,t) as

R (z,t) )
RT(z,1)

R(z,t) = (

with R (z,t) € R? and R*(z,t) € IRY, respectively. We denote by A* the transposed matrix
of A or the adjoint operator of A, as will be clear from the context, and by A, (z) the Jacobian
of A(z). To simplify the presentation, we assume that the hypotheses H.1-—H.3 are satisfied
for the system (2.1).

H.1: B(:) € C°%0,1]; R™*"™) and A(-) € C1([0, 1]; R™**™).

H2: M\(z)<0,i=1,2,..,pforany = € [0,1] and Ap4;(z) > 0, ¢ = 1,2,...,¢ for any
z € [0,1].

RR n° 3823



6 Cheng-Zhong Xu and Gauthier Sallel

H.3 : For each w™ € R? and w* € R? and z € [0, 1],

(w ) <B<x>+B*<x>—Am<x>>(w )go, (2.2)

wt

(w™)"(A™(1) + DIAT (1) Dy)w™ < =1 [lw™ [ (2.3)

and
(wF)*(A*T(0) + DFA™(0) Do)w?t > ¥ |JwF|[ja, (2.4)

where r= > 0 and rT > 0 are constant such that r= 4+ r+ > 0.

Theorem 1 (Rauch & Taylor [18]) : Let H.1-H.3 be satisfied for the system (2.1). Then,
for each Ry € (L*[0,1])", the system has a unique solution

R(-,1) € C ([0, +00), (L*[0,1])") .

The semigroup of bounded linear operators U(t) : (L*[0,1])™ — (L*[0, 1])" such that R(-,t) =
U(t)Ry is exponentially stable :
U@ < Me™!

for certain constants M,w > 0.

As the partial differential equations (2.1) are hyperbolic with two independent va-
riables, Rauch and Taylor have proved Theorem 1 in [18] by means of the method of charac-
teristics. Here, we consider a subset of the systems in (2.1) where the matrix function B(z)
is symmetric : B*(z) = B(z) for any z € [0, 1]. For this class of systems satisfying H.1-H.3
we construct a Lyapunov function to prove exponential stability. The advantage of the direct
method of Lyapunov is its simplicity, and a priori not limited to one space variable. Using
the method we will prove exponential stability of a symmetric hyperbolic system defined in

a bounded domain in R2.

Proof of Theorem 1 : Suppose that B(z) is symmetric in (2.1). Let us consider the

following candidate of Lyapunov function :

Va(R(-,1)) = /01 R (2, t)exp (0/OIA(§)d§) R(,t)da,

with 8 > 0. For each 6 > 0, \/Vy(f) induces on H a norm of f which is equivalent to the
usual norm on H. From (2.3) and (2.4) in H.3, we take r— > 0 without loss of generality.
Define the unbounded operator A associated with the system (2.1) by

- ptg B = Dof*
D(A) = {f = ( j; ) < (H1[071]) ' §+E(1)§ = g;j_i(l); } 29
and for all f € D(A), P
Af(x) = A(x) 5 [(2) + B(x) f (x). (2.6)

From [18] and [19] it is a known fact that A is the generator of a contraction semigroup on

H. For the convenience of the reader we give an elementary proof of it in the Appendix.

INRIA



Ezxponential Stability and Transfer Functions of a Heal Exchanger Network System 7

For each initial condition Ry € D(A) we compute the differential of Vy(R(-,t)) following
the trajectory of (2.1) :

w:_ﬁf R*(z, t)AQ( )GXP(0f0 A(§)d§) R(z, t)da

+R*1texp(ef0 €)d¢) AR(L,1) ~ B*(0,1) A(0)R(0.1) (2.7)
o+ Jo B (2,0 (2B(x) — A () Jexp (6 5 A(€)dE) Bz, 1)da.

