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Abstract: Let E be a denumerable state space, X be an homogeneous Markov
chain on E with kernel P. Then the chain X verifies a weak Sanov’s theorem, i.e.
a weak large deviation principle holds for the law of the pair empirical measure. In
our opinion this is an improvement with respect to the existing literature, insofar
as the LDP in the Markov case often requires either the finiteness of E, or strong
uniformity conditions, which important classes of chains do not verify (e.g. classical
queueing networks with bounded jumps). Moreover this LDP holds for any discrete
state space Markov chain, possibly non ergodic.

The result is obtained by a new method, allowing to extend the LDP from a fi-
nite state space setting to a denumerable one, somehow like a the projective limit
approach. The analysis presented here offers some by-products, among which an
analogue of Varadhan’s integral lemma and, under restrictive conditions, a contrac-
tion principle leading directly to a weak Sanov’s theorem for the one-dimensional
empirical measure.

Key-words: Large deviations, Markov chain, pair empirical measure, Sanov,
entropy, information, cycle.
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Grandes déviations pour les chaines de Markov
en temps discret

Résumé : Soit X une chaine de Markov homogene sur un espace E dénombrable.
Alors un théoreéme de Sanov faible s’applique & X, i.e. la mesure empirique d’ordre
2 vérifie un principe faible de grandes déviations (PGD). Cette proposition est une
amélioration des résultats actuels. En effet, en général, les PDG soit supposent
la finitude de E, soit imposent sur X une forte condition d’uniformité, qui exclut
d’importantes classes de chaines et notamment les réseaux de files d’attente & sauts
bornés. Par ailleurs ce PGD est valide pour toute chaine de Markov a espace d’états
discret, sous la seule hypotheése d’irréductibilité.

Ce résultat est le fruit d’une nouvelle approche, qui permet d’étendre des PGD
en passant d’espaces d’états finis & un espace d’états dénombrable. Il faut noter
qu’ici une suite de PGD forts (ils le sont nécessairement sur un espace d’états fini
par exemple) implique seulement un PGD faible, contrairement & ce qui se passe
habituellement pour les limites projectives.

On obtient aussi un certain nombre de corollaires, parmi lesquels un analogue du
lemme intégral de Varadhan ou encore, sous des conditions assez restrictives, un
principe de contraction qui entraine immédiatement le théoréme de Sanov faible pour
la mesure empirique d’ordre 1. Soulignons enfin que la méthode s’étend aisément
a des contextes voisins : chaines réductibles, temps continu, espaces d’états plus
généraux.

Mots-clé : Grandes déviations, chaine de Markov, mesure empirique, Sanov,
entropie, information, cycle.
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1 Introduction and main ideas

Large deviations theory is a powerful tool to analyze the behaviour of stochastic
processes in the long run, off the Central Limit Theorem regime. Estimates have
been used in number of applications, some general results being specialized in various
ways to fit each case.

The goal of our study is to propose a proof of a LDP for Markov chains defined on
a countable space. This general framework includes most of the classical queueing
networks with bounded jumps and Markovian evolution.

Assumptions, techniques and bounds When the state space is finite, results
are well known and the rate function is expressed as an entropy function, the so-
called Kullback—Leibler information [27]. In fact, the link between large deviations
and entropy was frequently used [22, 4, 7, 33], and earlier works on information
theory already emphasized the equivalence of entropy to a mean information gain
[37, 24]. This interpretation often proved very useful [31, 30, 25, 34, 5] and is briefly
recalled in Appendix B.1.

Since its infancy [19], the standard theory (e.g. [16, 14, 15]), interested in Markov
chains defined on Polish spaces, does impose a pretty strong uniformity condition of
the following type:

There exist integers M > 1 and N,0 <1 < N such that, for all states x, v,
ME
0 i (m)
PG < g 3P, (11)

where P(m)(:c, .) denotes the m-step transition probability, given the initial state
z. Alas, this condition is very restrictive. As a rule, the M/M/1 queue, Jackson
networks and most of the discrete event systems with downward-bounded jumps do
not satisfy it. Although refinements were proposed [23, 11, 41, 32], they still do not
suffice for our purpose. General bounds have been obtained by considering kernels
of the form
K¢(z, A) :/ &I p(z, dy),
A

for all bounded continuous functions f and all continuous linear functionals ¢ (see
[10, 11, 17, 12]). In this respect, it is worth quoting the study in [12], which nicely
brings out the fact that the sole irreducibility is necessary for the lower bound to
hold (even for an unbounded functional f).
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In [18], the authors consider the quantity IP [L, € B(u,¢), X,, € C], where B(u,¢)
and C' denote respectively a ball and a small set. Then, by means of regeneration
arguments, it is shown that the sets B(u,e) are subject to an exponential decay,
whence general lower and upper bounds follow; but the problem of getting rid of
the set C still remains.

