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TASCOPT - une Plateforme d’Optimisation de Formes
pour des Applications Turbomachines

Résumé : Nous présentons la plateforme d’optimisation de formes TASCOPT pour les
configurations en repéres tournants et en particulier les applications turbomachines. Cet
outil utilise les résultats de recherche amont entrepris & 'INRIA depuis de nombreuses
années.

TASCOPT reprend 'environnement CAD-free pour la gestion des déformations de la
forme et du maillage sans faire appel & une parametrisation CAO pendant 'optimisation,
tout en permettant un retour sur la CAQ en finale. Cette approche est généralisée pour des
maillages structurés multi-bloc et non-structurés 2D et 3D. La différentiation automatique
par Odyssée est utilisé pour

le calcul des sensibilités en mode inverse. Par ailleurs, une approximation des gradients
dans le cas des fonctionnelles integrales de bord permet une réduction de coiit de calcul
significative. La plateforme utilise divers solveur fluide suivant la physique du probléme
allant de I'incompressible au écoulements & grande vitesse. Plusieurs méthodes de mini-
misation basées sur des approximations linéaires et quadratiques de la fonctionnelle cofit
sont utilisées.

Ces points sont illustrés sur une configuration de cascade de pale de ventilateur o
notamment le choix du critére d’optimisation est discuté. Par ailleurs, nous présen-
tons un exemple d’application de la plateforme en environnement industriel pour "VA-
LEO Thermique Moteur’ en conception de systémes de refroidissement moteur, ainsi que
I’adaptation de la plateforme au logiciel industriel TASCFLOW. Cette application a exigé
le développement d’interfaces spécifiques entre TASCOPT, TASCFLOW et les outils CAO
utilisés chez VALEO.

Mots-clé : Optimisation de Formes Aérodynamique, Méthode de Gradient, Différen-
tiation Automatique, Gradient Incomplet, Paramétrisation CAD-Free, Turbomachines,
Maillages Multi-blocs Structurés.
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Chapter 1

Shape Optimization for Steady Flows

1.1 Introduction

Nowadays, shape optimization in aerodynamics is still not used on a large scale in in-
dustrial environments, due to multiple mathematical and computational problems. The
optimization algorithm presented here is based on a feasible, acceptably accurate approach
for systematic industrial application.

We developed a new code for shape optimization in turbomachinery. TASCOPT was
the result of the collaboration VALEO TM - INRIA Rocquencourt and consisted of the
application of the theoretical researches on optimization obtained and validated at INRIA
in an industrial environment, for the specific problems of VALEO TM. This code is used
for the optimization of the engine cooling fan system, and its purpose is to obtain new
cooling fans with better efficiency and less noise.

We used the approach for shape optimization in aerodynamics problems developed by
Prof. Mohammadi. We present in this report the main ingredients of this approach. The
unstructured CAD-free framework for shape and mesh deformations was extended the
a CAD-free framework to multi-block structured grids and its techniques were coupled
with the commercial flow solver TASCflow. Specific interfaces were developed between the
optimization code and the flow solver in order treat the CAD descriptions used at VA-
LEO TM. The automatic differentiation of programs for computing the discrete adjoint
operator and the gradient approximation based on local informations on the shape were
implemented in the code. Due to these approximations, the gradient computation which
becomes fast enough to allow the possibility of complex shape optimizations. Several
optimization gradient methods based on linear and quadratic approximations of the cost
function are used. The optimization algorithm is based on a progressive optimization
technique, meaning that every intermediate solution is not fully converged, in order to
reduce the computational time. This approach was widely tested in in-viscid incompres-
sible and compressible flow optimization problems and it proved to be a powerful tool
which can treat realistic cases and can lead to future systematic industrial applications.

RR n~° 3803



6 M. Stanciu, B. Mohammadi

We present here the mathematical formulation, the optimization algorithm, and its
applications for the study of a 2D fan blade profile: the choice of optimization criteria
and the computational procedure.

The presented 2D results serve as a basis for the further optimization of 3D blades.
Future improvements of TASCOPT are planned. New mesh deformation techniques using
hyperbolic operators and a BFGS method using incomplete Hessians are under study.
The limited 3D capabilities of TASCOPT will be extended to full 3D description of fan
blades.

1.2 Optimization Problem

We consider the following problem:

r;zn 55“){]&@(% )I)J E”Z?
gl(;ﬂ:,) § 01, ) Te (5] (11)
92(U(z.)) <0

where . are the control points (the blade shape), U the flow variables (velocity, pressure,
turbulent energy, etc.), F the state equations (Reynolds-averaged Navier-Stokes equations
and a turbulence model), g; the geometrical constraints, ¢g» the state constraints and j
the cost function subject to minimization.

1.3 Framework

We have chosen that in our case the control variables correspond to the mesh wall nodes
(CAD-free approach): z. = x,,. The only geometrical entity available during the optimi-
zation is the mesh. As a gradient method is used in the optimization procedure, we need to
compute the gradient of the cost and the constraints with respect to the control variables
z. (dj/dx.,dg,/dzx., dg;/dz.). By taking into account the constraints (e.g. lift, volume)
as penalty terms, a new cost function J is defined as a weighted linear combination of the
original cost function j and the constraints ¢; and g,.

1.3.1 Cost function definition

Since the gradient approximation is based on the flow solution on the shape and since
the computed gradient is not sensitive to the complete domain, the cost function should
depend only on the informations on the profile.

Usually the optimization criteria are based on the aerodynamic coefficients, i.e. on the
boundary integrals calculated on the profile. The aerodynamic coefficients Cy, C; and C,,
are:
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CZ:A[T-n]n do

%poo |u00|2A

[T -n], do
Cd = —Fw (12>
lf0<><>|u<>o|2‘/‘l

Zw(xn [T -n], +z: [T n])do

O =

%poo|uoo|2Ac

with T =pl — (v + 1) (Vu+ VuT), t the flow direction and n the direction normal to
the flow direction, A the profile area and ¢ the profile chord lenght.

1.3.2 Geometrical constraints

The geometrical constraints are of two types:

e local ones (e.g. two limiting surfaces for the deformation), taken into account by
projection:

fi(ze) < dx. < folze) (1.3)

The final profile can then satisfy the given specifications: e.g. minimal or maximal
thickness, unchanged leading or trailing edge, etc..

e global ones (e.g. conservation of a given volume), taken into account by penalty in
the cost function, for example:

J(z)=aCy+ 3|V -V°|/V° (1.4)

1.3.3 State constraints

The state constraints are taken into account by penalty in the cost function, e.g. a given
lift yields:

J(z)=aCy+~|Cr—CY/CY (1.5)
A special constraint for the case of a fan blade is the inlet-outlet pressure difference.

Since the gradient is suitable just for cost functions defined by surface integrals over the
shape, we have to express this constraint in function of the aerodynamic coefficients.

7



8 M. Stanciu, B. Mohammadi

Figure 1.1: The computational domain

For the computational domain 2 having I' as border shown in Fig. 1.1 we can write
the momentum conservation equation for a stationary flow with no external forces:

/ uVudQ) = / —pndo + /(1/ + 1) (Vu + Vul )ndo (1.6)
Q r r

or

/Fu(u.n)da—l—/FTnda =0 (1.7)

We can neglect the viscous effects on the inlet and outlet boundaries. Since on the
periodic boundaries all the flow variables are periodic and the normal changes the sign, the
sum of the integrals on the periodic boundaries is zero. On the other hand, the advection
terms are zero on the profile because the velocity is zero at the wall (no-slip condition).
The normals on the inlet boundary and the outlet boundary are the same with the sign
changed, therefore we have:

/ u(u.ng,)do + u(u.nout)da—l—/ pnmda—l—/ pnoutda—l—/ Tny,do =0 (1.8)
Fin an Fout Tw

1_‘out

We consider the average quantities w;,, Uout, Pins Pout:
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1
_uin(uin-nout)lin + uout(uout-nout)lout - pinnoutlin +poutnoutlout + (Cl + 02)§,Ooo |uoo |2AC =0
(1.9)

where ('] and C are the vectorial aerodynamic coefficients in the horizontal and vertical
directions. Since we are interested only in the horizontal components, we can write:

1
_(uin-nout)Qlin + (uout-nout)Qlout + _pznlzn + poutlout + Cl §poo|uoo|2Ac (110)

Therefore for [;, = [,,; we obtain:

1 c

AP = Pout — Pin = (uin-nout)2 - (uout-nout)2 - 01§Poo|uoo|2z4l (111)

The inlet and outlet velocities are constant, therefore the inlet-outlet pressure difference
depends only on the horizontal aerodynamic coefficient. In this way the constraints on
the inlet-outlet pressure can be introduced in the cost function.

