Existence of Primitive Divisors of Lucas and Lehmer Numbers

Yuri Bilu Guillaume Hanrot 1 Paul M. Voutier
1 POLKA - Polynomials, Combinatorics, Arithmetic
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We prove that for n > 30, every n-th Lucas and Lehmer number has a primitive divisor. This allows us to list all Lucas and Lehmer numbers without a primitive divisor.
Document type :
Reports
Complete list of metadatas

https://hal.inria.fr/inria-00072867
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 11:08:18 AM
Last modification on : Thursday, January 11, 2018 - 6:19:48 AM
Long-term archiving on : Sunday, April 4, 2010 - 11:25:46 PM

Identifiers

  • HAL Id : inria-00072867, version 1

Collections

Citation

Yuri Bilu, Guillaume Hanrot, Paul M. Voutier. Existence of Primitive Divisors of Lucas and Lehmer Numbers. [Research Report] RR-3792, INRIA. 1999, pp.41. ⟨inria-00072867⟩

Share

Metrics

Record views

262

Files downloads

1571