At that moment, it is important to point out the existence of strong technical subt-
leties, which concern the coincidence of the rate functions for the upper and lower
bounds. This point is illustrated in Section 3.5.

In network models, the families of probability measures of interest are rarely expo-
nentially tight, so that, in many applications, a strong LDP does not hold. Therefore,
we chose to concentrate on the weak LDP. Our approach (improved since the first
release [13]) allows to get the upper bound with the same rate function for both
compact and open sets. Moreover proofs are short, constructive, and they extend
to special situations, e.g. reducible chains, continuous time, etc.

Our goal is to analyze the following object (see [21, 22, 23]).

Definition 1.1 (pair empirical measure) The pair empirical measure is defined
by

a1 n—1

Ln(w) = n (Z OXi(w) Xisa(w) T 5Xn(W),X1(W)> € M,(E?),
i=1

where M(E?) is the set of balanced measures !. The last transition® (X, X1) will

be referred to as a “ghost transition”.

The organization of the paper is streamlined. Starting from the finite state space
LDP (Section 2.1), an extension to locally Markov processes is obtained (Section 2.2),
which, by using continuity properties of the rate function (Appendix B), leads to
the weak Sanov’s theorem (Sections 2.3-2.4).

Theorem 1.1 (Generalized Sanov’s theorem) Let X be an irreducible Markov
chain with kernel P. Then the pair empirical measure L, satisfies a weak LDP
with rate function H(.|P), i.e. for all open sets O C My(E?) and all compact sets

!The notation used throughout the paper is given in Appendix D.

2This transition is added for L, to stay in MS(EQ) which is the “natural” set-up for the LDP.
When Sanov’s theorem is derived from the LDP for the single empirical measure, the ghost transition
is chosen to be (XoX1) with Xo arbitrary. Then L, € Mi(E?), but the functional is the same and
is infinite outside M;(E?)).

INRIA



2 SANOV’S THEOREM 5

K C M,(E?),
1
. > .
hnrglorolfn logP [L,, € O] > ,L{Ie% H(A||P), (1.2)
1
. 1 < _; .
hwrlrisipn logIP [L, € K] < jlg(H(AHP), (1.3)

where the entropy function H (see Appendiz B) is defined by
H(A|P) jlog [ —L) .
(AIP)= 3, aijlog ( P

1L,jEE

This LDP holds without any restriction on the initial distribution. In particular, no
uniformity condition is imposed.

For the upper bound equation (1.3), the analysis of the entropy function H (i.e. the
rate function) in Section B shows important differences, that change the nature of
the LDP. Indeed, in the countable state space case, H is lower semi-continuous and
the level sets

() & {A € M,(E®) : H(A||P) < a}

are not necessarily compact. This means at once a full LDP cannot be achieved, but
we prove nevertheless that a weak LDP holds.

The main idea to get the lower bound equation (1.2) (see Section 2.4) is to construct
successive finite approximations of a measure A, remarking that the lower bound is
easily proved for finite support measures. Nonetheless, convergence problems might
occur, since H is not continuous. To circumvent them, we analyze in Appendix C
the link between balanced measures and cycles, and the continuity of the entropy is
discussed in Appendix B.

2 Sanov’s theorem

2.1 The finite case

Large deviation principles in a finite state space have been proved quite a while
ago, since famous Sanov’s theorem [39] was first published in 1957, in Russian.
Convexity and eigenvalues properties are the major tools to get the result [35], but
combinatorial estimates are sufficient [8]. In our opinion, good books presenting
methods and major references are [16, 15]. The rate function H, sometimes called
the Kullback-Leibler divergence, became a classical quantity, since its appearance in
information theory in 1951 [27, 24],
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Theorem 2.1 (Basic Sanov’s theorem) Let X be a Markov chain on a finite
state space E. The pair empirical measure L, satisfies a LDP with the good rate

function H(.||P).
Proof : Only the main lines will be presented.