1.3.4 Smoothing operator

The usage of wall nodes coordinates as control parameters, instead of splines, calls for a
smoothing of shape deformations. This is done with the smoothing operator:

{ (I — (A)oi. = bz, (1.12)

0., =dx. =0 when constrained

where

e 47, is the smoothed shape variation;

e ( is the viscosity coefficient in the smoothing process, which is taken proportional
to the norm of the second derivatives of the deformation, in order to make the
smoothing local (the shape locally smooth remains unchanged).

The smoothing system is solved with Jacobi method iterations (see Ref. [6]).



10 M. Stanciu, B. Mohammadi
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Figure 1.2: Shape smoothing

1.3.5 Mesh deformation

For the new profile generated with the gradient method we have to construct a new mesh.
We use an operator with a given deformation on the profile, which doesn’t change the
mesh triangles orientation, and keeps the same mesh quality (see Ref. [5]).

The deformation of a mesh node is given by:

1
(5$m)2 = — WEOL; (5570)2
o 2 (1.13)

0%, = 0%, on 'y,
where:

e 4z, is the mesh variation;

e w; is a weight coefficient for each node k, depending on the neighbouring segments
length;

1

= F TP with 3 an arbitrary parameter (usually 3 = 2);
T — X4

® (OL;

° «; = Z wpay; 1s a normalisation parameter.
k€T,

10
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Another mesh deformation technique is to solve a volumic elasticity system of the same
form as the smoothing operator:

0Ty = 07, on I',, (1.14)

where:

e 4z, is the mesh variation;

e 7 is the viscosity coefficient in the mesh deformation process, which is taken pro-
portional to the local element size, in order to avoid mesh degeneration (the mesh
practically does not change far away from the profile).

Again, this is made with Jacobi iterations.

The first approach proved to be more robust in treating fine meshes, therefore it was
used in all the optimization cases.

018 =T T - T T - T = T z T 4 ¥
" Deforfned mestTC-lines’
06 T

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Figure 1.3: Mesh deformation

11



12 M. Stanciu, B. Mohammadi

1.3.6 Optimization algorithm

We can conclude that generally, the optimization code is based on the following algorithm

(see Ref. [7, 8, 6]):

Optimization loop

1. Choose initial shape 22 and solve the flow U°(z?);

dJ(z.)
de.

Cc

2. Compute the gradient

3. Compute the shape deformation dz, with a gradient method;

4. Smooth the deformations dz. — 07.;

5. Deform the mesh by computing dz,,;

6. compute the new state U(x.) such that F(z.,U(z.), V. U(z.)) = 0;
dJ(z.)

[

< ¢ stop, else goto step 2.

7. if the gradient is converged ‘

End of the optimization loop

1.4 Gradient computation

The gradient of the cost function with respect to the control variables is defined as:

40 00y 01 00 or, 19
dxc B 81/"; afﬁq al’c @U@J:q @xc' ’

where the index ¢ represents all the geometrical quantities (mesh coordinates, shape
normals, etc.).

1.4.1 Automatic differentiation

For the computation of the gradient defined as in (1.15) we use automatic differentiation

(AD) (see Ref. [9]).

Automatic differentiation is a technique which evaluates the derivatives of some unc-
tions defined by numerical codes with respect to some input variables. The inverse auto-
matic differentiation can be seen as an adjoint method used in optimization problems.

12
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In this approach, the program lines defining the output variables variation and the
cost function, including the mesh and the state equations are considered constraints. For
each of them Lagrange multipliers p are associated and an augmented Lagrangian L is
constructed:

L=J+pE (1.16)

The values p are obtained by imposing that the first order variations of I with respect
to the intermediate variables are zero:

oL aJ oE

oL _oJ Ok _ 1.1
ov —au "Pau = (1.17)

Once the multipliers p are evaluated, the gradient of L can be easily computed:

dJj oL dJ ,OF
de. " 0z~ 0n. "o,
For this operation we use the automatic differentiator tool Odyssée developed at INRIA.
Odyssée differentiates programs written in Fortran 77: for a Fortran procedure describing a

(1.18)

function and for a list of independent and dependent variables a Fortran code is generated
which evaluates the derivatives of the dependent variables with respect to the independent
variables.

1.4.2 Incomplete sensitivities

Using automatic differentiation (Odyssee AD tool) we analyzed the contribution of the
different sensitivities to the gradient. In particular, we noticed that when the cost function
is based on informations on the shape through boundary integrals (e.g. aerodynamic
coefficients), the dominant part in the gradient comes from sensitivities with respect to
the geometrical quantities and not to the state. This means that the last term in (1.15)

can be dropped:
d/f 9J 9] dx,

dr. ~ 9z, " O, 0.
This avoids the calculation of an adjoint state and decreases significantly the computa-

tional cost (see Ref. [6, 8]).

(1.19)

1.5 Optimization methods

1.5.1 Steepest descent method

We use a steepest descent method with fixed step size a for the computation of the new

shape (see Ref. [12]):
Szk =11 (—ad—J(:z:f)) : (1.20)
dz.

13
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where II is the projection operator on the admissible space, used to take into account local
geometrical constraints (two limiting surfaces or curves for the shape variations or original
planform kept unchanged). The constant step size is used because for the analyzed 3D
problems the line algorithm search becomes too expensive.

1.5.2 Heavy-ball method

The heavy ball method is used to access different minima of the problem, for specific cost
functions. This time shape variation is computed as:

dJ .
dmc(%)) (1.21)

E_ [ @ kysd € ) k—1
oz = <a+€) (6zc)" + (a—l—e oz,

The coefficient ¢ is at least an order of magnitude smaller than the step size a. With
this method the convergence is faster for oscillating cost functions.

(51:5)” =11 —a

1.5.3 BFGS method

Further on, we investigated the application of an optimization algorithm based on a
BFGS method for 3D aerodynamical shape design problems. This method is based on a
quadratic approximation of the objective function, which is more effective than a linear
approximation (see Ref. [11]).

The search direction for optimization step k:

4

Sz.r =11 (_akBkd:c

) (122
is defined by deflecting the gradient vector with an approximation of the inverse of the
Hessian matrix H of the objective function. This approximation B is constructed with
the gradient variations evaluated during the optimization process, using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) updating formula:

kT Rk k kgkT k kT Rk ko kSET
k41 _ ok 7" BEyTY 6% 6*y" B* + B0
BH — B* 1 <1+ o ) o ( 5o , (1.23)
dJ dJ
where §% = 2%+ — 2F and 4% = H(;{:f“) - d—"cb(xf)

Even if the matrix B is constructed to be symmetric and positive definite, an angle
condition has to be satisfied between the search direction and the gradient in order to in-
crease the efficiency in the objective function descent. An inexact line search is employed,

14
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with the step size o proportional to the gradient modulus, and a continuing update of
the hessian is operated.

Although the global convergence of such a scheme requires stringent conditions and
therefore the decreasing of the objective function is not a priori guaranteed, the local
convergence rate is often asymptotically superlinear.

1.6 Turbomachinery Flows

1.6.1 Blade cascade

We consider a complete configuration of an engine cooling axial fan. For simplicity reasons,
we reduce the 3D case at a simpler 2D case.

The most general fan data are the geometry and the inlet flow characteristics for a
given operating point. We suppose that the fan is defined by the blade number N, by
the tip radius Ry, an the hub radius Ry, and by the blade geometry (profile, twist
angle, chord, leading edge, trailing edge). The flow is defined by the flow rate @ and by
the rotational velocity 2.

Because the fan axial symmetry and the rotational flow characteristics, the flow can
be assumed to be the same for all the blades and to be periodic in the circumferential
direction. Considering a three-dimensional cylindrical computational domain for the fan,
we choose a characteristic section for the two-dimensional computation at a radius R.
We obtain a 2D blade cascade (fig. 1.4), which is reduced at a single domain around the
profile because of the angular periodicity.

3D blade cascade

Figure 1.4: Blade cascade

15
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1.6.2 2D case

The pitch in the angular direction of the computational domain is imposed by the radius

2rR
R and the blade number N: { = WT The axial dimension must be big enough to satisfy

at best the uniform flow conditions at the inlet and at the outlet (difficult due to the
wake).