Examine each term in the above expression. From the second equation in (2.1) and (2.4),

we obtain :
R*(0,0) A(0)R(0,¢) = (RT(0,0))*(AT(0) + DZA~(0) Do) RT(0,¢) > 0. (2.8)

Each matrix being diagonal, using the second and third equations of (2.1) we can write

R (1, )exp (6 [ A(E)d€) A()R(L, ) = {exp (g /01 A—(g)dg) R—(l,t)}*

[+ Diar D+ [exp (<5 [ 4 ©0d€) Diatmesp (0 [ 4 (©de) 0y

exp (=5 [ 4 (@de) - piarpi] bewp (§ [ 4 (@ae) R0,

From (2.3), we have

(2.9)

A(1)+ D;AT(1)Dy < —r7 1. (2.10)

In (2.9), the matrix in the square brackets is continuously differentiable and equal to zero
for # = 0. Thus, (2.10) implies that there is a 6; > 0 such that for any 0 < 6 < 6y,

g 1
exp (5 [ A7(©d) B (1,0
0
For the last term in (2.7), we can write

R*(z,t)(2B(z) — Az(x))exp (0 [y A(&)dE) R(x,t)
= R*(z,)exp (§ J5 A©)d€) (2B(x) — Au(x))exp (§ 5 A()d€) Rz, 1) (2.12)
+R(x, Dexp (§ [ A©)de) G(8, w)exp (§ f5 A€)de) R(x,1),

2

R*(1, t)exp (0 /OlA(f)df) AR < -1 (2.11)

R?

where
G(0,7) = exp (=G [ A©)d€) (2B(x) — Ax(z))exp (§ 5 A(€)d¢)
—(2B(z) — Az(2)).

Note that for any w € R”, w*G/(8, z)w is continuously differentiable with respect to 4, and

(2.13)

w*G(0,z)w =0, (2.14)
d
w %G(O z)w=0. (2.15)

(We used the fact that B(z) is symmetric in order to prove (2.15).) Using the last conditions
and integrating by parts we can write

92

w*G(B,x)w:/ (0 — n)aa —5 (W*G(n, z)w)dn, forall w e R". (2.16)
0

RR n°0123456789



8 Cheng-Zhong Xu and Gauthier Sallel

Then, for any w € R",

. 6? 0?
w*G (0, z)w < _H’U}HRn sup ‘(3 5G(n, @) (2.17)
n€l0,0] £(R™)
From (2.13), there is a K; > 0 such that
52
sup .0 5G(n, x) < Ky, (2.18)

for any « € [0,1] and 0 < @ < 6y. Substituting (2.2), (2.13), (2.17) and (2.18) into (2.12)
allows to get

R (a,0) (2B(x) - Au(2))exp (6 fF A(€)dE) R(x. 1)

< K162 |exp (§ Ji A(€)d¢) R(x,t));n . (2.19)
Substituting (2.8), (2.11) and (2.19) into (2.7) gives us
M —0(AL,, — K10)Va(R(-, 1)), (2.20)

dt

where A2, = Mingefo,1]1<k<n M2 (z) which is positive by H.2. Choose 0 < §* < 6 such that
A2 — K10* > A2 . /2. Tt follows from (2.20) that

@@%&@g—(f%ﬂy@mmm,

or,

Vi (R(-,1)) < exp (—t07X2,;,/2) Vir (Ro). (2.21)

min

The last estimate implies exponential stability of the semigroup from the fact that \/Vpg=(-)

defines an equivalent norm on (L2[0,1])". ||

Remark 1 Although we have not been able to prove the general Theorem 1 of Rauch and
Taylor using our proposed Lyapunov function candidate as in [18] with the method of charac-
teristics, the direct method of Lyapunov allows us to attack symmetric hyperbolic systems
in higher dimension and degenerate hyperbolic cases that the theory in [18] cannot treat.
In the following we present only an example to address the issue of possible applications.
Because mathematical complexity goes beyond the scope of the paper, the stability problem
of symmetric hyperbolic systems in higher dimension will be presented elsewhere. However,

the essential ideas are presented in the following example.

Example 1 : We consider the open disc in R? :
Q= {(Jc,y) € ]RQ‘ 2 +y? < 1}

and the boundary 02 :
0 = {(x,y) € ]RQ‘ 2?4yt = 1}.

Let X = (]ZQ(Q))2 equipped with the usual inner product : < f, g >x= [ f*(z,y)g(z,y)dzdy.

We set
1 ~ 1 ~ 1
Na =Y A=Y A L
T —y+1 1 0 0 -1

INRIA



Ezxponential Stability and Transfer Functions of a Heal Exchanger Network System 9

Define the unbounded operator A by
D) = { (127 € (@) | N @) (o), L) =0 ¥ (2,) € 02}
and for all f = (fi, f2)' € D(A),

0 f(a,y)+ Ay f(z,y).