Let F C My(E?) be closed. The upper bound relies on the following combinatorial
inequalities (see [13])

) -
P L, = Al < e [] (20t < el (2.1)
4,jEE (nai;)!

where £, = o(n) and is independant of A. Since there are at most (n + 1) £/

empirical measures L,, of length n, we have

log TP (L € F) < |F|*log(n + 1) — n inf H(AIP) + &y,

and hence the result.

Let O C M,(E?) be open, A € O with H(A||P) < oo, so that A € M,(G), where G
is the graph associated to P, remarking that these assumptions are sufficient, as far
as the infimum of the lower bound is concerned.

One will use a classical exponential change of measure, via the martingale

n—1

e .o Aij
M, ¥ expz h(X;, X;y1), where h(i,j) = log P—” (2.2)
=1 i

So, M,, defines a new probability IP*, under which X is a Markov chain with tran-
sition matrix A (the function A is finite because A € M(G)). Denoting Supp(A4) by
G', we have, for any open neighborhood V4 C O of A,

1 1 . _
ElogIP[LnEVA] = —loglE (T, evag My ']
—  sup > ajh(i,g) (2.3)

A'EVANM,(G") (; e

Y

1 " _
+5105E []I{LnEVA}e h(X"’Xl)]- (2.4)

The term in (2.4) tends to 0, since X,, is ergodic, (so that L, converges to A in
probability), and A is bounded on M (G'). When V4 is sufficiently close to A, the

INRIA



2 SANOV’S THEOREM 7

term in (2.3) does not differ substantially from H(A|P), due to the continuity of
the mapping
A— " aihli, j)-
(1,7)eq"
Since IP [L,, € O] > IP [L,, € V4] for all A, the lower bound is proved. |

Actually A might be not irreducible, in which case IP* does not have a unique
stationary measure. Thus one must first prove the lower bound for any irreducible A,
and then extend the result to any A, by a continuity argument, using Proposition C.1
and Proposition B.2.

M, is only defined on Supp(A), which is absorbing under IP*. This would be enough
to conclude, provided that the initial distribution v satisfies. I/(Supp(A)) > 0, but
this condition is not true in general. Therefore, one chooses h to be null outside
Supp(A), so that M, is defined everywhere.

Under IP*, X behaves like P outside Supp(A4). From the irreducibility of P, there
exists ny with IP* [X,,, € Supp(A)] > 0. It suffices now to consider the chain for
n > ng, so that the bounds still hold, as the finite part (X,,,n < ng) does not play
any role.

In fact, the way of defining X under IP* outside the support of A is not crucial, so
that the next section is in some sense quite natural.

2.2 Extension to locally Markov processes

Here one proposes to extend Theorem 2.1 to a countable state space. This leads first
to make a slight generalization of Theorem 2.1 to the case of substochastic transition
matrices.

Definition 2.1 (Locally Markov process) A process Xy, is said to be locally Mar-
kovian (and homogeneous) on E' C E, with transition matriz P, if

P [Xpt1 =y|FN{Xp =12} = Py, Vz,y€E', Vn>0, (2.5)

where Fy, is the natural filtration of X,,. For the sake of consistency, one requires
the probability of ever reaching E' to be strictly positive.

Note that there is no restriction on the initial probability distribution, so that
IP [X,, € E'] may behave arbitrarily.?

3For instance, if X is a random walk on Z and E' is finite, a heavy tailed initial probability
distribution disturbs a LDP for IP [X,, € E']. Fortunately this is not the case for the empirical
measure.



8 Arnaud de La Fortelle et Guy Fayolle

Using the combinatorics of (2.1) for the upper bound, taking the value 1 the unknown
probabilities, and the above change of measure for the lower bound, one easily
obtains the following extension of Theorem 2.1.