The geometry of the computational domain (fig. 1.5) is defined by the parameters (see
Ref. [4, 2]):

e the chord lenght ¢ and the tangential spacing between blades (pitch) ¢;
e the solidity o = g;

o the twist angle A\ between the chord and the axis;

the angles (31, (32, B between the flow directions and the axis;

the angle of incidence a = 3 — A;

the deflexion angle 8 = (3, — (3;.

Figure 1.5: Profile geometry

The inlet conditions are given by the flow rate and the fan rotational velocity:

Q
w(RL, — R%.) (1.24)

U, =
mar min

Ut:QR

The aerodynamic coefficients are defined on the flow direction at the infinity.

16
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U,
C
U, )
U inf
A
Co
U,
Binf
Uy
Figure 1.6: Velocity vectors
1.6.3 Fan efficiency
The fan efficiency is defined as:
QAp
= 1.25
M (1.25)

where:

e Ap is the inlet-outlet pressure difference;

e M is the torque resistance momentum.

1.6.4 Fan optimization criteria

For the real case of a 3D fan configuration we are interested in increasing the efficiency

_Qor

the torque resistance momentum M.

17

, which means to increase the inlet-outlet pressure difference Ap and decrease
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2D 3D

Figure 1.7: Aerodynamic forces on the blade

The inlet-outlet pressure difference depends on the horizontal aerodynamic coefficient
(see 3.4.2) and the torque resistance momentum depends on the tangential force (fig. 1.7):

{ A=Cisinfg — Cycosf (1.26)

T = Cyicosp + Cysinf

T
Therefore the cost function should be j(z.) = T A simple analysis of this function

shows that its minimum corresponds to a C3/C; minimum. Consequently, we consider
the following cost function:

j(ze) = %j (1.27)

18
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Chapter 2

TASCHlow Environment

2.1 General description

In the most general terms, the standard phases of solving a CFD problem in the TASCflow
environment are the following:

1. Grid Generation:

First, the creation of the computational grid over which the analysis will be perfor-
med. This phase is performed using programs under Applications, such as TASCgrid
or ICEM, or the user can read in meshes from many other sources, such as CAD
packages.

2. Pre-Processing:

Next is the pre-processing stage performed by TASCbob that includes specifying
the boundary conditions of the problem, the properties of the material which is
modelled, and the physical zones of the model (e.g. what parts are stationary and
what parts are in rotating reference frames).

3. Solving:
Then, the solver TASCflow3D is used to compute the flow within the computational

domain. This includes setting up the solver control parameters that are used to
drive the convergence to a stationary solution.

4. Post-Processing;:

After getting a flow solution, the results are examined with TASCtool. Both flow
visualization, i.e. graphical representation of the fluid flow, and quantitative calcu-
lation such as efficiency over the whole domain can be performed.

5. Modification:

RR n~° 3803
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Lastly, and usually after post-processing the results, some aspect of the problem
geometry, grid, boundary conditions, solver parameters, etc., will be adjusted and
the CFD run is repeated until the desired accuracy is achieved.

From the point of view of using the optimization code in the TASCflow environment for
mesh generation and flow resolution, we can see that the grid generation (using TASC-
grid and different templates) is used only in the initial phase of the optimization loop
(unless we do not perform mesh regeneration at each optimization iteration instead of
mesh deformation). Afterwards, as we have seen previously in the optimization algorithm
(1.3.6), the optimization code TASCOPT-3.0 scheme uses only the code optimtasc.exe and
the fluide solver TASCflow3D.

Therefore, optimtasc.exe needs only the solution and the grid (including topology, boun-
dary conditions, etc.), which are read, processed and saved in the same format.

2.2 TASCflow capabilities

TASCflow is an integrated and software system capable of solving diverse and complex
multi-dimensional fluid flow problems. The fluid flow solver, TASCflow3D, provides solu-
tions for incompressible or compressible, steady-state or transient, laminar or turbulent
single-phase fluid flow in complex geometries. The software uses block-structured non-
orthogonal grids with grid embedding and grid attaching to discretize the domain.

The software system has additional capabilities which can predict subsonic, transonic
and supersonic compressible flows including temperature solutions in solid regions of the
domain, for laminar or turbulent flow. As well, CFX-TASCflow has the additional capabi-
lity of the Eddy Dissipation Model for the simulation of turbulent reacting fluid mixtures
of separate physical components or species, and the Lagrangian Tracking Model for cal-
culation of discrete particle trajectories (passive or with reaction) in a hydrodynamic flow

field.

2.2.1 Governing equations
Instantaneous equations

For a single species Newtonian fluid, in a Cartesian coordinate system, the conservation
equations for mass, momentum and energy may be expressed in tensor form (with the
Einstein summation convention), as:
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In the above equations u; represents the velocities in the z;-coordinate directions, P is
the static pressure, H is the total enthalpy, p is the density, 7;; is the viscous stress tensor,
g; 1s the molecular energy transport due to conduction, and the S terms are additional
source terms.

The total enthalpy is defined as: H = h + “
fluid.

U
. where h is the static enthalpy of the
2

The molecular fluxes 7;; and g; for a newtonian fluid are expressed in terms of velocity,
temperature and concentration gradients (Stokes’s law and Fourier and Fick’s law):

- (‘3ui+8u] _|_2 (9u;5
— "\ bz, d; 3 Mo,
/\8 o (2.2)
Q——a—%—z kk

where 1 is the dynamic viscosity of the fluid, A its conductivity and Iy, hy and Y}, are the
molecular diffusion coefficient, static enthalpy and mass fraction of species k, respectively.
The second term on the right hand side of equation defining ¢ represents energy diffusion
due to molecular diffusion when the fluid components have different enthalpies.

Turbulence model

In turbulent flows, the value of scalar variables fluctuates and the instantaneous value of
any scalar may be expressed as the sum of a mean and a fluctuating component. The
fluctuating components are not solved directly in CFX-TASCflow, and therefore, it is
necessary to express the fluctuating values in terms of the corresponding mean values.

The instantaneous scalar values in Navier-Stokes equations are expressed in terms of
mean and fluctuating components through a process of time-averaging, called Reynolds-
Stress averaging in the momentum equations. Each dependent variable in the original
conservation equations is decomposed into a mean ¢ and fluctuating component ¢’: ¢ =

t+AL
¢+ ¢', the mean component of ¢ being ¢ = At / odt, where the time interval At is

long compared to the time scale of the turbulent ﬂuctuatlons. For compressible flows, it
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is often useful to perform a mass weighted decomposition called Favre averaging: ¢ = —;

5 po
N p
the fluctuating component is given a double prime: ¢ = ¢ + ¢".

The Reynolds stress and turbulent flux terms are related to the mean flow variables
using an eddy viscosity assumption:

This equation reduces to the time averaged variant used when a fluid is modeled as
incompressible:

ou; ou; 2
pué’u}' = pu;u; = — (az + 81;]) + gpk&j (2.4)
J 1

The fluctuating viscous work term of Eq. (2.2) for homogeneous isotropic turbulence
is approximated by:

) T a

8:1?]' - 8:(:]- Iutal‘j

Equations (2.4) and (2.5) can only express the turbulent fluctuation terms as functions
of the mean variables if the turbulent kinetic energy, k, and turbulent viscosity, p, are

known. In CFX-TASCflow the k — ¢ turbulence model (Launder and Spalding, see Ref.
[3]) provides these variables.

The k — & model was first derived for incompressible flows in which the density fluc-
tuations can be ignored. Current practice has also been to use the resulting model for
compressible flows. Consequently, the assumption that the mass weighted and time ave-
raged variants of the turbulent kinetic energy are equivalent is made, i.e. k=%=k.

According to Boussinesq’s assumption, the eddy viscosity pu; is calculated from the
product of a turbulence velocity scale (av/k) and turbulence length scale (ak®/2/c) as:

12
Ht = PCu— (2.6)
€
where ¢ is the dissipation rate of k and ¢, is a model constant.

Local values of k£ and ¢ are obtained from the solution of the following semi-empirical
transport equations (the equation for k is derived from the transport of Reynolds stresses,
and the equation for ¢ is assumed to be similar to the equation for & empirically):
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where the diffusion coefficients are given by:
[p=p+ ?
k 2.8
0.
The production rate of turbulent kinetic energy P is given by:
o ou; Ou;\ Ou; 2 oup\ ouy,
P = —pulu' = — J — — | pk — | — 2.9
k pulu] (%j H (81:] + 81132) aflfj 3 (,0 +Mt8:x;) 8xk ( )

The standard & — ¢ model for the production term, mathematically valid for incom-
pressible flow, can be written as:

du;  Ou;\ Ju;
Pk - h (61‘] + 8;@) al'j (210)

Eq. (2.9) reduces to Eq. (2.10) for incompressible flows, and for compressible flows the
difference will only be large in regions with high velocity divergences, such as in shocks.
The default model for the production term is that of Eq. (2.10).

