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Abstract:  We consider, in a homogeneous Markov process with finite state space, the
occupation times that is, the times spent by the process in given subsets of the state space
during a finite interval of time. We first derive the distribution of the occupation time
of one subset and then we generalize this result to the joint distribution of occupation
times of different subsets of the state space by the use of order statistics from the uniform
distribution. Next, we consider the distribution of weighted sums of occupation times. We
obtain the forward and backward equations describing the behavior of these weighted sums
and we show how these equations lead to simple expressions of this distribution.
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Temps d’occupation dans les processus de Markov

Résumé : On considére, dans un processus de Markov homogéne a espace d’états fini, les
temps d’occupation c’est-a-dire, les temps passés par le processus dans des sous-ensembles
d’états donnés durant un intervalle de temps fini. On obtient dans un premier temps
la distribution du temps d’occupation d’un sous-ensemble et on généralise ce résultat a la
distribution jointe de temps d’occupation de différents sous-ensembles de I’espace d’états par
I’'utilisation de statistiques d’ordre de la loi uniforme. On considére ensuite la distribution
de sommes pondérées de temps d’occupation. On obtient les équations avant et arriére
décrivant le comportement de ces sommes pondérées et on montre comment ces équations
conduisent & des expressions simples de cette distribution.

Mots-clé : Temps d’occupation, processus de Markov, statistiques d’ordre, disponibilité,
performabilité.
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1 Introduction

Let X = {X,,u > 0} be a homogeneous Markov process with a finite state space S. The
occupation time of a subset U C S over the interval [0, ¢) is defined by the random variable
W, as

t
Wt:,/() 1{Xu6U}du,

where 1y, = 1 if condition c is true and 0 otherwise. This random variable received a
considerable attention since it is also known as the interval availability in reliability and
dependability theory. An expression of the distribution of W; has been obtained in [2] using
order statistics from the uniform distribution over [0,¢). This expression is very interesting
from a computational point of view and various methods have been developed to compute
it even in the case of denumerable state spaces (see [2[, [10], [8], |9] and the references
therein).

In this paper, we first obtain the joint distribution of the random variables (W;, X;)
using the forward and backward equations associated to the uniformized Markov chain of
the process X. We then generalize this result to the joint distribution of W}, ... , W™ X,
where W} is the occupation time of a subset B; over the interval [0,¢). Finally, we consider
a weighted sum of occupation times, that is the random variable Y; defined by

t
Yi= [ o(Xu)du,
0

where for each i € S, p(i) is a non negative constant. The study of this random variable
Y, is also known as the performability analysis in the reliability and dependability theory
(see [3], [5] and the references therein). We derive here the backward and forward equa-
tions describing the behavior of the joint distribution of (Y}, X;). These equations, which
are partial differential equations, are then solved and we show that they lead to simple
expressions of the joint distribution of (Y, Xj).

The rest of paper is organized as follows. In the next section, we consider the joint
distribution of order statistics from the uniform distribution and the joint conditional dis-
tribution of the jumps in a Poisson process and we show how they are related. In section 3,
we consider the case m = 1. We obtain the distribution of occupation time for a discrete
time Markov chain. This distribution combined with the results of section 2 lead to simple
expressions of the joint distribution of the couple (W;, X;). The results of section 3 are
then generalized in section 4 to the case where m > 1. Finally, section 5 deals with the
distribution of the couple (Y3, X;).

RR n " 3806



4 B. Sericola

2 Order Statistics

2.1 The Uniform Distribution

In this subsection, we consider order statistics from the uniform distribution over [0,1),
where t is a fixed positive real number. More formally, let X, X5, ..., X, be n i.i.d.
random variables with common distribution the uniform distribution over [0,¢). We thus
have, foralli=1,...,n and z € R,

0 if <0
P{X;<z}=< z/t if z€(0,¢)
1 if x>t

If the random variables X, X, ..., X, are rearranged in ascending order of magnitude

and then written as
Xy £ X < < X

we call X(;) the ¢th order statistic, i = 1,2, ..., n. Because of the inequality relations among
them the X(;) are necessarily dependent random variables.
Let F.(z) be the distribution of X,). We then have, for z € (0,1),

F(z) = P{Xq) <}
P{at least r of the X} are less than or equal to z}

AOIOICHN o

The density f,(z) of X(,) is thus given, for z € (0,1), by

Jrlz) = (r— 1)7'1('71 - 7")!% (%)T (1 a %)n_r '

It is shown in [1] that the joint density function of X, ), X(,), ..., X(r,), for 1 <k < m,
1<r<rg<--<rp<mnand ; <z < -+ <2 (x; € (0,1)) is

frl,rg,...,'rk (-Tla xo,. .. >37k:) =

1 k 1 ri—1 Tg — T1 ro—r1—1 Tk — Th1 Te—Te—1—1 Tk n—rg
) ) ) 1o 2)
t t t t t

(ri—=DNrg—ry = Do (g — 11 — D) (n — 1p)!

INRIA



Occupation Times in Markov Processes )

The joint density function of Xy, X(1,41,), - - - » X (11 +1o4---+1;) 18 thus given, for 1 < k < n,
1<bh+b+-+h<n(;>1)and 1 <z <--- <z (x; € (0,%)) by

iy la,.. 0 (561, Ty 7$k) =

() () () () (e
n‘ — —_— ) _—
t t t t t

=Dy — 1) — D — (h+ L+ 1))

Furthermore, if we write ¥}, = X;, and for i = 2,...,k, we define YV}, as Y}, =
Xt +lo4-+1) — X(li+la+-+1;_,) then the joint density function of V;,,Y),,...,Y;, is given,

for1<k<n,1<bh+l+---+L<n(;>1)and0<s;+s3+---+ 5 <t (s; €(0,1))
by

Pty gt (81,82, -+ 5 k) = Giy i (81,81 + S5, 81+ -+ =+ 8p),
that is,

hll,lz,...,lk (Sla 82y 4y Sk) =

n! (1)’6 (5_1>l11 (2)&1 (S_k)lkl (1 B S1+Sg+ -+ Sk)n(l1+l2"'+lk)
\t¢ t t ; ;
(=D =1 (=D n— (L + 1y -+ 1)) .

In particular, for & = n we get the joint density function of the random variables
Yi = X(l), }/2 = X(2) — X(l), ce ey Yn = X(n) — X(n—l) denoted by h(xl,l"Q, Ce ,:Cn) by making

Iy =10,=---=1, =1 in the previous expression, that is
n! "
— if x; <t
h(xy, 29, ..., x,) =< t" ; t

0 otherwise.

By writing Y41 =t — X3, this also determines the (degenerate) joint density function of
Y1,Ys, ..., Y, Y1 in the region

n+1
;>0 (i=1,...,n,n+1) Y z;=t
1=1

The joint distribution of Y;,,Y},,...,Y, is denoted by Hj, 4, . 1, (51,52, ..., k), that is
Hll,lg,...,lk(s].) 52y ..+, Sk) = ]P{}/h S S1, }/lz S 52y -4, Yik S Sk}-

This distribution is given in the following lemma.

RR n " 3806
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Lemma 2.1 For 1 <k<n, 1<li+l+- -+ <n(;>1)and0< s1+sy+---+s, <t
(si € (0,1)), we have

Hy o0, (51,82,...,8K) =

n! (ﬂ)n (2>12 o (ﬁ)’lk (1 51 + 89+ -4+ Sk>n_(i1+i2"'+ik)
At t t t

Z P VPN B | —_ (2 Ty e e e 1 |
i1 > lyia > by ik > i inligh e igl(n = (i + i+ 4 )]
i tiste- g <n

Proof. It suffices to show that

%
O"Hy, o0, (81,82, - -, Sk)

:hll 1.481,82,...,8k).
851882 .. 68k 150250005 k( ? ? ? )

To simplify writing, we define

<51)i1 <52)i2 (Sk)ik (1 S1+ 894+ Sk)n(il+i2---+ik)
1381,82,00008k __ t t t t

N501,0250niE i1!i2!---ik!(n— (i1+i2---+ik))!