The system to be considered is

{ %u(m, y,t) = Au(m, y,t)
uw(z,y,0) = uo(z,y).

(2.22)

The operator A is dissipative. The subspace S(z,y) = {(u,v)* € R? | N(z,y)(u,v)* =
0Y(z,y) € 02} is maximal non-positive at each boundary point. From the result of Lax and
Phillips [26] it is known that the range of T — A is X (see also [27]). So the operator A is

the generator of a Cy-semigroup of contraction on X (see Theorem 4.3, p.14, [16]). For each

ug € D(A) the trajectory u(-,-,t) € D(A) for t > 0.

Consider the following as candidate for Lyapunov function
Vé’(u('v " t)) = / u*(x, Y, t)eé’ngu(x’ Y, t)d'rdyv 6> 0.
Q

Using the boundary condition and the Green formula we obtain

LVl 1)) = Vi (u(-, 1)

2m . - ~ ~
+ / u* (cos 7, sin 7, t)e?sinn Az {Ag sinn + Aj cos 77} u(cosn,sinn, t)dn.
0

As the same as in the proof of Theorem 1 one can prove that there is a 8 > 0 such that

d
%Vb’(u(H Y t)) < _GVH(U('v Y t))
Thus, the system (2.22) is exponentially stable. [ |

3 Exponential Stability of the Heat Exchanger Network

In this section we show that the heat exchanger system can be transformed into the form
(2.1). We prove exponential stability of the system by applying Theorem 1. Then, we show
that the system is regular, the transfer functions P(s) and W (s) are in H>, W~1(s) is an

entire function and P(s) is strictly proper.

3.1 Exponential stability of the semigroup

Now, we show how to transform the heat exchanger system into the form (2.1). First, the

following transformation allows to normalize the space variable to the interval [0, 1] :

¢1(z,t) Ry(liz,t)
Qﬁ(.’E, t) — ¢2(.’E, t) _ Tl((ll — 12)$ —|— 12, t) (31)
Gbg(.f,t) R1(11$,t)
RR n° 0123456789 ¢a(z,1) Ta((ly = o)z + 12, 1)



10 Cheng-Zhong Xu and Gauthier Sallel

Then, the system (1.1)-(1.4) is equivalent to

000 t) = 4 QL0 4 Buge, ) +b@)u(t),  (2,1) €10, 1[x R

¢1 (1

(2 yon-(3)o

¢3 ({0 1-p ¢1

(2 )eo=(3 17 (5 )oe

y(t) = 04(0,1),

(3.2)

where (1 /3)
. mo — myp mi moy
A =d 2 -
! mg( L L ’h’b—h)
K, 0 K, 0
0 -K;, 0 K
B = ) ! ) ! (3.3)
K, 0 -K; 0
0 K, 0 —K,
and

b(.f) = (0, bg((ll - lg).f + lg), b1(11$), 0)* .

Note that By is not symmetric in (3.3). Secondly, the following linear (diagonal) transfor-

mation A exerted on (3.2) makes By symmetric by keeping A; unchanged :

ll I(Q ll 1{2
A1, P2, P3, 04) = (\/m¢17 \g@, \/m\/;é& 054) . (3.4)

where r € [0, 3] is an arbitrary constant such that the boundary condition becomes dissipative
(see (2.3) and (3.9) below). Applying the transformation (3.4) on (3.2) and keeping the same

notations we can write (3.2) under the form :

9oe.t) _ 4, 99000) 4 Bos(a,t)+ bayu(t),  (2,1) €0, 1[xR*

01 _ A 1
( b ) 0.0 = \[=nir= ( 0 )M

(3.5)
®3 ~ 01
1,t)=D 1,¢t
(&) wn=oi(2 )
y(t) = (b4(07t)7
where
-K, 0 VK1 K5 0
By — AB A~ — 0 -K; 0 VK K5 (3.6)