The values of all the constants in the model are calibrated for the flat plate test case:

=009 cq=144 =192 o,=10 o.=13 Pr,=09 (2.11)

Mean form of equations

With the preceeding closure of the turbulence model, the final form of the mean flow
equations can be stated. At this stage, since all the variables are mean flow quantities, it
is customary to drop the superscripts, time and Favre averaging symbols.
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where prepr = p+ e, H=h+ §u2u2 + k.

(2.12)

For compressible flows, density is a time-average and velocity is a mass-average. For in-
compressible flows, density is constant, the transient term vanishes and the mean velocity
is a time-average.

For flows in rotating frames of reference, the effects of the Coriolis and Centrifugal

forces are modeled in the code. In this case:

— —

S, =20 xU -0 x(Qx7) (2.13)

where ) is the rotational speed and 7 is the location vector.

In a rotating frame of reference, the rothalpy, 7, is convected in place of the total
enthalpy, H, in the energy equation:
WwiR?
2

[ =H— (2.14)

where w 1s the rotational speed and R is the local radius. Since the rotational energy
is not included in the transient term, rothalpy is only conserved in the steady solution if
the rotational speed is constant.

2.2.2 Discretization

CFX-TASCflow is a Finite Volume method, but is based on a Finite Element approach
of representing the geometry. Thus the method used in CFX-TASCflow retains much of
the geometric flexibility of Finite Element methods as well as the important conservation
properties of the Finite Volume method.

The Finite Volume method proceeds by integrating the governing equations over a
fixed control volume using Gauss’s Theorem. The computational domain is discretized
into elements, then control volume surfaces are defined by element mid-planes.
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This approach has been used by other researchers in the field. The procedure creates a
control volume for each node, with the boundary of each interior control volume defined
by eight line-segments in 2D and 24 quadrilateral surfaces in 3D.

The integral equations are applied to each discrete control volume created by this
technique. The continuous volume integrations are relatively easy to convert to a discrete
form. The continuous surface integrations are more involved and are converted to a
discrete form by evaluating them at what are called “Integration Points” (ip for short).
In 3-D, the flux element consists of 8 octants and 12 integration point surfaces, each
containing an integration point location. The surface fluxes must be discretely represented
at the integrations points to complete the conversion of the continuous equations to their
discrete counterparts.

The discrete form of the integral equations are written as:

0
PV( AL )+Z(PUJAnJ) =0

0
pV ( N ) + Zzp;mip(ui)ip =

ou; O B (2.15)
Z(PAnz)zp + Z (,ueff ( o + uj) ATL]) + Su1V
ip Ox Z; 81}2 ip
40 0 _
v (22 4 gy = 3 | Lepp— ¢ Anj |+ 5,V
Al ip ip a ip
where 1, = (pu]An])Zp and V is the volume of the control volume, the subscript

ip denotes an integration point, the summation is over all the integration points of the
surface, An;j is the discrete outward surface vector, At is the time step, the superscripts
0 mean “at the old time level”, and the overbar on the source terms indicate an average
value for the control volume.

More details can be found in TASCflow Theory - User Documentation (see Ref. [1]).

2.2.3 Boundary conditions

TASCflow allows a large variety of boundary conditions. We only present the ones used
in our specific computations (see Ref. [1]).

No-slip walls

A no-slip wall exists where a viscous flow is in contact with a solid object. Right at the
wall the fluid is stationary with respect to the solid object. Only impermeable walls are
considered.
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The fluid velocity normal to the wall is zero:

The boundary wall momentum flow includes pressure and viscous forces:

Fiwa”|ip — pPress + Fim'sc (217)

K3

The pressure force is computed as the product of the boundary area A; and the pressure

. . : ¢
pi: F'™°° = A;p;, and the normal viscous force is set to zero such that: Fs¢ = F;*".
. . t .
Two different evaluations of F;""? are available.

For flows where near the wall the velocity gradients are solved (laminar flow, and the

2-layer turbulence model), F!"™ is estimated in terms of the known wall velocity and the

control volume velocities in the element containing the boundary face: F**°|,, = A;7jlip,

Oui | Ou;
Ox; Oz ).
ip

where 7;;|;, is computed at each ip location from 7;;|;, = iy (

For flows where the grid near the wall is too coarse to adequately resolve the velocity
gradients based on linear variation within the element, a logarithmic velocity profile is
assumed to apply between the wall and the edge of each boundary control volume on
the boundary face. Based on this assumed profile, the wall shear stress is computed and
hence the wall tangential viscous force. The boundary shear stress is computed at each
boundary ip location, consistent with the assumed logarithmic velocity profile, the known
wall velocity, and the control volume velocities in the element containing the boundary
face. The log-law velocity profile model requires as input the fluid velocity near the wall,
ug, and the distance away from the wall, An, at which u, is estimated (see Ref. [1]).

An alternative to the use of wall functions is to employ a turbulence model that can
more closely resolve the near-wall region. One such model is known as the two-layer
model. Rodi (see Ref. [13]), provides a summary of experience with two-layer models
that combine the k — & model with a one-equation model in the near-wall region. Patel
et al. (see Ref. [10]), provide a review of several near-wall and low-Reynolds number
turbulence models. Two layer models divide the computational domain into two regions:
away from walls and near walls. The standard k& — ¢ model is used away from the wall.
In the near wall region, a one-equation model is employed to establish the turbulent
kinetic energy while the length scale is specified by reasonably well-established algebraic
equations.

When the k — ¢ turbulence model is used in conjunction with a log-law velocity profile
or when using the 2-layer model, the flux of &£ and e through the wall is assumed to be
zero. The production of turbulent kinetic energy is estimated in the near wall region,
based on an assumption of local equilibrium between the production and dissipation of
turbulent kinetic energy.
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Inlets

An inlet boundary condition is one where the fluid enters the domain. There are many
different types of inlet boundary condition combinations for the mass and momentum
equations.

The boundary velocity can be specified with a non-zero component into the domain
(t;)spec and the total boundary mass flow is e is specified. The mass flow per unit
boundary surface area, (puy)spec, is computed from iy, and the boundary surface:

Miotal

(pun)spec — fs dA’

where the integral of the area is over the entire boundary surface S

through which 1, is specified. The value (puy,)spec is held constant over the entire
boundary surface. The flow direction D; is also specified, which constrains the inlet
velocity u; such that: w; D;|, = (uiui)1/2|b.

The pressure can be specified in a number of different ways at an inlet (static pressure,
total pressure, average pressure, etc.): Py = Pspec, OF Protalls = P + §puiui|b.
In all of these cases, the boundary mass flow is an implicit result of the flow simulation.
The inlet static temperature is specified: Ty, = T, or the inlet total temperature is
Uty

specified: Ty =T + )

Cp

The inlet turbulence quantities are usually expressed in terms of the turbulence in-
tensity, T,, and the energy-containing eddy length scale, L., where: k; = ;Tfuiuﬂb and
Kl
L.
For our flow simulation we imposed for the inlet the velocity u, the flow direction D,
the turbulent energy k and the dissipation rate e.

€p

Outlets

An outlet boundary condition is one where the fluid exits the domain. The hydrodynamic
boundary condition specification usually involves some constraint on the boundary static
pressure.

The total mass flow my,, can be specified. The mass distribution across the outlet is
determined by weighting according to the local mass distribution.

The boundary velocity can be specified with a non-zero component out of the domain:
(ui)spec-

Consistent with a fully developed flow at an outlet, the normal viscous force component
is assumed to be zero. The outlet pressure is evaluated by one of the following constraints.
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The outlet pressure is specified: py = pspec, over the whole outlet boundary or only at a
given location, or the outlet pressure can be constrained such that the average pressure is

1
a specified value: 1 /pdA = Paverage, Where the integral is over the entire outlet boundary

A
surface, and A is the total boundary surface area.

For our flow simulations we imposed for the outlet the pressure p.

Openings

An opening boundary condition allows the fluid flow to cross the boundary surface in
either direction. For example all of the fluid might flow into the domain at the opening,
or all of the fluid might flow out of the domain, or a mixture of the two might occur, with
some fluid flowing into the domain over part of the opening and some fluid flowing out
of the domain over the remainder of the opening. An opening condition might be used
where it is known that the fluid flows in both directions across the boundary.