We thus have, from relation (3),
_ 1;51,82,..,8k
Hll,lz,...,lk (sla 52y .-y Sk) = n! Z n’,zl,,zzi:zk .
i1 > l17i2 > l27-"7ik > lk1
i1 izt g <

We obtain
!
8Hl1’l2,...,lk (517 S9,y ...y Sk) _ & Z gt;sl,sz,...,sk
s - T81,82,00y 0 — 150k —1
k i1 > 1,02 > l2,.. 0,0 > g,
it izt ip <
n! tes
" 3 115.27':-7570 .
t Z en—l;llﬂm---ﬂk

1 2 liyi2 2 1o,y 2 g,
142+t <n-—1

|
—_ & § t;sl;s?a'."ysk 3
n—1;21,82,...,2

i1 > 11,02 2 oy yig—1 2 lp—1,0 2 1 — 1,
i1 +i2+--+ip <n—1

INRIA



Occupation Times in Markov Processes 7

n! Z plis1,52,0118
_7 n—1;i1,i2,.. 7k
i1 > 1,42 > 1oy .y ig > U,
it iyt tip <m—1

!
_ n_ Z 97551,82; S
R n— 121,12, Ae—1,lk—1

i1 le,i? Zl27"'7ik—1 Zlk—l)
i1+ +--+ig 1 <n-—1

where the second equality is obtained by using the variable change i, — i + 1. By

iterating successively the same argument with respect to variables s;_1, ..., sy, we obtain
k—1
9 Hi, g, (51, 525445 Sk) N n! Z glis1 52,
T k- 1; 1,. —1,0—1
askaSk_]_7 trty, 832 tk 1 n—k+ Z15l2 lk—l ;lk Y

i12l1,
i1 <n—(la+---+1)

and finally,

k
0 Hl1,l2,...,lk (817 82y vy Sk:) _ n! Z Ht 381,82,
.. - Tk n—k+1; 11—1 la—1,..,l—1
0sy, 089, 081 t WS,
i1 <n—(l2+ +1)
n!

1351,52,.++,5k
tk Z gn—k;il,lz—l,---,lk—l

n! s
— - 1,52;--
- tk Z Hn k'L1,l2— colg—1
1 2 ll - 17
71 Snf(l2+---+lk)fl
n' t;51,82 s
39195252435k
_t_]c Z Hn*k;il,lzfl,...,lkfl
i1 2 ll’
<n—(2+ - +1l)—1
n!

1he nt;81,82,...,5k
= ki1l 1 -1

= h’ll,lz,...,lk (817 52,4, Sk)

where the second equality is obtained by using the variable change iy — 7; + 1. [ |

RR n " 3806



8 B. Sericola

2.2 The Poisson Process

Let {/V;,t € R} be a Poisson process with rate A and let Ty, To+ T4, ..., To+ 11+ +T, 1
be the n first instants of jumps of { N;} over [0,¢). It is well-known, see [4] that the density
of the conditional distribution of Ty, 771, ..., T,_1 given that {IV; = n} is

TL' n—1
— i <L
flxo, 1, ..., Tpy) = AL if ;IZ st

0 otherwise.

This is also, as seen in the previous subsection, the joint density of the order statistics from
the uniform distribution over (0, t).

If we write T, =t — (Top + 11 + - - - + T,,—1), this also determines the (degenerate) joint
density function of 1y, 14, ...,T,_1,T, in the region

;>0 (1=0,...,n—1mn) > z;=t

The symmetric role played by the variables xg, x4, ..., x,_1, x, shows that for any subset
{i1,i9,--,in} of theset {0,1,...,n—1,n}, we have f(x;,xi,,...,x;i,) = f(To,T1,- ., Tn_1)-
It follows from relation (1) that we have, for 1 <1 < n, {i,4s,---,4} C {0,1,...,n —
1,n} and s € (0,1),
P{Ti, +---+T;, <s|Ny=n} = P{Iy+---+T_1 <s| N =n}
= ]P{X(l) < 5}

- (6097 @

More generally, let £ be an integer such that 1 < £ < n and [y,[,...,l; be k integers
such that 1 <l + 1+ -+l <n (l; > 1). For any subset {41, 43, ..., %, 41,441, ; Of the
{0,1,...,n — 1,n}, the vectors

I l1+12 li+Hlo+ g
2Ty > Ty b T
j=1 j=lhi+1 j=li+Hla+-+lp_1+1

and

-1 l1+1s—1 l1+lo+-F1—1
Z T, Z Tj, ..., Z T;
Jj=0

J=h J=litla++l 1

INRIA



Occupation Times in Markov Processes 9

have the same conditional distribution given that N, = n, given by lemma 2.1, that is, for
0<s1+s94+--Fs <t (8,‘6 (O,t)),

I i+l i+l
P T;<s1, Y, Tj<so,..., > T; < sp | Ny=n} =
j=1 j=li+1 j=li+lo++lp_1+1

n! (ﬂ)n (ﬂ)zz o (ﬁ>lk (1 _ S1+Sg+ -+ Sk>n_(i1+i2"'+ik)
> AEVERN: t ( |

i1 > 11,02 > l2,.. . 0 > U, 21'22' o Zk'(n - (Zl + Z'Q et Zk))'

it in i <

(3)

3 Distribution of Occupation Times

Let X = {X,,u > 0} be a homogeneous Markov process with a finite state space S. The
process X is given by its infinitesimal generator A and by its initial probability distribution
a. We denote by Z = {Z,,n > 0} the uniformized Markov chain [7| associated to the
Markov process X, with the same initial distribution «. Its transition probability matrix
P is related to the matrix A by the relation P = I + A/\, where [ is the identity matrix
and A satisfies the relation A > max{—A;;, ¢ € S}. The rate A is the rate of the Poisson
process {N,,u > 0}, independent of Z, which counts the number of transitions of process
{Zn,,u > 0} over [0,t). It is well-known that the processes {Zy,} and X are stochastically
equivalent. We consider a partition S = U U D (U N D = @) of the state space S and we
consider the occupation time of the subset U.

3.1 The Discrete Time Case

We consider the Markov chain Z = {Z,,n > 0} and we define the random variable V;, by
the total number of states of U visited during the n first transitions of Z, that is

Vo= lizeny.
k=0

This random variable represents the occupation time of subset U during the n first transi-
tions of the process Z. The following theorem gives the backward equation for the behavior
of the couple (V,, Z,).

RR n " 3806
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Theorem 3.1 Forn >1 and 1 <k <n, we have

fOT’I:EU, ]P{Vngk,zn:]‘Z():Z}:ZPZJ]P{VR,1Sk—l,Zn,]_:j‘Z():l}
leE
fOTiED; P{VngkaZn:]‘ZOZZ}:ZPM]P{anl Skaznflz.]‘zozl}

leE

Proof. We have
P{V, <k, Z,=j|Zy=1i}

= ZPZ,Z]P{VngkaZn:]|Z1:laZOZZ}

I€E
= Y PP{Y lzery <k —lgevy, Zo=J | Z1=1,2 = i}
I€E h=1
= Y PP lzery <k—lgewy, Zn=j|Z1 =1}
I€E h=1
n—1
= Y PuP{Y lizevry <k —ljyev} Zn1=7| Zo=1}
I€E h=0
= Y PyP{Vi1 <k—14cv}, Zn1 =74 Zo =1}
I€E

The third equality follows from the Markov property of Z and the fourth follows from
the homogeneity of Z. [ |

The following theorem gives the forward equation for the behavior of the couple (V,,, Z,,).