Theorem 2.2 Let X be a locally Markovian process on a finite set E'. The pair
empirical measure Ly, satisfies the LDP lower bound on MS(E'Q) and, restricted to
E', satisfies the LDP upper bound, both with the good rate function Hp:(.|P). More
formally, for all open O C My(E"®) and all closed F C tg(M(E?)),

o1 .
hnn_l)lcgfglogIP[Ln € 0] > _AQEHE'(AHP)’ (2.6)
1
li —logP [tg(Ly,) € F| < — inf Hgi(A||P 2.7
imsup - logIP [t (Ln) € F] < — inf Hp:(A||P), (2.7)

where tg(A) & (aij)ijer is the truncation® on E'.

Although Theorem 2.2 is not a LDP, it looks very much like a kind of projective
limit. Nonetheless, the projection of a Markov chain onto some subset is no longer
a Markov chain, and consequently the projective limit method should undergo ad
hoc modifications. Our approach is qualitatively different, since a full LDP for finite
state spaces becomes in general a weak LDP for the limiting countable state space.

The set ¢z (M,(E?2)) is not equal to M,(E'®), nor to the sets of all measures on E'>
with mass less than 1. The above formulation is quite natural, and avoids tedious
problems related to the existence of paths entering or leaving each state a fixed
number of times.

2.3 Upper bound

The heart of the extension consists of three properties. First the compacity of the
set of measures, second the fact that a Markov chain is locally Markovian on any
finite set, and third the lower semi-continuity of the rate function H.

Theorem 2.3 Let X be a Markov chain on a countable state space E, with transi-
tion matriz P. The pair empirical measure Ly, satisfies the LDP upper bound on com-
pact sets with the rate function H(.||P), that is, for all compact sets K C M(E?),

liminf + log P [L,, € K] < — inf H(4P). (2.8)

n—oo 1N

4For the sake of simplicity, we shall denote by ¢z both the transition matrices and the restriction
of measures on E' or on E'°.

INRIA
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Proof : Let z < infx H(.||P) be fixed. Then there exists a finite subset E' C F
such that

inf Hg:(A||P) > . 2.
inf Hp(4]P) > 2 (29)
Suppose this is not true. Then, for all finite F,,, there exists A(n) € K such that
Hg,(A(n)||P) < z. Choosing E, = {1,...,n}, this writes

liminf Hg, (A(n)||P) < z.

n—00

Since K is compact, there exists a subsequence A(n) converging to A in K. Of course
tg,(A(n)) also converges to A, because E,, increases to E. Applying Definition B.2,
we have

Hg,(A(n)||P) = H(tg, (A(n))||P).

By Lemma B.1, H is lower semi-continuous, so that
H(A|P) < liminf H(tg, (A(n))||P) < z.
n—oo

But this contradicts z < infgx H(.||P). Hence, (2.9) is true for some finite subset
E' C E. As X is obviously locally Markovian on E’, Theorem 2.2 yields

1

n—o00 A€tpi(K)
Now

1 ! :. ! ! :. ! <_.
Aeglf(K)HE(AIIP) inf Hp(tp(A)|P) = jnof Hp(A|P) < -~z

Since L,, € K implies that tg/(L,) € tgp:/(K), we obtain

1
limsup —logP [L,, € K] < —x,

n—oo T

which this is true for any = < infx H(.||P). Theorem 2.3 is proved. |

2.4 Lower bound

The extension for the lower bound is simple, by using continuity properties of H.
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Theorem 2.4 Let X be a Markov chain on a countable state space E, with transi-
tion matriz P. The pair empirical measure L, satisfies the LDP lower bound with
the rate function H(.|P), that is, for all open sets O C M(E?),

liminf > log P [L,, € 0] > ~ inf H(A||P). (2.10)
€

n—oo M,

Proof : Let E' be a finite subset of E and A € M,(E'®>) N O. Since O is open,
there exists an open neighborhood V4 C M,(E'®) of A included in O. Applying
Theorem 2.2 for such a measure, one has

1
lim inf — log IP [Ln € VA] > —HEI(AHP)

n—oo N
But Hg:(A||P) = H(A||P) and V4 C O, so that the lower bound is satisfied for any
measure A € O having a finite support. This reads, for such A,

1
liminf - log P [L, € O] > —H(A|P). (2.11)
n—oo 1
Let us fix now A € O. By Proposition B.3, there exist measures A(m) with finite

support, converging to A, and ensuring also the convergence of H(A(m)||P) to
H(A||P). Applying (2.11), with A replaced by A(m), results in

liminf L log P [L, € O] > —H(A(m)||P) ™= —H(A||P).

n—oo N

Thus (2.11) is valid for any measure A € O and the proof of Theorem 2.4 is conclu-
ded. ]

Remark 1 : The change of measure works in fact even for an infinite state
space. In this case, problems encountered have a twofold aspect. First, the
method works only for irreducible A: no matter which approach is taken, the
study of continuity can never be avoided, if the goal is to extend the lower
bound to all A € O. Secondly, when Supp(A) is countable, the supremum
in equation (2.3) may be infinite (because h itself can be unbounded), and
therefore it is necessary to place some restrictions on A.