The static or total pressure and direction can be specified at an inlet, and the static
pressure can be specified at an outlet. Two different combinations are available as an
opening condition:

1. Specify the static pressure and direction where the fluid enters the domain, and
specify the static pressure (only) where the flow exits the domain. It is also possible
to leave the direction unspecified at the inlet (in which case the outlet static pressure
condition is applied unchanged to the case of fluid flowing into the domain). This
condition is most stable when the fluid is flowing approximately parallel to the
boundary (the normal component being less than the tangential component), such
as at a far field boundary.

2. Specify the total pressure and direction where the fluid enters the domain, and
specify the static pressure where the flow exits the domain. This condition is most
stable when the fluid is flowing approximately normal to the boundary (the normal
component is greater than the tangential component), such as where an outlet region
is located in the middle of a recirculation zone.

Connections between boundary surfaces

Connection conditions refer to the following boundary conditions:

1. Periodic boundary conditions, where one boundary surface is connected to another
boundary surface. Periodic boundary conditions are used to define the domain
around a blade for the case of linear cascade of blades in turbomachinery.

2. Grid embedding/attaching interfaces:
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(a) embedding interfaces: where one grid is connected around the perimeter of a
host grid as a result of a grid embedding operation.

(b) attaching interfaces: where two grids are connected over a surface as a result
of a grid attaching operation.

The surfaces involved in the connection between the two grids touch one another.
In general, the connection is not one-to-one (e.g. many faces on an embedded grid
connect to fewer faces on the host grid).

2.3 Different meshes used in TASCOPT-3.0

The Advanced Scientific Computing Ltd. TASCgrid software generates 2-D and 3-D
multi-blocks structured computational grids that can be used in the numerical solution
of fluid flow and heat transfer problems. The grids generated are boundary-fitted and (in
general) non-orthogonal and curvilinear.

The overall process of grid generation involves important preparatory work as well as
direct use of the computer (i.e. running TASCgrid). The grid generation process involves
the following four steps:

1. Translate the base geometric data into a precise mathematical description.
2. Decide on the shape and number of nodes of the grid.

3. Generate a computer representation of the geometry (Geometry Phase: define geo-
metry of the physical domain).

4. Assign nodes to the domain (Curve, Surface and Interior Phase: define the layout
of nodes at corners, distribute nodes on surfaces in 3-D, distribute nodes in the
interiors of regions).

Inputs to the programs are in the form of text files. Information is passed between the
programs by means of data files. The product of the final program (TASCgridi) is a file
containing the coordinates of the finished grid.

The computational aspects of grid generation have been divided into four phases.
TASCgrid is implemented as four programs corresponding to these phases. To generate a
grid, the user must run each of the programs in sequence. Only three of these programs
are required to generate a 2-D grid.

TASCgridg provides a means for describing the physical domain. Ideally, the geometric
description should be independent of how the grid is to be attached, helping to simplify
the task of grid refinement or adjustment. TASCgridg can be considered as similar to a
simple Computer Aided Design (CAD) surface modelling package.
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The layout of the grid is defined in TASCgride, where the first grid nodes are attached
to corners of the physical domain. It is in the input to TASCgridc that the numbers of grid
nodes (ID, JD and K D) are defined. With care, the input files can be constructed such
that the grid can be refined or coarsened by changing only these three numbers. Also in
TASCgridc, nodes are distributed along the edges of the domain.

TASCgrids and TASCgridi are designed to construct the grid in a number of separate
‘regions’. The user must decide how best to divide the physical domain into regions. Fach
region is normally assigned to a computational rectangle in 2-D or to a cuboid in 3-D,
although the code also has a limited ability to handle regions of a more general shape.

The grid in each region may be generated either with one of three forms of algebraic
interpolation (transfinite, semi-isogeometric, or isogeometric), or with an elliptic interpo-
lation scheme. The former is simpler and therefore quicker in execution, while the latter is
more flexible but slower. Algebraic interpolation obtains the location of each interior node
from the locations of the exterior boundary nodes using an algebraic formula. Elliptic
grid generation involves solving a coupled set of transformed Poisson partial differential
equations.

Each program requires input from the previous program(s) and from the terminal. The
program will then create graphical and textual output for user to analyze and verify, as
well as output needed for running the next program(s).

The optimization scheme has been validated in several steps going from the simplest
topology with one single block to the most complicated general case, as we will see in the
next sections.

2.3.1 Mono-block grids

We present gradually the grids used in our computations. There are basically two kinds
of grids around the profile used by us in the TASCflow environment. This region around
the profile is the most important for a good resolution of the flow and care has to be
taken in order to generate a good grid for each specific case. For multiblock grids, simple
blocks were added around this core region.

The C-grid has the topological lines disposed in C around the profile and is best suited
for profiles with a sharp trailing edge. The O-grid has the topological lines disposed in O
and therefore is suited for profiles with a round trailing edge.

We show how the grids are constructed, presenting the advantages and the defaults of
each type.
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CREX

Figure 2.1: Topological lines for a C-grid

In TASCflow, the 2-D computations are in fact 3-D computations performed on grids
with the Z-index KD = 3, having the same 2-D topology and node distribution for every
K.

This grid is realized by the simplest template and has the advantage that is quickly
generated and is easy to use. However, this type of grid is quite constraining and becomes
easily unuseful for highly cambered profiles and high stagger angles.
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The grid I-index lines are disposed in C around the profile, allowing a good discreti-
zation of the trailing edge. The boundary layer is modelized by a geometrical ratio nodes
distribution on the .J-index.

Figure 2.3: C-grid, leading edge

The grid is refined at the leading edge by adding more points on the profile (fig. 2.3).
However, we notice that cells are higly skewed and not rectangular, affecting the flow

S
T

Figure 2.4: C-grid, trailing edge
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The grid is refined at the trailing edge by adding more points on the profile too, but
the node distribution behind the trailing edge is not the most appropriate, making big
size differences between the neighbouring cells (fig. 2.4).

Figure 2.5: Topological lines for a O-grid
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The O-grid is generated again with a template simple and easy to use, and it has the

same characteristics as the previous C-grid, as shown in fig. 2.5.

CRX

N

//%ffk/

Figure 2.6: O-grid
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This time the grid lines following the [-index are disposed in O around the profile,

allowing a better discretization around the trailing edge.

We notice that due to the

topology and the fact that the inlet is far from the profile, the cells are highly skewed on

diagonals.

B T AL
L
L 77

Figure 2.7: O-grid, leading edge

Altough the upper part is well discretized and the cells are rectangular, the grid on the
lower surface of the leading edge is not very good. The cell shape becomes even worse for

highly stagger angles.
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Figure 2.8: O-grid, trailing edge

The trailing edge is better discretized by this type of grid.

2.3.2 Multi-block grids with one block around the profile

@IPX

-

Figure 2.9: Topological lines for a multi-block grid around a C-block

This grid has the central block exactly the same as the previous C-grid, and 2 more blocks
were added in the inlet and outlet regions. Thus, we can reduce the length of the central
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block, allowing a better discretization of this region, and we can coarsen the grid at the
inlet at outlet regions for an acceleration of flow resolution.
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Figure 2.10: Blocks attachment around a C-block

We notice that the nodes of the two blocks do not necessarily coincide at the block in-
terface. This is easily handled by TASCflow by specifying a GGI (General Grid Interface)

attachment condition for this interface.
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Figure 2.11: Multi-block grid around a C-block

This global view shows the grid quality in the central block. We see clearly that multi-
block grid like this is better than the previous mono-block grid. The same improvement
can be done for a O-grid by adding blocks around the central block.
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2.3.3 Multi-block grids with several blocks around the profile

@R

TK

Figure 2.12: Topological lines for multi-block grid around a C-multiblock

This grid is realized by a second-generation template developed recently by VALEO TM
with AEA Technology. This template can generate 2-D and 3-D grids and was designed
to improve the grid around the profile and the boundary layer resolution. The second
advantage is that in the optimization code, the mesh will be deformed only in the blocks
around the profile, keeping the external border of these blocks unchanged.
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\\\\\\\\\\\\

Figure 2.13: multi-block grid around a C-multiblock

We see that the C-grid of fig. 2.13 is well behaved around the profile. However, the
grid being structured, we notice unnecessary refinements in different regions. At present
the template is being improved by the AEA Technologies team.
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crREX