VvVE1 K, 0 —-Ki 0
0 vVE1 K, 0 —-K,

Dy = ’ - ﬁ)\/(b - 111)1(1 =)
e \/!lg—lll!l—f' 0

INRIA



Ezxponential Stability and Transfer Functions of a Heal Exchanger Network System 11

and

b(z) = (0, VE2/Kiba((l = )2 + 1),/ Ka [0 — ) (1 — 1) KiJbi (), 0)* LB

We consider the system (3.5) on the state space H = (L%[0,1])* equipped with the inner
product

1 4
< fig>u= /0 > fu(@)gr(z)de
k=1
Let A be the unbounded operator defined by

(£ )o=o (5 )w=0(1 )0}

D(A) = {f € (H'([0,1]))*

and for each f € D(A),

é’f
Are) =28y b, (3.9
Theorem 2 The operator A is the generator of a Cy-semigroup (noted as etA) of contrac-

tions on H which is exponentially stable.

Proof of Theorem 2 : The conditions H.1, H.2, (2.2) and (2.4) in H.3 are satisfied with
rt > 0 because B; is dissipative and Dy = 0. The condition (2.3) is also satisfied for all
0<r<g:

0
AT+DIATD =1 (1 pymy
(2 = l)(
The Theorem 2 is true from Theorem 1. [ |

(3 r) <0. (3.9)
1-

Remark 2 From Theorem 2, zero is in the resolvent set p(A) and the growth bound wq(.A)

of the considered semigroup is negative : wo(A) = lim; ;o ¢~ In |||

Note that the system (3.5) has two inputs one of which is boundary and that the

observation is also boundary. We need to consider the adjoint operator A* of A defined by

(ﬁ)(o#o,(ﬁ)m Dadj(ﬁj)<1>} (3.10)

D(A") = {f e (H'([0,1]))*

with
0 lll(l —ZT)
' 2— b
DadJ —r k (3.11)
11(1 — T‘)
and for each f € D(A*),
0
A f(z) = —Al%—l-l%f@)- (3.12)

Define the continuous linear form Cadj : (H0, 1])4 — R such that Cadjf = f1(0). The-

refore, the linear form C 4:(A*)~! is continuous from H to IR. From the representation

adj
theorem of Riesz there is a unique element gadj € H such that Cadj (AN f =< fadj, f>u

for any f € H. We claim that gadj € (H'[0,1])% The interested reader is referred to the

tA*

Appendix for a proof. Of course the adjoint semigroup e is exponentially stable.

RR n°0123456789



12 Cheng-Zhong Xu and Gauthier Sallel

3.2 Characterization of regularity and transfer functions

We need to define the Hilbert spaces H; and H_; as follows : H; is D(A) with the norm
I/l = ||ASf|lz and H_; is the completion with respect to the norm ||f||-; = |[[A7Lf]|#-
We have Hy C H C H_y, densely and with continuous embeddings. The operator A has a
unique extension on the whole space H because it is defined on a dense set D(A) in H and
continuous from H to H_;. The semigroup et can be extended to a Co-semigroup on H_;
whose generator is nothing else than the extended operator A € L(H, H_;).

We define the duality product on H_; X D(A*) by continuous extension of the inner
product on H : For all h € H and all g € D(A%), < h,g >g_, p(a)=< h,g >u. For each
h € H_q, by taking h,, € H such that lim, ||k — hyn||—1 = 0 we set

<h,g>u_pan= lim <h,,g>u, VgeDWA).

n—+oo

For each h € H_y, g =< h,g >y_, p(4+) is a continuous linear form on D(A*). Conversely,

given a continuous linear form ¢ on D(A*) there is a unique h, € H_; such that

o(f) =< hg, [ >u_, par), V[ € D(A").

In other words, the mapping J : H_; — D'(A*) (topological dual of D(A*)) such that
Jh(f) =< h, f >H_, p(a+) is an isomorphism. Moreover, it is easy to see that for all f € H
and all g € D(A*),

<A Af,g>p  pan=< [, Ag>p, Vi>0. (3.13)
For the previously defined Cadj there is a unique By € H_; such that
< Bi, [ >u_, par)= Cadj(f) = /1(0). (3.14)

Define the continuous linear form C': (H![0,1])* — R such that C'f = f4(0). The restriction
of C to Hj is noted by the same letter which is also continuous from H; to IR. Then, from

(3.5) the output is written as
y(t) = Co(-1). (3.15)

Lemma 1 For all d € C§°(]0, +00]), ¢(-,0) = 0 and w = 0, the system (3.5) has a unique
solution ¢(-,-) € C([0,4o00[, H) :

1
$(-1) = k/ =DABd(r) dr, Y 1> 0, (3.16)
0

where By was defined in (3.14) and k = my [l1(lz — 1) (1 — r)]% Moreover, the input-output
mapping d — y is continuous from L%(]0, 0o[) to L%(]0, o0[).