Theorem 3.2 Forn >1 and 1 < k <n, we have

forjeU, P{V, <k, Z,=j|Zy=i} =Y P{Vo,o1<k—-1,Z,_1=1]|Zy=1}P,
leFE
forj €D, P{V, <k, Z,=j|Zo=1} = P{Vo1<k,Zy1=1|Zy=1i}P,

leFE

Proof. We have

INRIA
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= ]P{Vn—l <k- 1{j€U}aZn =7, %0 = Z}

= Y P{Vuo1 <k— vy, Zn =y Znr =1, Zy = i}
leFE

== Z]P{anl S k’ - 1{jEU}7 Z() == Z ‘ Zn == j, anl == Z}P{Zn == j, anl == l}

leE

== Z P{Vn—l S k — 1{jEU}7 ZO - Z ‘ Zn—l - Z}P{Zn - j, Zn—l - l}

leFE

= Z ]P{Vn,1 S l{: - ]‘{jEU}7 anl = l, Z() == Z}]P{Zn :] ‘ anl == l}

ek

== Z ]P{Vn,1 S k’ - 1{j€U}7 Zn,1 == l, Z() == Z}PZ,J

lerk

The fourth equality follows from the Markov property of Z and the last one follows from
the homogeneity of Z. We thus obtain the desired relation by conditioning with respect to
Zy. [ |

If we denote, for n > 0 and k£ > 0, by F(n, k) the matrix whose entry (i, j) is defined by
Fij(n k) = P{Vy <k, Z, = j | Zo = i},

the results of theorems 3.1 and 3.2 can be easily expressed in matrix notation. We first
decompose the matrices P and F(n, k) with respect to the partition {U, D} of the state
space S as

po (1 10) ma = B0 b))

The result of theorem 3.1 can then be written as
( Fu(n,k) Fyp(n,k)) = ( Py Pyp )F(n—1k—1)
( FDU(TL,]{]) FD(n,k) ) = ( PDU PD )F(TL— 1,k)

or also as

Fn, k) = ( P Fuw )F(n—l,k—l)-l—(PgU ]SD )F(n—l,k).

RR n " 3806
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In the same way, the result of theorem 3.2 can be written as
Fy(n, k) Py
= Fn—-1,k—-1
( Fpy(n, k) ) (n=1, ) ( Ppy
FUD(na /f) _ . Pyp
( Fp(n, k) = Fln=1k) Pp
or also as

F(n,k):F(n—l,k—l)(IfDUU 8>+F(n—1,k)<8 %5).

The initial conditions are given, for n > 0, by

F(”’O):(g (Pgw)’

Note also that we have for every £ > n + 1

F(n,k) = P".

3.2 The Continuous Time Case

We consider now the Markov process X = {X;,¢ > 0} and the occupation time W; of the
subset U over [0, ), that is

t
Wt:/() 1{XuEU}'

This random variable represents the time spent by the process X in the subset U during
the interval [0,¢). The joint distribution of the couple (W, X;) is given by the following
theorem. The notation P; denotes the conditional probability given that X, = 7, that is

Theorem 3.3 For everyi,j € S, fort >0 and s € [0,t), we have

() (-3 Pwskamsang

INRIA
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Proof. We have, for s < t,

P{W,<s,X,=j| Xo=1}

= Z]Pi{WtSS,Nt:TL,Xt:j}
n=0

PAW, <s,Ny=n,Z, =7} since {X;} and {Zy,} are equivalent

I
g 108

= > PN, =n}P{W, < s,Z,=j| N,=n}
n=0

= Z P{N, =n}P{W,<s,Z,=j| N,=n}
n=0

e’} n+1

= Z]P{Ntzn}Zle{Wt S S,Vn:l,Zn:j | Ntzn}
n=0 =0
n+1

= Y P{Ny=n}> P{Va=1Z, =5 | Ny=n}P{W, <s|V,=1,Z, =j,N,=n}
n=0 =0
e’} n+1
= Y P{N,=n}) P{V,=1,2Z,=j}P;{W: <s|V,=1,2Z,=j,Ny =n}
n=0 =0
= > P{Ny=n}) Pi{Va=1,Z,=j}Pi{Wi < 5| Vo=1,Z, =35, N, =n}
n=0 =0
Note that the 4th and the 7th equalities follow from the independence of the processes
{Z,} and {IV;} and the fact that Xy = Z;. The last equality follows from the fact if
[ =n+ 1, we trivially obtain that V,, = n+ 1 and N; = n imply that W; = ¢ and so we get
P{W,<s|Vy,=n+1,Z,=7, N, =n} = 0 since we have supposed that s < ¢.
Let us consider now the expression P, {W, < s |V, =1,2Z, = j, N, =n}.
For fixed 7,57 € S and 0 <[ < n, we define the set

G;z = {2= (4,215 2n-1,7) € S™! | | entries of Z are in U and n+ 1 — [ are in D}

and we denote by Z the random vector (Zy, ..., Z,). We then have

RR n " 3806



14 B. Sericola

Pi{WtSS|Vn:laZn:jaNt:n}

= Z ]P'i{Wt <s | 2:2avn = laZn :jaNt :n}Pz{2:2| Vi :laZn :jaNt :n}
Eer:{L

= Y PW,<s|Z=3V,=l,Ny=n}P{Z=%|V, =1,Z, =3§,% =i,N;, = n}
Eer:ZL

= S PW,<s|Z=3V,=l,Ny=n}P{Z =%V, =1, 2, =j, % = i}
EGG}':{L

where the last equality follows from the independence of the processes {Z,} and {N,}.

We denote by Ty, To + 11, ..., To + 11 + - - - + T,—1 the n first instants of jumps of the
Poisson process {N;} over [0,t) and we define 7,, =t — (To+ 11+ - -+ T,—1). We then have

P{W,<s|Z=%V,=l,Ny=n} = P{T},+ - +T,<s|Z=3V,=1,N,=n}
= P{Ti, +---+ T, <s| Ny, =n},

where the distinct indices iy,...,4;, € {0,1,...,n} correspond to the [ entries of Z that are
in U and the last equality is due to the independence of the processes {Z,} and {/N;}. Note
that for [ = 0, we obtain the correct result, which is equal to 1 by using the convention
() =0ifa>b.

From relation (2) we get, for { =0,...,n,

P{T;,+ - +T;, <s|Ny=n} = P{ly+--+T_1 <s| N =n}

- (6 0=

k=l

Again, the use of the convention 3-%(...) = 0 if @ > b allows us to consider both cases [ = 0
and [ =n + 1 as normal ones. Finally, we obtain

Pz{WtSS‘Vn:laanjaNt:n}

n n s k s n—k . R . .
= () () (1-7) PZ=zv=tz=i4=0
J k=l

~ i
I,n

AOIONCSH .

INRIA
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Ao

That is, since P{N, = n} = e :
n!

Y

o o at (A" S g (”)(s>’“( s)"’f . .
= e -] (1-=- P{V,=01,Z,=j| Zy=1i}
HZZO n! gg k t t
s At)™ ny /s\k s\ k
= Ze—)\t( Z( ><_) (1__) N P{Vo=1,Z,=j|2Zy=1i}
n=0 nt S \k/ A\t t 1=0
)0 6 7=
= — 1—— IPVn<k1ZTL: Z:
and the proof is completed. [ |

Corollary 3.4 Fort >0 and s € [0,t), we have

pnsa= ST () () (-9 sy

=0

Proof. We have, for t > 0 and s € [0, 1),

PW,<s} =S P{Xo=i} S P{W, <5, X, =j | Xo =i}

i€S jes
and forn >0 and 0 < k < n,

P{V, <k} =Y P{Zy=1i}> P{V, <k, Z,=j | Zo = i}.

icS jes
The result easily follows from theorem 3.3 and because X, = Z;. |

From relation (4), for ¢t > 0, the distribution P{W; < s, X; = j | X, = i} is differentiable
with respect to s for s € (0,¢) and its derivative is given by the following corollary.

Corollary 3.5 Fort >0 and s € (0,t),
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16 B. Sericola

dP{W, < 5, X, = j | Xo = i}

ds
s M) IL /1N [s\F s\ k , ,
:/\X:O‘?_M(n,) ;(k)(;) (1_¥> P{Vori=k+1,Zn1=7|Zo=1} (6)
n ' =0

Proof. In order to simplify writing let G, ;(¢,s) = P{W; < s,X; = j | Xo = i} and
F,jnk)=P{V, <k, Z,=j|Zy=1i} and f;j(n, k) =P{V, =k, Z, =j | Zy = i}. From
relation (4), for t > 0 and s € (0,t) we have

G LS QS m sy oy
R N s 1_5 P ’k
12X Y ()\t>n n—1 n! (S)k ( S)n_k_l
_- s 1.3 7
tngle n! e k'(n—k—l)! 1 t lj(nak)
122 Y ()\t)n n—1 n! (S)k ( S)nkl
R -) (1—+ Fj(nk+1
tnzzzle nl Skl —k—1)!\¢ t i(mk+1)
1 Y ()\t)n n—1 n! (S)k ( S>n_k_1
= s 1_5 Fo(nk
tngle n! =kl (n—k—1)\¢ n g(n, k)
I3 ()" = n! (s)k( S)nk1
P N Wk s 0 hs k)
=y ey (n) (f)k (1 - §>n_kf (n+1,k+1)
0 n! g \k/\t ¢ irj ; )
which completes the proof. -

4 Joint Distribution of Occupation Times

We consider now a partition of the state space S in m + 1 non empty subsets By, By, ...,
B,,. We thus have B;NBj =0 for i # jand S = ByUB; U---U By,

INRIA



Occupation Times in Markov Processes 17

4.1 The Discrete Time Case

We consider the random variables V! defined by
VT;L = Z 1{Zk€Bi}'
k=0

The following theorem gives the backward equation for the joint distribution of the V! and
L.