Figure 2.14: Topological lines for the C-multiblock

There are 3 blocks for the boundary layer modelization.
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Figure 2.15: C-multiblock grid

The node distribution the blocks around the profile is realized with a geometrical ratio.
Although the grid here is pretty good, there is still room for improvement, by allowing
more flexibility to the topological lines, especially for highly cambered blade section.
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CRX

Figure 2.16: Topological lines for multi-block grid around a O-multiblock

This O-grid is achieved by the same type of template. The difference is that a new
block is added at the trailing edge.
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Figure 2.17: multi-block grid around a O-multiblock

We can see a lot of unnecessary refinements. This can be avoided by a better node
distribution.
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Figure 2.18: Topological lines for the O-multiblock
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Figure 2.19: O-multiblock grid
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Chapter 3

Optimization Code TASCOPT-3.0

3.1 Code description

3.1.1 Previous versions

The first version of the optimization code TASCOPT-1.0 used at VALEO TM released
in June 1998 was the code OPTIM-2D from INRIA Rocquencourt slightly modified in
order to use TASCflow structured grids. In fact in the optimization shell was added ano-
ther program which transformed structured grids into unstructured grids of type *.amdba
(and vice-versa). This was possible only for 2-D single-block grids in C. All the geome-
trical framework, as well as the optimization techniques were treated in this environment
(geometry and flow data). Tests were performed for a NACA 65-010 profile.

The next version TASCOPT-2.0 was improved to handle with multi-block grids with one
block around the profile, in C or O, and was released in January 1999. The same strategy
of using an interface program between the optimization code and the solver was used.

Two new optimization methods were added : the BFGS and the heavy-ball techniques.
New tests for FC1001 and H383EC1 profiles were performed.

These first two versions were rather restrictive in terms of the grid handling. In fact,
for strongly curved profiles the grids with a single block around the profile were quite
poor, the flow resolution was not satisfactory and the mesh deformations were limited.

3.1.2 Actual version

The current version TASCOPT-3.0, released in June 1999, was completely reprogrammed
for the TASCflow environment. This time the geometrical framework and the optimization
procedures are treated for the specific grid and flow data of TASCflow.

The code was written in a modular manner, allowing easily to add, remove or change
subroutines. Its structure is similar to the optimization algorithm presented in 1.3.6.

INRIA
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While the geometrical capabilities were greatly improved, from the point of view of the
optimization methods only the steepest descent was implemented and other techniques
like the BFGS method, the heavy-ball method or the Interior Point Algorithm are to be
added in the future versions.

TASCOPT-3.0 consists of a shell called OPTIMTASC which links the optimization code

with the flow solver and the output data generator. The structure of the shell is:

1. the flow is initialized from a previous computation;

2. optimization loops are performed, where the geometrical part and the optimization
procedures are treated in optimtasc.exe and the flow resolution is done by tascflow3d:;

3. the output data is generated by cost.exe.

3.1.3 Shell OPTIMTASC

The shell is:

HERHAEHHAHBHHHERHHERHEGHHEFH B AR RS HBAFH BB AR R R AR R AR
TASCOPT-3.0

by Mugurel STANCIU
VALEO TM, INRIA Rocquencourt
June 1999
Shell OPTIMTASC
HAHBHHH R AR R R R R E R R R R R R R

H OH H O H W
H oW B O H H

TASC_UTILITY=/usr/tascflow/2.8/TASCflow/Utility
. $TASC_UTILITY/Ksetup

HEH R
# initial solution #
HEHS R R R S R R
echo ’Flow initialization’

rm -f *grd *gci *bcf *rso
rm -f shape.*

rm -f HISTORY1

touch HISTORY1

rm -f HISTORY2

touch HISTORY2

rm -f COST1

touch COST1
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rm -f COST2
touch COST2
rm -f GRADIENT
touch GRADIENT

cp -f bcf_initial bcf
cp -f gci_initial gci
cp -f grd_initial grd
cp -f rso_initial rso
cp -f prm_initial prm
cp -f name.lun_initial name.lun

HERRRRHHHHR R R R RS R R R R R R R
# begin optimization loop #
HERRRHHH SRR R R R R RS R R R R R R R R R

niterations=30

iteration=0

while [ $iteration -le $niterations ]
do

iteration=‘expr $iteration + 1°

echo $iteration > contor
echo ’Optimization loop: iteration ’‘expr $iteration®

#HHEREH S R R R R R E R R R R R R R R R R
# optimization #
#HHBREHHHH AR HARA R B R R R R R AR EHR AR R R R R R R R
echo ’New shape computation’

optimtasc.exe

HHHBREH SRR R R R R R R R E R RS R R R R R R R
# output data #
HHHBREH SRR R R R R R R R E R RS R R R R R R R

cat HISTORY1 histl.data >> HISTORYJ
mv HISTORYJ HISTORY1

cat HISTORY2 hist2.data >> HISTORYJJ
mv HISTORYJJ HISTORY2

cat GRADIENT gradmod >> GRADIENT2
mv GRADIENT2 GRADIENT

cost.exe
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#HHBREHHHH AR HARA R B R R R R R AR EHR AR R R R R R R R
# save data #
#HHBREHHHH AR HARA R B R R R R R AR EHR AR R R R R R R R
echo ’Save new shape in shape.’‘expr $iteration’

cp -f blade.out shape.$iteration

HHHHREH SRR A R R R R R E R S R R R R R R R R
# flow resolution for the new profile #
HHHBREH SRR R R R R R R R E R RS R R R R R R R
echo ’Flow computation’

tascflow3d -s10

SRS AR R R R R R R R R R R R AR R R R R R R R R R
# end optimization loop #
SRR R R R R R R R R R R R R R R R R R R R R

done

The converged initial solution, the initial grid and the other files used in flow resolu-
tion * initial are copied into “work” files which will be modified during the optimization
process. The number of optimization steps is defined in the parameter niterations. The
optimization is performed by optimtasc.exe and the flow resolution by tascflow3d. The
memory necessary for the flow compution is defined by the parameter -s10 (see TASCflow
User Documentation, Ref. [1]). The program cost.exe generates files for postprocessing
with the cost function and the gradient convergence during the optimization. The shapes
for each optimization step are saved in shape.*.

3.1.4 Optimization code optimtasc.exe

The structure of the code optimtasc.exe is:

e The main program is optim_tasc. The global variables are read in the file p.h. This
program corresponds to an optimization iteration where the old grid, the profile
and the solution are read, the gradient is computed, a gradient method is used for
obtaining the new profile, a smoothing is performed for this profile, the old grid is
deformed to match to the new profile and the new grid is saved.

— the grid geometry is read from DATA _OPTIM TASC;
— the TASCflow solution and grid are read with specific TASCflow Database

Interface subroutines: tginit_test (initialize the Database), trread (read the
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Database into memory), trngbl (retrieve the number of subgrid blocks), trgdim
(find dimensions of the grid), {rscal (extract scalar fields from the Database,
such as nodes coordinates, pressure, velocities and turbulent viscosity).

— the geometrical and the flow data for the shape to be optimized is gathered
in optim_ gather_tasc (data from each subgrid block containing the shape is
centralized into global data corresponding to the shape and the surrounding

blocks);

— the initializations are performed in optim_ init_tasc. Optimization parameters,
constraints and cost function parameters are read from DATA_OPTIM _TASC;

— the segments and the quadrangles on the shape surface are computed in op-
lim_ segment lasc;

— the aerodynamical coefficients, the geometrical quantities of the shape and the
cost function are computed in optim_ cost_tasc;

— the gradient is computed in optim_ costad_tase. This subroutine is obtained
by automatic differentiation of the subroutine optim_ cost tasc using the AD

tool Odyssée from INRIA;
— the new shape is computed using a gradient method;
— the geometrical constraints are taken into account in optim_ project tasc;
— the new shape is smoothed in optim_smooth_ tase;
— each block around the shape is deformed to fit to the new shape in optim_mesh_ tase;

— the new grid is saved using TASCflow Database subroutines: twngbl test (de-
fine the number of subgrid blocks), twssel test (write scalar fields to the Da-
tabase, e.g. the nodes coordinates), tgclose (close the Database).