Proof of Lemma 1 : From the system (3.5) the uniqueness of solution in C'([0,4oc0[, H)

is obvious. It is sufficient to prove that ¢(-,t) given in (3.16) is continuous from [0, +o0[ to
H and satisfies the first three equations in (3.5).

INRIA
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First, let us show how to find the expression in (3.16). Consider the dual system
corresponding to (3.5) :

(?g(x t) _ [_Al(?_gg,_t) —}—BQQ(.r,t)] ,  Lel0,T]
0, ) 0,t) =
( o 2 o
g4
(z,T)=go € D(A)
yadJ (t) gl(o t)

Suppose that there is a smooth ¢(z,t) satisfying (3.5). Taking the inner product with g(z,¢)
in the first equation in (3.5) and integrating by parts we obtain

T

where y, 4 (1) = CadjeA*(T_t)go. It follows that

S+ 1) = —kd(1)Eyq5 + K /0 t eAUTTE, 43 (7) dr, (3.18)

where d'(t) denotes the derivative of d(¢). One can verify that this ¢(-, ¢) is a classical solution

of (3.5). By direct computation from (3.18) and (3.13) we have
t
<O(51),9>p_, panm=< ¢(- 1), 9 >n= k/o <€(t_7)“4«4€adj7g> d(r)dr, ¥ ge D(A).

It is implied that

H_y D(A*)

t
$(-1) = k / DA d(7)dr.
0
Recall that in (3.18), the first term €adj € (H'[0,1])" and the second term is in D(A)
(see p.107, [16]). Therefore, the output function is well defined :
t
y(t) = —kC&,q;d(1) + C /0 kel DAL, g3/ (7)dr. (3.19)

To prove that the mapping defined in (3.19) is continuous from L%(RT) to L%(RY) we
differentiate the functional ||¢(-,¢)||% following the trajectory of (3.5). Using the boundary
condition in (3.5) we get

d mo Mo

— SO < | ———— | d%(t) - 2(0,1).

o6l < | =] 0 - |72 ] 0
Then, it follows from integration that

+oo 1
/ ¢421(07t)dt <
0 1

- T

/0 " d*(t)dt.

Since Cg°(R*) is dense in L%(R'), the input-output mapping is continuous in L*(R*). W

The mapping d — y is a shift invariant bounded operator from L2([0,+oc[, R) to
L2([0, +00[, R). We note by W (s) the associated transfer function. It is analytic and boun-
ded in the open right-hand half complex plane (c.f. Theorem 3.1 in [2]). Taking the Laplace
transform in (3.19) we get the following identity :

§(s) = —kCE&,q;d(s) + kC (s — A) 7' &y qysd(s) = kC (s — A)™' Bad(s).

RR n°0123456789



14 Cheng-Zhong Xu and Gauthier Sallel

Hence, W (s) = kC(sI — A)~'By is valid in the open right-hand half plane. Computing
algebraically W (s) is equivalent to solving the following differential equation with parameter

Re(s) > 0:

1 . A 13 .
(o) o= a=ia= (o)
(3.20)
¢ )
((54)(1)_1)1(052 )“)
§ = ¢4(0)