Theorem 4.1 Forr=1,....mandn>1 and 1 < ky,...,k,;, <n we have
fori€ B, P{V! <ky,.... VI <kpy...V"<bkp,Zn=3|Zy=1i}=

ZPZ'J]P{anfl Skla"wVT:fl Sk?'_]-a"'av:il Skmaznflzj | ZOZZ}

leE
fori€ By, PAV.! < ky,... . V" <k, Zn=j|Zy=1i} =

ZPz',l]P{an_l <k, Vit <kmZna=7|Zy=1}

leE

Proof. We denote by V,, and k the vectors (V!,..., V™) and (ki, ..., kn) respectively
and by e;, ¢ = 1,..., m, the row vector of dimension m whose ith entry is 1 and the others
0. The proof can be done using the same steps used in the proof of theorem 3.1.

We have

P{V, <k, Zn=3j|Zo=1i} = S PP{Va<k Z,=j|Z =1,% =i}

leE

= S PPV, <k—elyeny Znr=3| Zo=1}
leE

The following theorem gives the forward equation for the joint distribution of the V!
and Z,.

Theorem 4.2 Forr=1,....mandn>1 and 1 <kq,...,k, <n we have

RR n - 3806



18 B. Sericola

forj € By, PAVI <ky,... . VI <kp,... . V" <bkpZn=13|Zo=1i} =

Z]P{anfl <k,.., Vo <k —=1,...,V," <kn, Zn1=1]|2Zy=1}P,

leE

for j € By, P{V,, <ki,...,. V" <k, Zn=13|Zy=1i}=
Z]P{an—l S k'l, .- .,Vnwil S km,Zn—l =1 ‘ Z() = Z'}PZJ'
leE

Proof. With the notation of the proof of theorem 4.1, we follow the same steps used
in the proof of theorem 3.2.

We have
P{V, < k,Z, = j, Zy = i}
= ]P{V/ntl <k- erlijen,ys Zn = J, 20 = i}
N P{Viii <k — e lyjenys Zn = Js Znor = 1, Zy = i}

I€E
= S PV <k—elgeny, Zo=1i|Zn=jZn1=0P{Z, =5, Zn =1}
I€E
= Y PVasi <k—elgeny Zo=1i| Znor = 3P{Zy=j, Zuor = 1}
I€E
= S PV, <k—elgesy, Znr =120 =iYP{Zy=j | Zn_1 =1}
I€E
= Z IP{VT;1 <k-— erlijeBy, Zn1=1,2y =i} Py
I€E
The desired relation is then obtained by conditioning with respect to Zj. [ |

If we denote, for n > 0 and k£ > 0, by F(n,ky,...,k,) the matrix whose entry (i, ) is
defined by

E,J(n,kl,,km):]P{anSkl,,Vgngkm,ZnZJ|Z0:Z},

the results of theorems 4.1 and 4.2 can be easily expressed in matrix notation. We first de-
compose the matrices P and F'(n, kq, ..., kn,) with respect to the partition { By, B, ..., Bn}
of the state space S as

P = (PBrBh)OS'r,hSm and F(TL, kl, .. -;km) = (}?BTB}L(’I"L7 kl, .. '7km))0§r,h§m'

INRIA



Occupation Times in Markov Processes 19

The result of theorem 4.1 can then be written as

FBTBh(’I'L, kl,. . ,]Cm) = ZPBrBlFBlBh(n — 1,k1, .. -;kr — 1{7";,50},.. 7km)
=0

In the same way, the result of theorem 3.2 can be written as
F‘BTBh(TL7 kl; ceey km) = ZFBTBZ(TL - 1, ]{?1, ceey kh - 1{h¢0}7 ceey km)PBlBh-
1=0
The initial conditions are given, for n > 0, by

F(n,0,...,0) = ( 8 (PB(?BO)" )’

Note that in the case where k1 4+ -+ k,, > n+ 1, with k; < n fori =1,...,m, the

m dimensional joint distribution of V)!,... V™ can be expressed as a combination of h
dimensional joint distribution of the V for h = 1,...,m — 1. This observation is based on
the following general result.
For any random variables Uy, ...,U,, and any event A, we have
P{Us <1, Up <am, A} = 3 (1) PP < i€ E, A}
Ec{1,...m}
+(=1)"P{U; > x1,...,Up > xpm, A}, (7)
where the inclusion is strict, that is E' # {1,..., m}, and where we define for convenience
For what concerns our random variables V!, ... V™ we have trivially

P{V!>k,...,.V">knXo=j|Zy=i}=0 if k+-+kn>n+1,
so we get in this case the desired result, that is

PV <ki,..,VI" <km, Zn=3}= > (1) EHP{Vi< ki€ FE, Z,=j}
Ec{1,...m}
(8)
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20 B. Sericola

4.2 The Continuous Time Case

We consider the random variables W}, i = 1,..., m, defined by

, ¢
VVVtz = /0 1{Xu€Bi}du'
The joint distribution of the W} and X; is given in the next theorem.

Theorem 4.3 For everyi,j € S, for everyt > 0 and sy, ..., Sy, € [0,t) such that s; + s+
coo 4 8y, < t, we have

P{W! <s,... W< s, X,=7j| Xo=1}=

— -\t (/\t)n 19%351,52,-.,5m 1 m . .
Z € nl Z n‘en;h,kz,...,ka{Vn S kla B Vn S kma Zn =J ‘ ZO = Z}
n=0 k1 >0,k >0,... km >0,

ki4+ke+ 4+ kmn<n

©)

(ﬂ)kl (5_2>k2 (S_k)km (1 _S1t S+t Sm>"(k1+k2"'+km)
975551,52,---,87” . t 1 , : |

nik1k2yeokm keylko! k! (n — (ky + koo + k)]

Proof. We denote by W, V,, § and [ the vectors (W},...,Wm), (Vi ... V™),
(s1,-.-,8m) and (ly,...,ln) respectively. An inequality between two such vectors mean-
s the inequality for all their entries. For n > 0 we define the set E,, as

Bo={l=(1,ly,....00) e N" |l + Iy + -+ I, < n}.
We then have

P{W, <5 X, =3 | Xo =1}

= Y PAW, <5 N, =n,X, =j}

n=0
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o0

= Z ]PZ{W: <§Ny=n,Z,=7j} since {X;} and {Zy,} are equivalent
n=0

= S PAN, =n}P{W, <35 Z,=j | N,=n}
n=0

oo

= Y PN, =n}P{W, <5 Z, =3 | Ny =n}
n=0
= E]P{Nt_n}ZIP{Wt<s?=Z j| N, =n}
leEn
= ZP{NFn}ZPi{ﬁ=T,Zn=,¢|Nt=n}1Pz~{VV7§§|17n=lizn=j,Nt=n}
n=0 TEEn
= S P{Ny=n} Y Pi{Va =12, = j}P{W, < 5|V =1, Zy = j, Ny = n}
n=0 TEEn

Note that the 4th and the last equalities follow from the independence of the processes
{Z,} and {N;} and the fact that X, = Zj. Note also that in the 5th equality, the summation
over [ should be forl € En+1, but it can be done for [ € FE, because if [y +1lo+- - -+1,, = n+1,
we obtain that V = | and Ni = n_imply that V1 -+ V," = n+ 1 and so that
W} +- .-+ W™=t which gives us P{W, < 5|V, = l Nt = n} = 0 since we have supposed
that s; + -+ s, < . .