The code is compiled with the command gmake or make, using the following makefile:

LIBDIR = $(TASC_DIR)/Lib
LDLIBS = $(TASC_MISC)/Lib
TDI_A = $(LIBDIR)/tdi.a
FC = 77

FFLAGS = -0 -32 -0limit 1124

F_SRC=optim_tasc.f optim_cost_tasc.f optim_costad_tasc.f \
optim_gather_tasc.f optim_init_tasc.f optim_segment_tasc.f \
optim_project_tasc.f optim_smooth_tasc.f optim_mesh_tasc.f \
optim_pres_tasc.f twsscl_test.f gtgrd3_test.f twngbl_test.f \
tginit_test.f optim_test0.f optim_testl.f optim_test2.f \
optim_test3.f optim_test4.f optim_test5.f

0BJ=$ (patsubst %.f,%.0,$(F_SRC))
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ARCHIVES = $(LIBDIR)/bob3d.a $(LIBDIR)/system.a $(LIBDIR)/aclgraph.a \
$(LIBDIR)/tasclib.a $(LDLIBS)/1libz.a $(LIBDIR)/system.a

optimtasc.exe: $(0BJ)
$(FC) $(FFLAGS) -o $0 $(0BJ) $(TDI_A) $(ARCHIVES)

3.2 Input and output files

3.2.1 Input file

The input file DATA_OPTIM _TASC is:

--- Grid blocks - ——-————— -
4 -> nblocks describing the shape

635 1 6 6 1 3 -> block number, i1, i2, j1, j2, ki1, k2
5 6 6 1 6 1 3 -> block number, i1, i2, ji1, j2, k1, k2
7 13 1 1 1 3 -> block number, i1, i2, j1, j2, k1, k2
8 1 1 6 1 1 3 -> block number, i1, i2, ji1, j2, k1, k2

--- Local - global grid correspondance ----------——-———————————————————

---Block 6 -~ - - - - - - -
0 1 0 0
88 0 1

0 0 0 1

---Block - - - - - - - - - - - - - ———————————— -
35 1 0 0

92 0 1

0 0 0 1

-—-Block 7 - - - - - - -
47 0 -1 0
36 -1 0

4 0 0 -1

---Block 8 - - - - - - - - - - - ——————— -
40 1 0 0
35 0 1 0

0 0 0 1

--- Pressure difference ---- - - - - - - - - -~
9 1 1 1 46 1 3 -> block number inlet, i1, i2, j1, j2, k1, k2

42121 1 46 1 3 -> block number outlet, i1, i2, j1, j2, ki1, k2

--- Optimization parameters -----—-—-———— -
0 -> ibp (-2 sdn -1 bfgs, 0 sd) for method

0. 0. -> dxnn, dynn (initial velocity for heavyball)
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1.e-3 0. -> ro(steepest descent), robp(heavyball)
0.001 30 -> xttt, nsmo for smoothing
2. -> beta for mesh deformation

--- Geometrical constraints ---—-—-———-— -
0.1 0.001 0.1 0.001 -> xlim (%, max), ylim (%, max) for deformation
0.250 .305 -> Xmin,xXmax

-0.035 1.055 -> ymin,ymax

-10. 10. -> zmin,zmax

--- Aerodynamic coefficients ---------—— -
-90. 0. -> tetadegl,tetadeg2 for Cd, Cl

0.0 0.0 -> xelast, yelast for Cm

Cost function ——-———— - -

-> xjam(1) coef Pres (inverse design)
-> xjam(2) Cdo

-> xjam(3) Cl0

-> xjam(4) Cm0

-> xjam(5) Cx0

-> xjam(6) Cy0

-> xjam(7) Cz0

-> xjam(8) Mx0

-> xjam(9) MyO0

-> xjam(10) M=z0

-> xjam(11) VolO

-> xjam(12) coef |Cd-CdO]|
-> xjam(13) coef |[1/Cdl|
-> xjam(14) coef |C1-ClO]|
-> xjam(15) coef |[1/C1|
-> xjam(16) coef |Cm-CmO]|
coef |1/Cml
-> xjam(18) coef |Cx-CxO0]|
-> xjam(19) coef |[1/Cxl|
-> xjam(20) coef |Cy-CyOl
-> xjam(21) coef |1/Cyl
-> xjam(22) coef |Cz-CzO0]|
-> xjam(23) coef |[1/Czl|
-> xjam(24) coef |Mx-MxO|
-> xjam(25) coef |1/Mx|
-> xjam(26) coef |My-MyO|
-> xjam(27) coef |1/Myl|
-> xjam(28) coef |Mz-MzO|
-> xjam(29) coef |1/Mz|
-> xjam(30) coef |Vol-VolO|
-> xjam(31) coef [1/Vol]
-> xjam(32) coef |Cx/Cyl
-> xjam(33) coef |[Cd/Cx]

O O O O O O O O OO O O O OO OO OO OO OO O OO0 OO O o O I
|
\%
»
—
o
=
~
[
~
~
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0. -> xjam(34) coef |[Cd/Cl]|
0. -> xjam(35) coef |[Cl/Cd]

This file contains all the initialization data for the grid geometry, the optimization
method, the constraints and the cost function. TASCtool should be used to see the grid,
the number of blocks and their parameters before editing the DATA_OPTIM _TASC file.

The lines with comments separating different groups of data in this file must not be erased.

The structure of DATA_OPTIM _TASC is:

e comment line.

e nblocks represents the number of subgrid blocks containing the profile to be opti-
mized. If the grid is monoblock nblocks can be 0 or 1.

o for each subgrid block containing the profile, the user must introduce the block
number (as defined in TASCgrid) and the indexes defining the profile for this block:
i1,1i2, j1, j2, k1, k2 (viewed in TASCtool. It is important that the blocks have to be
introduced in DATA_OPTIM _TASC in a clock-wise order: the block containing the
lower part of the profile, the block containing the leading edge, the block containing
the upper part of the profile, and the block containing the trailing edge (if the mesh
is in O).

e comment line.

e for each subgrid block containing the profile, after a comment line, the user must
introduce the correspondance between the local coordinates of the block and the
global coordinates of the grid. This can be found in the bef file, after the characters
$$SLTG, where for each block of the grid the grid dimensions (first column) and
the correspondance between the local and the global information is defined with a
translation vector (the second column) and a rotation matrix (the third, fourth and
fifth columns) for the ¢, j, k indexes:

$$$LTG
9 ! number of local grids defined by grid embedding / attaching.
1 MAIN ! grid #, local grid name
19 0 1 0 0 local / global information

[}
46 0 0 1 0 ! local / global information
3 0 0 0 1 ! local / global information

DATA _OPTIM _TASC needs only the translation vector and the rotation matrix,
therefore the user must copy the colums 2-4 in the file.

e comment line.

53



54

M. Stanciu, B. Mohammadi

the block number containing the inlet region and the indexes defining this region:
11,12, j1, j2, k1, k2. This is needed for the computation of the inlet pressure.

the block number containing the outlet region and the indexes defining this region:
11,12, j1, j2, k1, k2. This is needed for the computation of the outlet pressure.

comment line.

ibp defines the optimization method. ibp=0 coresponds to the steepest descent
method, ibp=-1 to the BFGS method (not currently implemented) and ibp=-2
to the steepest descent method from the BFGS simplified method (similar to the
standard steepest descent method).

dxnn and dynn represent the initial velocity components for the heavy-ball method.

ro represents the optimization step size and robp the step size for the heavy-ball
method. If the heavy-ball method is not used then robp=0. Usually robp should be
an order of magnitude less than ro. The stepsize ro defines the profile changement
(if greater, the profile changes more and the intermediate flow solving should be
longer) - see 1.20.

xttt characterises the smoothing operator and nsmo defines the number of Jacobi
iterations performing the smoothing. The nodes with the relative distance to the
medium curve defined by the adjacents points greater than xttt are smoothed. The
greater nsmo is, the smoother the profile will be (for nsmo=0 no smoothing is
performed) - see 1.12.

beta defines the node deformation propagation in the grid. If greater, the grid will
be deformed only in the vicinity of the deformed shape - see 1.13.

comment line.

xlim percentual and maximal and ylim percentual and maximal define the maximal
deformation allowed for the profile. The percentual parameter represents the percent
of the local coordinate x or y and the maximal represents the absolute value of the
maximal deformation. The projection operator takes into account the minimum
between these two values.

