Skip to Main content Skip to Navigation
Reports

Effective Diffusion in Vanishing Viscosity

Fabien Campillo 1 Andrey Piatnitski
1 SYSDYS - Stochastic Dynamical Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We study the asymptotic behavior of effective diffusion for singular perturbed elliptic operators with potential first order terms. Assuming that the potential is a random perturbation of a fixed periodic function and that this perturbation does not affect essentially the structure of the potential, we prove the exponential decay of the effective diffusion. Moreover, we establish its logarithmic asymptotics in terms of proper percolation level for the random potential.
Document type :
Reports
Complete list of metadata

Cited literature [1 references]  Display  Hide  Download

https://hal.inria.fr/inria-00072845
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 11:05:06 AM
Last modification on : Saturday, January 27, 2018 - 1:31:29 AM
Long-term archiving on: : Sunday, April 4, 2010 - 9:28:25 PM

Identifiers

  • HAL Id : inria-00072845, version 1

Collections

Citation

Fabien Campillo, Andrey Piatnitski. Effective Diffusion in Vanishing Viscosity. RR-3813, INRIA. 1999. ⟨inria-00072845⟩

Share

Metrics

Record views

101

Files downloads

189