Theorem 3 The inverse W~ (s) of W(s) is analytic everywhere in the complex plane and

lim  W(s)=0. (3.21)
s — 400
seR
Poof of Theorem 3 : The differential system (3.20) is un-coupled as follows :
a&l i _ ll (1(2 + 5) _ 11\/1(1[{2 Q;
Pz | _ m2 ma !
03 WEE, L(Ki+s) 3
Jdx my my
) (3.22)
% _ (12 - ll)(I{l + S) _ (12 - ll)\/ K K5 qg
e | _ m (1= ) ) 2
004 (=K, (= L) (K +s) é4
Jdx L my my
satisfying the boundary conditions :
)= (1);
( 654(0) 1\ g(s)
ai(1) \ _ ¢ ] 0 1] ( 42(1) (3.23)
Bs(1) (-0L)A=7r) | 1-5 0]\ di1)
5 lhb—UL)(1—-r7),
i(s) =/ =D)L=y, )
The unique solution of (3.22) is
d(s) = [1,0]eM ) l (1)_ 5 (1) ] eMa(5) l (1) ] i(s), (3.24)
where )
L(Ky+s) LYK K,
My(s) = m2 m2
11\/ 1(1](2 _ll (I(l + S)
= . m — (3.25)
. (12 — ll)(Iﬁl + S) . (12 — ll)\/ 1(1](2
MQ(S) _ ml(l_ﬁ) 'nll(l_ﬁ)
. (12 — ll)\/ 1(1](2 (12 — ll)(I(g + S)
L mo ma9

INRIA
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So, W=1(s) = d(s)/§(s) is analytic in the complex plane because M;(s) and M,(s) are
polynomial matrices of first order in s.

Note that for any s > 0, the matrices M;(s) and M;(s) have respectively two eigenva-
lues one of which is negative and the other is positive :

A]lwlzl%(_lﬁl}n—l—s_}_lﬁgﬁ—s_}_\/—)

)\941:171(—](1—}_8+K2+8—\/A_1)<0

mq mo
M. _12—11 _ Kl—}—s I(2—|—S
= g (- Sty K V) > 0

M- _lg—ll _ Kl—}—s I(2—|—S_
Ay? =2y < ml(l—ﬁ)—l_ M \/A2><O

(3.26)

where

- - 2 - - -
Alz (I(1—|—S_I_I§2—|—S) _I_I(1—|-S_|_4I(1](2

my ma m my1ms

(3.27)

2
_ I(l + s I(Q + s I(l + s 4](1 I(g
A2 = <m1(1—ﬁ) + ) + mima(1—3)’

The corresponding eigenvectors (found using Mathematica)
M, __ 1. — m1 I(l—|—5 I(Q—}—S /_ :|
“1 [ " W/K K, ( T + )

M, _ . mi I(l—|—5 I(Q—}—S_ SN *
“2 [1’ 2\/1(11(2( T Al)]

and

Mo mi(1-0) ( K|+ Ky +
‘1 [1’_ Qi/I(II(Q (ml(ll_sﬁ) + 2 S—I—\/_)]

My _ _ml(l_ﬁ)< Ki+s Ky+s /—)]*
62 — |:17 2\/}(1[{2 ml(l _ ﬁ) —I_ Mo AQ .
form a basis in R?, respectively.
We write

M (s) [0, 1]* = ciexp ()\]1\42) 6]1\/12 + coexp ()\éwz’) 6]2\42,

0 1
l -5 0 ] 611\42 _01161 -I-C12€M17

0 1
ll—ﬂ 016342—02161 +022€M1.

Substituting the last expressions in (3.24) gives us

W_I(S) = exp ()\]1\41 + )\]1\42) {01611 + exXp ()\éwl - )\]1\41) 61612 ( )
3.28
+exp ()\]2\42 - )\]1\42) ca€1 + exp ()\é\@ - )\]1\42) 02622} .

Note that
) KK,

0.
atn = e A, T
The other terms in the curly brackets in (3.28) tend to zero exponentially as s goes to +00.

So, we have

2 A AL
lim  W(s)= lim  exp (—)\]1‘41 - )\]1\42) LAIAQ =
KK,
s — 400 s — 400

RR n°012345678% RT se Rt



16 Cheng-Zhong Xu and Gauthier Sallel

Remark 3 From (3.28), W (s) can be written as W (s) = Wo(s)exp(—Izs/m3), where Wo(s)
is an outer factor in H* (analytic in Re(s) > 0 as well as its inverse) and the delay term

corresponds to the necessary time for the disturbance to arrive at the output (see [15]).
Now, define the input operator B, € L(IR, H) by
B,z = b(z)z (3.29)

where b(z) was defined in (3.7). Let C, be the Lebesgue extension of C' € (Hy, R) (defined
n (3.15)) in the sense of Weiss [9]. Formally, the system (3.5) is written as

{ B-11) = AG(,0) + Buu(t) + Bad(t 530
y(t) = Co(-1).