INRIA
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3 Links and transformations of weak LDP

3.1 Another derivation via Ruelle-Lanford functions

In a beautiful paper [29], J. Lewis and C. Pfister analyze, in a very broad setting,
large deviation phenomena from a thermodynamical point of view. It is interesting
to note that their vague LDP corresponds exactly to our® weak LDP.

In this respect, a pragmatic question arises: could the weak LDP be obtained in
a more direct way by means of Ruelle-Lanford functions? More precisely, assume
one shows H(A| P) is a Ruelle-Lanford function: then Theorem 3.1 of [29] yields
immediately the weak LDP. This is true, but (in agreement with the law saying that
miracles are rare events!), the proof is in essence not simpler as the one given in
Sections 2.3 and 2.4. Indeed Theorem 1.1 can be derived without the notion of local
Markov processes, but at the expense of a deeper analysis of the change of measure.
For the sake of completeness, we prove the following result.

Theorem 3.1 The entropy is a Ruelle-Lanford function for the empirical measure
L,.

Proof : The notation is as in Theorem 2.1, but here F is infinite. When A € M (G)
is an irreducible measure with a finite support, the line of argument which leads to
the lower bound still holds, but (2.3) also yields the upper bound

. 1 . P
hvrbrlsolép - logP [L, € V4] < — A’evf:g{/[s(G’) (i%e:(;f ai;h(i, j)- (3.1)

By continuity on M (G') of the mapping A — >ij aijh(i, ), for all € > 0, there
exists a neighborhood Vj4, such that

lim sup 1 logIP [L,, € V4] < —H(A||P) +e«. (3.2)
n—oo T

Let now A be arbitrary, V4 a neighborhood of A, and K C V4. In Propositions
C.1 and C.2, one shows the set of irreducible measures with finite support to be
dense in M,(G). Consider all such A’ € V4 and their corresponding neighborhoods
V41, subject to equation (3.2). Then V4 and K can be covered by a collection of

®The terminology [29] follows O’Brien and Vervaat [36], while we use Deuschel and Strook [16]
vocabulary.
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sets V41, from which, since K is compact, we can extract a finite covering such that
K C Uuecp(e) Var- Hence, by equation (3.2),

1
li ZloglP[L, € K] < — inf H(A|P . 3.3
1TILn_)s£Pn ogIP [Ly ] < A'le%(s) (A'||P) +¢ (3.3)

Therefore, by the lower semi-continuity of H and equation (3.3),

1
lim sup p logP [L, € K] < —H(A||P) + 2¢, (3.4)

n—oo
and the local upper bound is proved.

Using the lower semi-continuity of H, Proposition B.3 and the density of irreducible
measures with finite support, on can prove in a similar way a local lower bound
for any measure A, exactly the reverse inequality of (3.2). Finally, H(A|P) is a
Ruelle-Lanford function for IP [L,, € .] in the Hausdorff topological space M (E?),
so that, by Theorem 3.1 in [29], the weak Sanov’s theorem is proved. [

Comparison As asserted at the beginning of this subsection, the two proofs have
roughly the same complexity.

— In Section 2, one needs a detailed analysis of finite substochastic transition
matrices, which form the locally Markov processes, and the result is a corollary
of the finite state space LDP.

— The method proposed here is an alternative to that of Section 2. Since M (E?)
might be not locally compact, obtaining the upper bound is not really simpler
than the LDP upper bound. Also, though further properties are explicitly
used (e.g. continuity, density irreducible measures with finite support), no
more work is needed because they are indispensable for the lower bound.

The choice of the method should be made according to the respective complexity of
the bounds (3.2) and (2.7).
3.2 Varadhan’s integral lemma and contraction principle

The next corollary®, which is the analog of Varadhan’s integral lemma, is given in
[29].