Let us consider now the expression IP; {Wt S|V, = [,Z,=7j,N, = n}.

For | = (l1,1lg,...,lm) € E, and i,j € S, we define the set

[ entries of Z are in By,

N l> entries of Z are in B,

:ll\,i,: Ez(i,zl,...,zn_l,j)65"+1 ceey

’ l,, entries of Z are in B,, and
n+1— (I +1l+---+1y) are in By

and we denote by Z the random vector (Zy, ..., Z,). We then have
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where the last equality follows from the independence of the processes {Z,} and {N,}.
We have

P{W,<5|Z=2V,=l,N,=n}=P{T()<5|Z=3%V,=1N,=n},

where
~ o~ litle Li+lg+tlpm,
T(1) ZTZ], > T, 3 T,
=1 j=htl j=li oo tlm—1+1
So, using again the independence between {Z,} and {N;} and relation (3), we get

P{T()<3|Z=%V,=1,N,=n} = P{T()<5|N,=n}

19t551,525,5m
n'gn;kl,kg,...,km’

|
M

k1> li,ka2 > 2, km > lm,
ki+ke+-4+kmn<n

Note that if one of the [;’s is equal to 0, the corresponding entry of the vector f(lA) becomes
0 and the preceding formula is still valid. Indeed, suppose for simplicity that /,, = 0. We
obtain

n—(k1++km—1)
196:51,8258m 19t:51555m
Z n: 977/ k17k2! 7k - Z Z n'eﬂ;kl,...,km
k1 >1,...,km >0, ki >l ... km—1 2 lm—1, km=0
kit dkm<n kit thmo1<n

nCrt o) (0= (k4 b )5

1581 yeeesSm—1
- S el

k1, km—1 (k1+ +hkm— 1)

kl Z lla'-'akm—l Z lm—l’ kaO (1 - %)
ki+-+km<n
£381,.0s8m—

— 19%815:55m—1
o Z n'en;kl,...,km,l'

k1 lea'-'akm—l Zlm—l’
ki+-+km<n
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~

Note also that if all the [;’s are equal to 0, then all the entries of f( ) are equal to 0 and
the formula is still valid since

19t351,825,8m  __
Z n'en;klakZ’"'akm - 1'
k1 >0,k2 >0,...,km >0,

ki+ke+ - 4+km<n

Putting together these results, we obtain

PA{W, < 8|V, =1,Z,=j, N, =n}

. £551,52500058m 7 _ 17 7 - —
- Z Z nlo, e " P{Z=2|V,=1,Z,=j,Zy =1}
ZeGH k1> li,k2 > o, km > I,
Ln ki+ks+--+km<n
_ 1;81,52,..,8m 7 _ 17 7 — 5 — 5
- Z n!en;kl,kz,...,km Z IP{Z =z | V'fl - lﬂ Z’fl =D ZO - Z}
klle,IWZl?,---:kalm, /Z\EG}\’J
ki+ka+---+km <n Lin
_ 19t:51,52,-,8m
- Z n'en;kl,k‘z,...,km’
k1>l k2 > 12, km > lm,
ki+ky+--+km<n
and so,
]P{Wth,Xt:j | X():Z}
oo n
— Z efAt ()‘t) Z Z n|9t;81,82,---,8m ]P{‘//\ _ z\ A | 7. = Z}
- n! VUniky ko, skm n =1, 4n =] 0=
n=0 ©leE, ki>liuke >l km > i,
ki+ke+--+km<n
oo n
_ Zef)\t ()\t) Z n'et;sl,SQ,...,Sm Z ]P{‘//\ _ z\ Z o | Z _ ’L}
- n! “Ynik1,k2,...km n=1=4np=] 0 —
n=0 kCE, I1> kil > k2, sl > km,
h+la+-+ilm<n
<L e .
_ 7)\15( £;51,52,000y8m
- Z € n! Z n!en;kth,...,ka{Vn S l}
n=0 kEE,
< ()" L
_ 7)\t( £551,525-35m — A — 9
o} Z [ —n' Z n!gn;klka’"_’ka{Vn S l, Zn — j | ZO — Z}.
n=0 Y k1>0,k2>0,...,km >0,

ki+ka+--+kn<n
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Thus, the proof is completed. [ |

From relation (9), for ¢ > 0, the distribution P{W} < sy,..., W™ < s, X; =7 | Xo =
i} is differentiable with respect to ¢ and also with respect to si, $a, ..., Sy for s1,..., 8, €
(0,t) and s1 + -« - + s,y € (0,1). These derivatives are given by the following corollary.

Corollary 4.4 Fori,j € S, fort >0 and sq,...,5, € (0,t) such that s1 + -+ + s, < 1,
we have

0]P{Wt1Ssl,...,thgsm,thj\oni} .

681
— —At ()\t)n 19%351,825.-,8m 1 2 m .
A Z € n! Z n'en;khkg,...,km]]‘:)i{vn-i—l = k1+17 Vn—|—1 S k27 HRI) Vn+1 S km) Zn—|—1 = ]}
n=0 T k1>0,...,km >0,

Ei+--+km<n
(10)

and

8’”113{th S 51,...,th S Sm,Xt :] ‘ XO = Z} .
0581089+ + + 08y, N

s )™ .
A7 ZO 67)‘t—( n,) Z nmt,sl,sz,...,sm P'L{VTL1+m = kl +1, ceey ym o = I{Jm+1, Zn+m = ]}

n;k1,k2,....km n+m
T k1>0,...,km >0,

kit tkm <n
(11)

and

OP{W}E < s1,..., W< 8, X;=j | Xo =10}

ot
by — -t (/\t)n 'gt;31;52a---75m P, Vl <k Vm o<k 7 o
Z € n! Z n. n;k1,k2,.. km [ Z{ n+l = My V1 > vmy “n41 — j}
" F20o k20 ~Pi{V,} < ki, Vi < b, Zn = 5]

(12)

Proof. In order to simplify notation, we define

Fi(n ki koo ky) =P{V,) <k, V2 <koyo.. ., V" <kpm, Zn =73 | Zo =i},
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and
fii(n ki koy oo k) =P{V,) =k, V2 <koy.. ., V" < kpy Zn =3 | Zo = i}.
We thus have the relation
Fij(n ki + 1, kg, ... kp) — Fij(n, ke, ko, oo k) = fij(n, ke + 1, ko, oo k).
For ¢t > 0 and sy, ..., s, € (0,t) such that s; + - - + s, < t, we have from relation (9)

OP{W,! <s1,..., W™ < sy, Xy =j | Xo =i}

(981
1& (A"
_ At 1;51,52,...,8m o
- ; Z € nl Z n!gn;kl—l,kg,...,kmFZ,J(n’ ki ko, ..., km)
n=1 : k1>1,k2>0,...,km >0,
ki+ -+ km <m
1 (A
-\t £351,.-y8m
-7 e . > nl0, e Fig(n, kb kg, . k)
n=1 : k1 >0,k2 >0,...,kn >0,
kit km <n—1
1 (A"
_ —At t3815---,Sm -
= ? Z € —n' Z n!gnfl;kl,...,kmE,J (n, kl + 1, kg, ceey km)
n=1 : k1>0,...,km >0,
kit km <n—1
12 (M)
)\ £381,---ySm
_2 Z e —n' Z n!Hn_l;kl,___,kmFi,j(n, k]_, kg, ceey km)
n=1 : k1 >0,...,km >0,
kit -+km<n-1
1 ()"
_ 2\t t;581,...,8m
Tt PIL nl ) e e fig (7 R+ 1, Koy o)
n=1 ’ k1>0,...,km >0,

ki +- +hm<n—1

1381 500y8
E n!@n;kl,___,,;':nfi,j(n + 1, k’l + ]_, k}2, ey km)
n=0 : k1>20,...,km >0,
kit km <m

The second relation follows easily using the same argument. For the third relation, since
t > 0, we write
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P{W,}! <s1,..., W < s, Xy = j | Xo =i}