We denote by P(s) the transfer function corresponding to the input-output mapping v — y.

Theorem 4 The system (3.30) represented by (A, [By, Bal,CL) is a reqular system satis-
Jying
P(s) =Cp(sI — A)7!

~ (3.31)
W(s) = Cp(sI — A)~ By

for all Re(s) > wo(A).

Proof of Theorem 4 : By differentiating ||¢(-,¢)||% along the trajectory of (3.5) corres-
ponding to ¢g € D(A) and u = d = 0 we can see that Ce* : D(A) — L%([0,T],R) is
continuous from H to L%*([0,T],IR). This proves that C is admissible respect to the semi-
group e*A. The admissibility of By is true from the proof of Lemma 1. The control operator
B, being bounded is a fortiori admissible. From our Lemma 1 the transfer function W (s)
has a strong limit at 400 along the real axis. Therefore, applying Theorem 1.3 and Theo-
rem 4.7 of Weiss [2] respectively, we assert that (A, By, () is a regular triple and that for
all Re(s) > wo(A),
W(s) = Cp(sl — A)~'By.

Since B, is bounded, for each s € p(A) we have (sI — A)"'B, € D(CL). Then,
applying Theorem 5.8 of Weiss [2] assures that (A, B,, ) is regular. From Theorem 4.7 of

Weiss [2] we have

P(s) =CpL(sI —A)™'B, =C(s] - A)7!
for all Re(s) > wo(A). ||

Remark 4 From our Theorem j and the Theorem 5.8 of [2] we see that P(s) and W (s) are
analytic and bounded in Re(s) > wo(A). Here, we claim that P(s) is strictly proper :

lim P(s) = 0.

|s| = 400
Re(s) >0

INRIA
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Indeed, P(s) is the Laplace transform of CeAB, :
+co
P(s) :/ e CeB,dL.
0

From wo(A) < 0 and the admissibility of C' one can find a 0 < € < —wo(A) such that
e?CeB, is in L*([0,4o00[,R) (see [20]). By means of the Paley-Wiener theorem (see
[10]), P(s) is in the Hardy space H?(Re(s) > —e). Fach function (in particular, our P(s)
here) in H?(Re(s) > —¢) lends uniformly to zero as s goes to infinity inside the closed plane
Re(s) > 0 (see p.125, [10]).

4 Conclusions

We have studied frequency and time domain dynamics of a heat exchanger network system.
This process is representative for a class of hyperbolic systems typical to chemical enginee-
ring systems such as gas absorbers and irrigation canals. The paper has shown how this
kind of systems are transformed into the form of classical symmetric hyperbolic systems
allowing to prove exponential stability using the theorem of Rauch and Taylor. We have also
proposed Lyapunov function candidates for proving exponential stability of some hyperbolic
systems. The heat exchanger system has a unbounded input operator and a unbounded
output operator. We have shown that the system is regular and that the transfer functions
of the system are in H*. Although the paper is a case study, the theory and the method
that we have used are general and could be used for analysis of other processes as well. The
results presented here are essential for various controller design methods (H*-control [7] [8]
[15] [6], output feedback controllers [12] [20] and P.I. controllers [4] [5]) to be applied for this

class of chemical engineering systems.

5 Appendix

A.1. We claim that the operator A as defined in (2.5) and (2.6) is the generator of a Cy-
semigroup of contractions on H. To prove the claim we prove that it has a dense domain
in H = (L?0, 1])p+q and that it is dissipative as well as its adjoint operator A*. Then, it
follows from the Corollary 4.4 of [16] (p.15, [16]) that A is the generator of a semigroup of
contractions on H.

Since C5°([0,1]) is dense in L2[0,1] and (C§°([0,1]))"*? is contained in the domain,
thus the domain D(A) is dense. From the hypotheses H.1-H.3 and

1

<AL S o=y 3 [ @B+ B @) - A

for all f € D(A), we see that A is dissipative.