5This could also be deduced easily from the change of measure. In fact the proof already relies
on the fact that M, ! is a continuous functional of L,.

INRIA
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Theorem 3.2 Let g : My(E?) — R be a continuous function. Then, for all open
sets O and compact sets K,

L. 1 .

liminf ~log B [T(1, cope™ )] > — inf (H(4]P) - g(A)}, (3.5)
1

1 _ ng(Ly) 3 _

limsup —log [T, ex0p¢™)] < — inf (H(AIP) - g(4)}. (3.6)

Hereafter, we prove a somewhat restricted contraction principle, which contains
interesting by-products (see Theorem 3.4).

Theorem 3.3 (contraction) Let f : M(E?) — F be a continuous functional
such that f~Y(K) is compact, for any compact set K C F. Then P [f(L,) € ]
satisfies a weak LDP with the rate function J.

Jy)E inf H(A|P 3.7

(y) L (A|P) (3.7)

lim infllog]P [f(Ly) € O] > — inf J(y), (3.8)
n—oo 1 neo

limsupl logP [f(L,) € K| < — inf J(y). (3.9)
n—oo N HEK

Proof : The positivity of J, like equations (3.8)—(3.9), are immediate. The only
difficulty concerns the lower semi—continuity of J.
Letting p(n) == p, the set

K (no) = {n(n)}nzno U {n}

is compact, and so is f~! (K (no)). By a finite covering argument and the lower
semi—continuity of H, is it not difficult to prove the inequalities

hnrgggf(](u(n)) = hnrgngeflrll(fu(n))H(AHP)

> inf H(A||P)=J(p).
> nf H(AIP) = T(0)

[ ]
Instantiating for example f(A) = A™), one can checks in this case that all assump-

tions of Theorem 3.3 are satisfied: hence, the contraction is valid and there is a LDP
for the one—dimensional empirical measure.
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Theorem 3.4 Let X be an irreducible Markov chain with kernel P. Then the em-
pirical measure satisfies a weak LDP with the rate function

Io(u|P) = A(iII;{HH(AIIP)- (3.10)

The identification of Ij in equation (3.10) does not require any particular condition
(see Appendix 3.5), so that the weak Sanov’s theorem in the one-dimensional case
is really an easy consequence of Theorem 1.1.

3.3 Links with a full LDP

There is no way of improving our results toward a full LDP, as shown in the remark
in Section B.1. We emit the conjecture that the problem of existence of a full LDP
reduces to the analysis of the entropy function, and this would give a real interest
to the weak LDP. Unfortunately, even in our framework, the goodness of the rate
function does not imply a full LDP with this good rate function. It is possible that
infy H(A||P) > 0, in which case a full LDP cannot hold, H being nevertheless a
good rate function.

Then, some directions may be explored.

1 When is the rate function H a good rate function?

2 What are the precise relationships between goodness, exponential
tightness, and fullness of the LDP?

3 To which extent is a full LDP necessary?

Partial answers to the first question do exist, e.g. uniformity conditions which can
be found in [14, 23, 32, 41]. A general characterization of goodness seems difficult
to obtain, but perhaps some more specialized results might include bounded jump
networks. In fact, for almost all open networks, there is no full LDP, due to the
strong homogeneity.

The second question is open. It is known that the exponential tightness implies a
full LDP holds with good rate function H (see [14] p. 8). One can conjecture the
following: if H is good and infy H(A||P) = 0, then the family {P(™ n > 0} is
exponentially tight. Section 3.2 gives a partial answer to the third point.

INRIA
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3.4 Further extensions

The LDP proved in the preceding sections extends directly to k-tuples empirical
measures, to process level, or by considering continuous time or larger state spaces
(e.g. Polish spaces).

On the other hand, the entropy function contains some surprises. Actually, when
the chain is transient, the global infimum of H can be strictly positive. This infimum
is related to the convergence parameter of P

inf H(.||P) = —log R(P),

where

R(P) = inf{X: Ph = Ah, with h > 0},

and this leads naturally to harmonic analysis.