SN Y e Pyl buba )

n=0 k; >0,...,kn >0,
ki+--+kn<n
and so,

aP{thSSl,...,thSSm,Xt:j|X0:'L'}
ot

o
_ —At n n Ot;S1,---,8m
= —JXe Z)\ Z t Gnkl, ok F,](n k’l,kg,...,k’m)
n=0 k1 >0,...,km >0,
ki+--+kn<n

+€_)\t Z A" Z " 10:;511, k;, wkm E,j(n’ kla k2a R km)

n=1 Kk >0,...,kn >0,
kit thm<n-—1

oo
_ =t n nt;si,...,s
= e Z)\ Z t gnkl E,j(n,kl,kg,...,km)
n=0 k1 >0,...,km >0,
kit +hkm <n

o)
-t n+1 n nt;s1,- ,Sm
+e ZA Z tenkl, ZJ(TL+1 kl,kg,...,k’ )
= k1 > . km >0,
ki+--+km<n

= A e S s (b1 ks ) = Fig(ns kb )]

n;k1,...,k
n=0 T k1>0,...,km >0,
i+ +km<n

Note that if s; + s9 + -+ - + s, > £, then we trivially have

P{W,} > s,..., W™ >5,, X, =3 | Xo =1} =0,

so relation (8) applies by replacing the V! and the k; by the W} and the s; respectively.
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5 Distribution of Weighted Sums of Occupation Times

A constant performance level or reward rate p(i) is associated with each state ¢ of S and
we consider the random variable Y; defined by

t
Y, = / p(X,)du.
0
We denote by m + 1 the number of distinct rewards and we denote their values by
To<Try < -+ <Tpp1 < T

We then have Y; € [rot, rt] with probability one. Without loss of generality, we suppose
that ry = 0. This can be easily done by considering the random variable Y; — ryt instead of
Y, and the reward rates r; — ry instead of r;.
The state space S can be then divided into disjoint subsets B,,, B,, 1, ..., Bg where B,
is composed by the states of S having as reward rate r;, that is B, = {i € S/p(i) = r}.
With this notation, we have

m t m
Y, =S n /O Lxoepydu =S rW. (13)
=1 =1

Since the distribution of each W/ has at most two jumps at points 0 and ¢, we conclude
that the distribution of Y; has at most m + 1 jumps at points rot = 0, rt, ..., rnt. For
t > 0, the jump at point x = r;t is equal to the probability that the process X, starting in
subset By, stays during the whole interval [0,¢) in the subset Bj, that is

]P{Yt = th} = aBleABsztlel for t > 0,

where 1p, is the column vector of dimension |B;| with all entries equal to 1. For every
i,j € S and t > 0, we define the functions F; ;(¢,x) by

Eaj(t’m) = ]]‘:){Y;E > x)Xt :.7 ‘ Xo = Z})

and we denote by F'(¢, z) the matrix containing the terms F; ;(¢,z) for i, j € S. The matrices
A, P and F(t,z) can then be written using the partition By, By,_1,..., Bg of S as

A= (ABqu)OSu,vgm ; P= (PBqu)OSu,vgm ; F(t,I) = (FBqu (ta x))ogu,ugm :
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Note that we then have, fort >0 and [ =0,1,...,m,

(eABlBlt)i,j if Z,] € Bl
0 otherwise,

bl

P{EZTlt,Xt:j\XOZi}:{

that is (/\ )
‘ ' oo ~ K .
P{Y,=nt, X, =j| Xo=i}=> e ™ ] (Pg,B,)iil{ijeB)- (14)

n=0

The distribution F; (¢, ) can be obtained from relation (13), using the joint distribution
of the W/ obtained in the previous section. From corollary 4.4, F; (¢, z) is differentiable
with respect to x and ¢ in the domain

E={(t,z); t>0and z € | J(ri_1t,rt)}.
=1

The initial conditions are given, for ¢t > 0, by
Fij(t,0)=P{X; =j | Xo=i} -P{Y; =0, X, = j | Xo =i},
that is, in matrix notation,

FBqu (t, 0) = (6At)Bqu — 6ABOBOt1{u:1,:0},
which can also be written as

FBqu (t’ 0) = Z e_)\tu [(Pn)Bqu - PgoBol{u:uzo}] . (15)

|
n=0 n.

5.1 Backward and Forward Equations

In the following, we derive the backward and forward equations satisfied by the distribution
of the couple (V;, X;) and we give expressions of the solution of these equations.

Let us first state some useful results in the following lemma. Recall that {N(¢)} is a
Poisson process with rate A and that it is independent of the uniformized Markov chain Z.
We denote by N(t,t+ s) the number of transitions during the interval [¢,¢ + s).

Lemma 5.1

P{N(tt+5)=0| X, =5} = (16)
P{X;ys =5, Nt t+s)=1| X, =i} = Pjrse ™ (17)
P{N(t,t+5) > 2| Xo =i} = o(s). (18)
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Proof. Recall that the processes {X;} and {Zn(} are equivalent and Z, = X,. For
relation (16), by homogeneity, we have
P{N(t,t+s)=0|X; =7} = P{N(s)=0]| Xo=13}
= P{N(s)=0|Zy =j}
= P{N(s) =0}

e—)\s

In the same way, for relation (17), we have
P{Xips =5, N(t,t+s) =1 Xy =1} = P{X;=j,N(s) = 1] Xo =i}
= P{Z1=4,N(s)=1|2Zy=1}
= P{N(s)=1[20=14,21 =j}Fy
P{N(s) = 1}Pi;
Pi,j/\se*)‘s
For relation (18), we have

P{N(t,t+5)>2| X, =i} = P{N(s)>2|X, =1}

P{N(s) > 2}
= 1—e = dse™™
o(s)
This completes the proof. [ |

The following theorem states the forward equation describing the behavior of the pair
(K) Xt)
Theorem 5.2 Fort>0,4,j € S,1<h<m andzx € (r,_1t,m4t) we have
8}7’”(75,36) . 8}7’”(15,3:)
il A\t A — F;p(t,2)Ag ;. 19
Proof. By conditioning on the number of transitions in the interval [¢,¢ + s), we have
IPZ'{)/;,—I—S > ./L',XH_S :]} = ]Pi{Y:H—s > qut—l—S :],N(t,t+8) = 0}
+ ]Pi{Y;-f—s > T, XH-S = j, N(tat + S) = 1}
+ ]Pi{Y;-FS >z, XH—S =7, N(tvt + 5) > 2}
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We consider the three terms of the right hand side separately.

For the first term, since X;,s = j and N(¢,t + s) = 0 is equivalent to X; = j and
N(t,t+s) =0, we have

Pi{Yiss > 2, Xpis = 4, N(t,t +5) =0} = Pi{Viss > 2, Xy = j, N(t,t + s) = 0}

= P{Yis>z2| Xy =74 Nt t+s)=0}P{X; =4, N(t,t +s) =0}
Pi{Y, >z —p(j)s | Xoe = j, N(t,t + s) = 0}P:{ X, = j, N(t,t + s) = 0}
Pi{Y: >z — p(j)s | Xy = j}P{ X, =4, N(t,t +5) = 0}

Pi{Y; > 2 — p(j)s, Xy = j}P{N(t,t +5) = 0| X; = j}

P{N(t,t+s) =0| X, = j}F; ;(t,x — p(j)s)

= e MF;(t,z— p(j)s)

= (1=As)F;(t,x—p(j)s) + o(s)

where the second equality follows from the fact that if X; = j and N(¢,t + s) = 0 then

t+s

we have Yy , =Y, + / p(Xy)du =Y, + p(j)s, the third one and the fifth one follow from
t

the Markov property, and the sixth follows from relation (16).