Let us compute the adjoint operator A*. Because B(xz) is continuous, we have only to

[/*(2)A(z) f(2)]

compute the adjoint operator Ay

J

8_x.
Take any f € D(A;) and any g € D(AT). Then, we have

case (30 o 2))

Al = A($)

RR n 0123456789
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It is meant that A(z)g(z) has a derivative in the sense of distribution, defined by

<Afg>n= - < [ [AE)(@)] >

Since (Cg°([0,1]))P*? is dense in H, we obtain that for any g € D(A}),
9
Ox
Because A(z) is continuously differentiable, it follows that D(A}) C (H'[0,1])" . Conversely,
for any f € D(A;) and any g € D(A}), by integrating by parts we have

Aig =~ [A@)g(x)] € H. (5.1

<Af.g>n=— < [ Alg >u + [(@)A)g (@) (5:2)
Thus, (5.1) and (5.2) imply that for all f € D(A;) and g € D(A7),
J(@)Ax)g(2)]y =0, (5.3)
or, from the definition of (2.5)
(f7()" [A7(1)g~ (1) + DIAT(1)g T (1)] = (F7(0))" [DFAT(0)g7(0) + AT(0)g2(0)] = 0.
Because the above identity is true for any f € D(A), it is meant that for all g € D (A7),
{ g~(1) == (A(1))7" DIA*(1)g* (1)
gt (0) = — (AT(0))™" D3A™(0)g7(0)
Therefore, the adjoint operator A* is defined by

D(A) = {g: ( g; ) € (H1[0,1])p+q

g

and for all g € D(A*),
0 9 ()
g=——|A B* .
e [ («) ( Ve )| @)
We prove that A* is dissipative. Indeed, it is easy to see that

< A9 >0= —5 (6" (1) [ATWD (A7 ()7 DIAT (1) + AT (1)] 6* (1)

45 (67(0)" [A7(0) + A= (0) Do (47(0)) ™ D5A=(0)] 47 (0)
—l—% <(B+B*—A.)g,9>
< 5 () [AT Dy (A= ()7 DIAT () + A ()] 0 ()

45 (07 (0)" [A7(0) + A= (0) Do (A7 (0)) ™ D5A=(0)] 47 (0). (5.4)

The hypothesis H.3 is equivalent to
DiAT(1)Dy < —A~(1) — (r )1 (5.5)

INRIA
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or,
-1

L'L<I+r (A-(1)7, (5.6)
where L = (A+(1))1/2 D, (—A_(l))_l/Q. From (5.5) we have

I+r=(A=(1))"t>o.

Because r~ > 0,

I+ (A~ (-1))' <al (5.7)

for some 0 < @ < 1. This together with (5.6) implies that for all w € R?,
w*L*Lw < al|w||?,

that is, ||L||cre,re) < o < 1. Since ||L*]| = ||L|| (see Theorem I1.21, p.31, Brézis), we get

IZy|I* < allyll?,
that is,
LL* < al,
or,
AF(1) + A1) DA™ (1) T DEAT(1) > (1 - a) AT (1) > 0. (5.8)

Using the same reasoning we can prove that there exists a 0 < g < 1 such that
A7(0)+ A7(0)Do (AT(0)) ™" DFA=(0) < (1 - B)A™(0). (5.9)
Substituting (5.8) and (5.9) in (5.4) leads to
< A'g,9>n<0

for all g € D(A*). Therefore, A* is dissipative. Thus, we finish the proof of our claim. [ |
A.2 Computing gadj is equivalent to solving the following differential equation

J _ _

99(2) _ 47 Byg(a) - AT f(2)

dx

93(0) = g4(0) =0

a(l) | | 9s(1)
lm(l)]‘DadJlm(l)]

< gadjvf >n=g1(0).

The problem has a unique solution g € D(A*) for each f € H. By direct computation one
may find that for all f € H,

91(0) =

o o =

[ ! ] {[I [~ Daajlei l ! H 7' = Dagqj] /01 AT P AT f (r)dr

o
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.
/0 efl BQ(l_T)Al_lf(T)dT.

o O O =

Thus, we obtain

1
-1
. 0 1 -1 1 -1 o) A
adj(;p): 0 [0]{[I|_Dadj]eAl B [0]} [Il_Dadj]eAl Bs(1 )All
0
1 *
-~ 0 eA;lBQ(1—z)A1—1‘
0
0
Obviously, fadj(x) is an analytic function of z. [ |
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