Xmin, Xxmax, ymin, ymax, zmin, zmax define the box of admissible space of
change for the profile. The nodes having the coordinates less than the minimal
value and greater than the maximal value are kept unchanged.

comment line.

tetadegl and tetadeg?2 define the angle in the horizontal plane and the vertical
plane for the aerodynamic coefficients C'; and €} computation.

xelast and yelast define the reference point for the €, coefficient calculation.

comment line.
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xjam (1) defines if a direct design (xjam(1)=0) or an inverse design (xjam(1)=1)
is performed. In the last case a file with the target pressure is needed (not currently

implemented).

xjam(2) to xjam(11) represent the initial values for the aerodynamic coefficients
and the volume of the shape, needed in the cost function definition. If such a value
is 0, a cost function like J = |C; — C9| will perform a C; minimization. State
constraints can be imposed by adding to the cost function a term like |V — V°|, this

VY representing the real initial volume (and not zero).

xjam(12) to xjam(36) represent the coefficients in front of each term in the defi-
nition of the cost function: J = a|Cy — CY|. If such a value is 0, the corresponding

term is not taken into account in the cost function definition.

comment line.

3.2.2 Output files

The output files are: HISTORY1, HISTORY2, COST1, COST2, GRADIENT, shape.*.

The file HISTORY1 contains the history during the optimization loop for the aerodyna-
mic coeflicients C,,, C,, C, and for the momentum coefficients M,, M,, M,. The file has
6 columns, each for a coefficient, and each line corresponds to an optimization iteration:

.11235E-01
.11346E-01
.11417E-01
.11470E-01
.11517E-01
.11563E-01
.11599E-01
.11627E-01
.11645E-01
.11656E-01

O O O O O O O O O O

.14640E-01
.14707E-01
.14780E-01
.14834E-01
.14879E-01
.14925E-01
.14959E-01
.14988E-01
.15007E-01
.15020E-01

.94162E-10
.14089E-07
.44354E-08
.49722E-08
.28072E-08
.19915E-08
.84709E-09
.30386E-09
.59484E-09
.41473E-09

O O O O O O O O O O

.36601E-03
.36767E-03
.36949E-03
.37085E-03
.37196E-03
.37312E-03
.37397E-03
.37469E-03
.37519E-03
.37549E-03

O O O O O O O O O O

.28087E-03
.28364E-03
.28543E-03
.28676E-03
.28791E-03
.28906E-03
.28996E-03
.29067E-03
.29114E-03
.29140E-03

.38072E-02
.37661E-02
.37330E-02
.37002E-02
.36777E-02
.36716E-02
.36737E-02
.36865E-02
.37041E-02
.37239E-02

The file HISTORY?2 has the same structure and contains the history of the cost function
J, the inlet-outlet pressure difference Ap, aerodynamic coefficients Cy, €, C,, and the

shape volume V.

The files COST1 and COST2 contain the same data as HISTORY1, respectively HIS-
TORY2, but this time the values are adimensionalized with respect to the initial state
values (before optimization), allowing a quick look at the algorithm efficiency in percen-

tage. For example, the files COST2 looks like:

1.000000

1.000000

1.

000000

99

1.000000

1.000000

1.000000
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0.980321 1.010112 0.987002 1.006832 0.989205 1.013653
0.975382 1.016300 0.987500 1.012406 0.980511 1.027183
0.971583 1.020820 0.987667 1.016560 0.971895 1.039268
0.967784 1.024805 0.987210 1.020058 0.965986 1.049262
0.964516 1.028069 0.987293 1.023610 0.964383 1.056581
0.961325 1.030716 0.986670 1.026343 0.964935 1.062700
0.959426 1.032466 0.986836 1.028529 0.968297 1.069311
0.958438 1.033187 0.987210 1.030005 0.972920 1.076599
0.958134 1.033187 0.987750 1.030934 0.978120 1.084379

The file GRADIENT contains the history of the gradient module during the optimiza-
tion loop. The first column corresponds to the gradient module as it is calculated by
the subroutine optim_costad tase, the second one to the module of the gradient after
projection and the third one to the module of the gradient after smoothing. This file
shows the convergence of the gradient.

The file shape.* corresponds to the shape at iteration * and contains the coordinates
z, y and z of the nodes of the shape. TASCOPT-3.0 generates as many shape.* files
as optimization iterations are performed, allowing comparisons of the different shapes
obtained during the optimization.
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Chapter 4

Numerical Results

4.1

NACA 65-010

The initial data for this case are:

initial profile NACA 65-010;

incompressible turbulent flow, Re = 4.5-10°, M = 0.1;

angle of incidence: oo = 12°, stagger angle g = 45°;

solidity: o = 1.0;

number of control parameters on the shape z.: n. = 140;

local geometrical constraints: fixed points on the leading and trailing edges;
maximal distortion allowed for the shape 0.008;

step size 0.04;

cost function J = Cy/Cy;

optimization iterations: 25;

progressive optimizations: the intermediate solutions were considered converged
when the residual decreased one order of magnitude.

The optimization results are:

the optimization process cost was approximately 1.2 works (1 work = 1 converged
flow analysis);

the cost function .J = C;/C; was reduced by 4.5 %;

RR n~° 3803
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e the inlet-oulet pressure difference was increased by 1.5 %;

e the shape volume was increased by 1.7 %.

0.995 B

0.99 - —

0.985 - b

0.98 - b

JJ0

0.975 -

0.97 -

0.965 - b

0.96 - b

0955 1 1 1 1
0 5 10 15 20
iterations

Figure 4.1: Cost function history

0.03 T T T T

0.025 - B

0.02 - .

3 0.015 - B

0.01 -

0.005 |- b

0 1 1 1 1
0 5 10 15 20
iterations

Figure 4.2: Gradient convergence
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1.035 T T T T

1.03 |- —

1.025

1.02 - .

dp/dp0

1.015

1.01 - 4

1.005

1 1 1 1 1
0 5 10 15 20
iterations

Figure 4.3: Inlet-outlet pressure difference history

1.035 T T T T

1.03 |- —

1.025 - T

1.02 |- .

VIVO

1.015 —

1.01 - 4

1.005 —
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0 5 10 15 20
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Figure 4.4: Shape volume history
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Cd/Cd0

Cl/CIO

0.995

0.99

0.985

0.98

0.975

0.97

1.035

1.03

1.025

1.02

1.015

1.01

1.005

T T T T

1 1 1 1
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Figure 4.5: Drag coefficient history
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Figure 4.6: Lift coefficient history
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Figure 4.7: Initial and final shapes
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4.2 FC1001

The previous case is a classical validation test with the NACA 65-010 profile. The profile
FC-1001 is a real case from a fan with the following characteristics:

e rotational velocity Q = 3500 rpm;

flow rate Q = 1400 m?/h;

e number of blades N = 11;

hub radius Rj, = 62 mm;

shroud radius R; = 131 mm.

This case represents a medium section at a radius R,, = 100 mm.

The initial data for this case are:

e initial profile FC1001;

e incompressible turbulent flow, Re = 1.1-10°, M = 0.07;
o stagger angle: § = 75.37°;

e solidity: o = 1.03293;

e number of control parameters on the shape x.: n. = 174;
e local geometrical constraints: none;

e maximal distortion allowed for the shape 0.0008;

o step size 5-107%;

e cost function J =1/Cy;

e optimization iterations: 40;

e progressive optimizations: the intermediate solutions were considered converged
when the residual decreased one order of magnitude.

The optimization results are:

e the optimization process cost was approximately 2 works;

e the cost function .J = C;/C; was reduced by 2.3 %;
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e the inlet-oulet pressure difference was increased by 2.4 %;

e the shape volume was increased by 1.8 %.

0.995

0.99 - 4

JJ0

0.985

0.98 |- —

0975 1 1 1 1 1 1 1
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Figure 4.8: Cost function history
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Figure 4.9: Gradient convergence
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Figure 4.12: Drag coefficient history
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Chapter 5

CONCLUSIONS

We developed a new code for shape optimization in turbomachinery. TASCOPT-3.0 was
the results of the collaboration VALEO TM - INRIA Rocquencourt and consisted of the
application of the theoretical researches on optimization obtained and validated at INRIA
in an industrial environment, for the specific problems of VALEO TM.

We used a new approach for shape optimization in aerodynamics problems. The main
ingredients of this approach were an unstructured CAD-free framework for shape and
mesh deformations, automatic differentiation of programs for computing the discrete ad-
joint operator and the gradient approximation based on local informations on the shape.
We extended the CAD-free framework to multi-block structured grids and coupled these
techniques with the commercial flow solver TASCflow. Specific interfaces were developed
between the optimization code and the flow solver. Several optimization methods based
on gradient were employed and others are in study, allowing great improvements in the
future code capabilities.

The optimization procedure was applied to incompressible turbulent flows around car
engine cooling fan blade profiles. The presented 2D results serve as a basis for the further
optimization of complex 3D configurations.
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