For the second term that we denote by G(s), we define
Gr(s) = Pi{Yiys > 2 | Xy =k, Xoys = J, N(t,t +5) = 1}
We then have

G(s) = Pi{Yiys >z, Xpps =4, N(t,t +5) =1}

Z Gk(S)IPZ{Xt = kaXt-l-s = j,N(t,t + S) = 1}
kes

Let us define ppin = min{p;} and pmax = max{p;}.
Since Y; + PminS S Y;—l—s S Y;‘. + PmaxS, W€ get

Pi{Y; > 2 — pmins | Xe = k, Xoys = J, N(t,t + 5) = 1} < Gi(s)

and
Gr(s) S P{Y: > 2 — pmaxs | X¢e = k, Xoys = 7, N(t,t +s) = 1}.
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Using the Markov property,
]PZ{Y;‘, > T — PminS | Xt = k} S Gk(s) S ]PZ{Y;E > T — PmaxS | Xt = k}a
We thus obtain
Z -F:i,k(ta T — pminS)Uk,j(S) S G(S) S Z -Fi,k(ta T — pmaxS)Uk,j(S)a
kes kes

where Uy (s) is defined by

Uk,j(s) - IP{Xt+5 — j, N(t,t+ 8) — 1 | Xt - k'}
From relation (17), we have

U -
i Zea) _yp
s—0 S ?
so we obtain G(s)
) S
slino S = /\%E’k(t, ZC)Pk,j.
For the third term, we have from relation (18),
Pi{Yirs > 2, Xops = J, N(t,1 + 5) > 2} SP{N(t, ¢ + 5) > 2} = o(s).
Putting together the three terms, we obtain
Fijt+s2) = Fjto) (A= As)Fi(t e = pld)s) = Fiy(t2) | Gls) | ols)
s N s s s
Fi;(t,z —p(j)s) — Fi;(t,x , G(s o(s
If we let now s tend to 0, we get
ot ox ’ ics ’

Since P =1 + A/, we obtain

aﬂj(t,$) ; 8F”(t,x)

— = L = . E t’ Ag ;.

8t p(j) 61‘ +I§g 1k( I) k,j

The proof is thus complete. |
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Corollary 5.3 Fort>0,0<p<m,i€ By, j€S5,1<h<mandz € (rp_1t,mst) we
have

t
Fij(t,a) =" /0 Fip(t —u,x — p(j)u)re *duPr; + € 1inpylii=j) (20)
keS

Proof. Consider equation (19) and the functions ¢; ; defined by

@i j(u) = Fj(t —u,x — p(j)u)e

Differentiating with respect to u, we get

| 9Fi; \OF;; . : e
Ghg(w) = e | =2 — p(i) =24 (t = w0 — plf)u) = Fig(t — w2 — p(fJu)he ™

This gives using equation (19) and the relation A = —A(I — P),

Gij(u) = = Fir(t —u,z — p()u)Ag e " — Fij(t — u,x — p(j)u)re ™
keS
= =Y Fis(t—u,z = p(jlu)re Py
keS

Integrating now this expression between 0 and ¢, we obtain

¢
(1) — i;(0) = — Z/o Fip(t —u,xz— p(j)u))\e_)‘“dqu,j.
keS

Finally, we have ¢; ;(0) = F; ;(t,z) and
ij(t) = Fi (0,2 = p(j)t)e™ = e u ey Lii=gy = € LingpyL{i=s)
which completes the proof. [ |

We now derive the backward equation for the evolution of the pair (Y;, X3).

Theorem 5.4 Fort>0,0<p<m,i€ By, j€S,1<h<mandz € (rh_1t,mt), we
have

t
E,j(t; ZC) = Z Pz’k/() Fk,j(t — U, T — p(z)u)/\e_)‘“du + €_At1{hgp}1{i:j} (21)
keS
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Proof. Let T} be the first sojourn time in the initial state. We have
Fiy(t, @) = / P{Y; > 2, Xy = j | Tt = u, Xy = i} Ae Mdu.
0

Ifu>tand Xo=iwehave V; =p(i)t =rptand P{X; =j | Th =u,Xo=i}=1ifi=
and 0 otherwise. Moreover, since 7,¢t > x is equivalent to 7,¢t > 742, that is A < p, we obtain

t
Fy (t,z) = / P{Y, > 2, X, = j | T = u, Xo = i}Ae Mdu + e 1 hepLimyy.
i <
Now,
P{Y; > 2, Xy =j | Tt = u, Xo =i}

=S PV, >5,X,=j | Xy =k Ti = u, Xo = i}P{X, = k | Ty = u, Xo = i}.
keS

For the second term in the sum, we have
P{Xu:k}|T1 zu,onz'} = IP{XTI :k|T1:U,X0:Z}
= P{Z1:k|T]_:u,Z():Z}
= Pi,k7
For the first one, 77 = v and X, = i implies that Y, = p(i)u, so
P{Y;>z, X;=j | Xy =k, Th = u, Xy =i}
t
- ]P{/ p(X)dv >z — p(i)u, Xy = j | Xo = k, Ty = u, Xo = i}

t
= P{[ o(X,)dv >z = pli)u, Xi = j | X, =k}
= ]P{l/t—u > — p(i)uaXt—u =J | Xo = k}
Fk,j(t CTR )O(Z)u)

where the second equality follows from the Markov property and the third follows from
homogeneity. Combining these results, we obtain relation (21). [ |

Corollary 5.5 Fort>0,4,j€ 5,1 <h<m and zx € (r,_1t,T4t) we have

ot - _p(i) o ) + 1;9 Ai,ka,j(t, $) (22)
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Proof. Consider equation (21) withi € B,, 0 <p<mand j € S.
Differentiating F; (¢, z) with respect to variable ¢, we get
ot

t Fy ;(t — —p(i
= Y Py l/ ki lgtx p(l)u))\e”‘“du + F, ;0,2 — p(i)t) Ae ™
kes 0

— Ae M nepy =gy

Differentiating now F; (¢, z) with respect to variable =, we get

‘ y . .
OF” t .’13' Z P / aFk,](t u,T ,O(Z)U) Ae_)‘“du.

ox s ox

Let us consider the functions 1)y ; and ¢y ; defined by

Yig(u) = Fij(t —u,x — p(i)u)  and  pp;(u) = P (u)e™.
Note that we have 9); ;(t) = 1{n<p}1{i=j}, SO equation (21) can also be written as
@i (0 —/\szk/ or,j(w)du + @; (1) (23)
kes

Differentiating 1) ; with respect to u, we get

OF ;(t —u,z — p(i)u) NOFg i(t —u,xz — p(i)u)
/ _ _ >J ) _ 5] )

Uy ) = = (i) v .
We thus obtain

aﬂ’j (t, iC)
ot

LOF; :(t,x s
+ PQ)# = A sz/ Uy, (w)e ™ du+ XY P e (1) — Apij(t)
keS keS

t
=AY Purgn(0) — N / o3 (w)du = Agig(t)

keS

= A Pippr,;(0) — Ag; (0)
kes

= XY PiyFi;(t, ) — AFj(t,x)
kes

= Y AipFr;(t, )
keS
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where the second equality is obtained by integration by parts, the third equality follows
from relation (23) and the last one from the relation A = —\(I — P). |

Let D be the diagonal matrix containing the reward rates p(i) and F(¢,z) the ma-
trix containing the F; ;(¢,z). The forward and backward equations (19) and (22) become
respectively in matrix notation

OF(t,xz) _  OF(l,x)

) Dy R o)A (24)
and OF(t,2) OF(t,z)
) B )y L

St = pS AR (), (25)

These equations are hyperbolic partial differential equations having a unique solution
on the domain E with the initial condition given by relation (15), see for instance [6]. A
method for obtaining these solutions is presented in the following subsection.

5.2 Solutions

The solution of the forward partial differential equation (24) is given by the following
theorem.

Theorem 5.6 For everyt > 0 and x € [rp_1t,rpt) for h=1,2,...,m, we have

Fit.a) = 30 e S () ekt -z o), (26)

]
n—=0 n 1o

T — Tp_1t

(=)t
the following recursive expressions

where xp, = and the matrices CM(n, k) = (C’gl)Bv (n, k))0< _, ure given by

foro<u<mand h<v<m:
forn >0: ngBv(n, 0)=(P")p,B, and CgZ)Bv(n,O) = C’gi_;v)(n,n) for h >1
for1<k<n:

Ty — T Th— Tho1 &
=t oW, (nk—1)+ 22— Py (n—1,k—1)Pg,5,, (27)
Ty — Th—1 Ty = Th—1 4—

h
C](S’u)Bu (TL, k)
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foro<u<mand0<v<h-—1:
forn>0: Cg’fgv(n,n)zoBqu and C’g?Bv(n,n) = C’gﬁ;lg(n,O) for h <m
forO0<k<n-—1:

h
Cl(-}u)Bv (na k) =

The1 — To Th — Thet1 &
T Clp, (k1) + T N Oy, (0= 1K) Payp,. (28)
Th — Ty Th =Ty oo
Proof. Fort > 0 and x € (rp_1t,m4t) for h = 1,2,...,m, we write the solution of the
forward equation (24) as

Pt = 3 e QS (1) k1 — ayro® o, k),

|
n=0 n. k=0

and we determine the relations that must be satisfied by the matrices C")(n, k). We have

OF(t,x) A e (AD)" Zn (n> k —k
ot AF(t ) Th = Th-1 520 ’ n! k=0 k ol o)

x [raC® (n+ 1,k) = rass C® (n+ 1,k +1)]

and
OF(t, z) B A X (A
dr  rp—Th = n! £

x [C®W(n+1,k+1) - CW(n+1,k)].
Since A = —\(I — P), we obtain
F(t,2)A = —AF(t,x) + A\F(t,z)P,
that is,

0 (1) o

k=0

F(t,2)A= -AF(t,z) + A Y_ e

n=0

n!
It follows that if the matrices C")(n, k) are such that

C(h)(n + 17 k+ 1)[D - Th—ll] = C(h)(n + 17 k)[D - ThI] + (Th - Th—l)c(h)(na k)P (29)
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then equation (24) is satisfied. The recurrence relation (29) can also be written as follows,
forevery h=1,...,mand u=0,1,...,m
Ifv=~hh+1,...,m then

_ MC’gL)B (n,k—1)+ Th — Th-1 3 . (n—1,k—1)Pg,p,,
Ty — Th—1 v Ty = Th-1 w=0 o

h
Cé?u)Bv (7?,, k)

and if v =0,1,...,h — 1 then

. _ m
ucgl)g (TL, k+ 1) + Th — Th—1 Z C’gl)B (n —1, k)PBwBu-
Th— Ty 70 Th = Tv =g

h
)y, (n,k) =

w

To get the initial conditions for the C®)(n, k), we consider the jumps of F(t,z).
We consider first the jump at point x = ¢t = 0. For t > 0 we have at point x = 0, that is
for h =1, from relation (26)

F(t,0)=>" e_)‘th(l)(n, 0),
= n!

It follows from relation (15) that for u,v =0,1,...,m,
1 n n
Chlp.(1,0) = (P") 5,5, — Ppyp, L {u=v-o}- (30)
This implies in particular that for every 0 < u < m
)y (n,0) = (P")p,p, for 1 < v <m.

We consider now the jumps at points x = rptfor1 < h < m—1. Fort >0and 1 < h <m-—1
and 7,5 € S, we have

F; j(t,mpt) = lim F,ijit,z) —P{Y, =mt, X, = j | Xo =i}

T—>Thpt

From relation (26) and relation (14), we get
h+1 h '
Clhus (1,0) = Oy, (n,1) + P, g, Lumomny. (31)
This implies in particular that for every 0 < u < m

Cngv (n,0) = ngjBf] (n,n) for 1 < h<wv<m,
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and
Cg?Bv(n,n) = Cgf}?(n,O) for0<v<h—-1<m-—1.

We consider finally the jump at point z = r,,t, that is for h = m. For t > 0 we have

0=F,;(t,rput) = 1<1m F,i(t,z) = P{Y; =rmyt, Xy = j | Xo =i},

T—rmt

J

which leads as in the previous case to the relation
Clm, (n,n) = PE, 5, Lumvmm). (32)
This implies in particular that for every 0 < u < m
Cg:};v(n,n) =0for0<v<m-—1.

The proof is now complete. [ |

Corollary 5.7 For h = 1,2,...,m, n > 0 and 0 < k < n, the matrices C"(n, k) =

(ng}Bv (n, k))0<u,v<m satisfy the following recursive expressions

forh<u<mand 0 <v<m:

forn>0: 01(3133” (n,0) = (P")p,p, and ng}Bv (n,0) = gf;;)(n, n) for h > 1

for1<k<n:

— Mcggm(n, k—1)+ Th —Th1 Z PBquCéthU(n —1,k—1),
Ty — Th-1 Tu — Th—1 4—o

h
C'(Bu)BU (n7 k)

foro<u<h—1and0<v<m:
forn>0: Cgf};v(n,n)zoBqu and C’gl)Bv(n,n) = Oglj;}(n,o) for h <m
for0<k<n-—1:

Th—1 — Ty O(h) Th = Tho1 g (h)
Bup, (M K+ 1) + ———"— Z Pg,5,Cp,p,(n — 1,k).
Th — Ty Th —Tu 4—p

CHy. (n k) =

u
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Proof. The proof is the same as the proof of theorem 5.6 using the backward equa-
tion (25) and the expression (26). We thus obtain that the matrices C")(n, k) satisfy the
relation

D —rp JICW (0 + 1,k 4+1) = [D — rpJ]C®(n 4+ 1,k) + (rp — rpe1 ) PCP(n k). (33)

The recurrence relation (33) can also be written as follows, for every h = 1,...,m and
v=0,1,...,m
Ifu=h,h+1,...,m then

C}(Bhu)Bv (n, k) = MC&)BU (n,k—1)+ Th ~ Th—1 3 PBquCg:ZB,, (n=14k—1),
Ty = Th-1 Tu — Th—1 4—p

and if u =0,1,...,h — 1 then

Th—1— Tu ~(h) Th — Th1 <= (h)
70&3,, (n,k+1)+ ——— Z PBquCBwBU (n—1,k).
Th — Ty Th — Ty w=0

h
Cl(i’u)Bv (n7 k) =
As for the proof of theorem 5.6, we consider the jumps of F (¢, x).
Relation (30) implies that for every 0 < v <m
C’ngv(n, 0)=(P")p,n, for 1 <u < m.
Relation (31) implies that for every 0 < v < m
(h—1)

C’%’Z)Bv(n,O) =Cg g/(n,n) for 1 <h <u<m,

and
C’%’?Bv(n,n) = Cg:}lv)(n,O) for0<u<h-1<m-—1.

Finally, relation (32) implies that for every 0 < v < m
Cg:};v(n,n) =0for0<u<m-1.
This completes the proof. [ |

The following corollary gives an upper bound for the matrices C*)(n, k). If M and K
are two square matrices with the same dimension, the notation M < K means that for
every i, j, we have M, ; < K ;.
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Corollary 5.8 For everyn >0,0<k <n and1<h < m, we have
0<C®(n, k)< P

Proof. The proof is easily made by a two level induction; first over the integer n and
then, for fixed n, over the integer k, using the recurrence relation described in theorem 5.6
or equivalently in corollary 5.7. The result is evidently true for n = 0. Note that in
relation (27), that is for A < v, we have

Ty —T Th— Th
0< v —h g ThT ATl oy

— I

Ty — Th—1 Ty — Th-1
and in relation (28), that is for v < h — 1, we have

0< Th=1 7 To _q _Th " Th1 <1.
Th — Ty Th — Ty
Consider first the case v < h — 1. The result is true for the couple (n,n), since in this case
we have ng};v (n,n) = 0. Suppose the result is true for integer n — 1 and for the couple

n,k + 1), then using relation (28), we get o n,k) > 0 and
Bu By

W, (mk) = LB (k4 1)+ AL SN oW (0~ 1 k) Py, g,
Th — Ty Th — Ty w=0
Th—1 =Ty, 1 Th = Th—1 <=, pn_1
< — (P B,B, T ———— P BquPBwBU
Th — Ty ( ) Th — Ty wZ:O( )
Th—1 — T Th — Th—
= u(pn)Bqu + M(pn)Bqu
Th — Ty Th — Ty
= (Pn)Bqu'

The same argument is used in the case where h < v from relation (27). Moreover, the
relation
Cngv (n,0) = g:;;)(n, n) for1 < h<v<m,

and
CHp (n,n) = CY ) (n,0) for 0<v <h—1<m—1,

are used in the recurrence to take into account the evolution of the integer A in both cases
v<h-—1and h <w. [ |

This result is particularly interesting form a computational point of view to avoid over-
flow problems.
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