On the other hand, extension of the LDP upper bound to closed sets faces a serious
problem. It appears to be closely related to boundary theory, and more precisely to
space-time Martin boundary, that is again to harmonic functions. In order to keep
the LDP formulation in terms of minima, the entropy function should be extended
to the (minimal) Martin boundary, by means of an expression of the form

eof .1
n

where & is a minimal harmonic function and (z,,t,) "—> h for the Martin compac-

tification. The difficulty is that the limit does not exist, although equation (3.11)
makes sense in some concrete situations.

3.5 Identification of the rate function

There are several ways of representing the rate function in Sanov’s theorem for the
one-dimensional empirical measures

1 n

Actually, the formulations depend on the spaces of E — IR functions usually consi-
dered: Cy(FE) (bounded continuous functions), Ly(E) (bounded Lipschitz functions),
and also U(FE), the space of continuous bounded functions h with infh» > 0. Note
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that in discrete spaces, all these functions are continuous. The rate functions are
given in terms of transforms of the quantities

Ky(u)(z) & / P(z, dy)e/Du(y),

Tp(u)(z) = e/ / P(z, dy)u(y),

Af) & limsup%logIE [epof(Xi)] ,

n—o00 :
=1

which are related by the relation

I, exp(ZﬂXi))u(Xn)] = JOKP D w)(0) = T Vel ) (). (3.12)

An almost exhaustive list of the main rate functions is given below.

(To(n) = A(igiuH(AllP),
= su i 1o h(i)
Li(p) = heU?E)éuzl g (Ph(i)) :
{ I(p) = sup [(f,pu) — A(F))],
feCH(E)
I3(p) = sup [(f,p)+log R(Ky)],
fELy(E)
I(p) = sup [(f,pu) —logr(Ty)].
\ fELL(E)

where r denotes the spectral radius and R the convergence parameter.

e [ is the rate function obtained in Theorem 3.4, and is known to be the same
both for the upper and lower bounds.

e [; is convenient for computational purposes. It often gives the final form of
the result, although it does not appear at first sight in the proofs.

e [ is a classical mean of identifying the good rate function whenever the unifor-
mity condition equation (1.1) holds (see [16, 14]). Unfortunately, when working
on infyeg IP; [L, € .|, the subadditivity method cannot be transposed into a
general setting.

INRIA
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e As mentioned earlier, the regeneration argument used in [18, 12]) for the quan-
tity IP [L,, € B(u,¢), X, € C] yields I3. Getting rid of C is easily done for the
lower bound, but is a stumbling block for the upper bound. I3 also appears in
[17] to determine the rate function when there is a full LDP.

e In [10], the inequality A(f) < r(K) allows to derive I for the upper bound,
but under very stringent conditions regarding the uniformity (see (1.1)).

In the very interesting paper [18], all the above expressions, but for I, are shown
to be equal, assuming only (roughly speaking) P is irreducible. However, since the
goal of the authors is not really to prove a weak LDP, they obtain an upper bound
of the form
limsupllog]P[Ln € K, X, € C|] < — inf I3(p),

n—oo T HeEK
for all closed convex sets K, C' being typically a non-empty compact set. Moreover,
the above upper bound is only proved for exponentially tight sequences IP [L,, € .].
Theorem 1.1 shows that Ij is in fact valid for both bounds.

In our opinion, an interesting part of our study is to prove the rate function to be the
best possible. As a matter of fact, the rate function is unique when a LDP holds’.
If one aims at getting only one bound, the question is open to decide whether the
rate function is optimal or not.

Remark : Clearly, I is equal to the other quantities. For finite support mea-
sures y, an optimization problem, with the h(¢) as Lagrange’s multipliers, yields
Iy(p) = Ii(p). Now, by the continuity property in Proposition B.3, it is not
difficult to check that Iy is the least lower semi-continuous function such that
I(p) = Iy(p), for all such p.

Hence Iy < I;, which can also be deduced from regeneration arguments. The re-
verse inequality is less immediate. Let us denote by L. [resp. L2] the empirical
[resp. pair empirical] measure.

Starting from IP [L2 € B(A,¢), X,, = x|, for any fixed = with a, > 0, one carries
out the lower bound proof by extending the result from finite support irredu-
cible to any A. The rate function is again H(A||P), since, from the ergodicity
IP* [L?2 € B(A,¢e), X, = 2] = a,.

Fixing u € M, (E), we have, for any A1) = p,
L2 € B(A,e) = L} € B(u,e).

"The usual argument to prove uniqueness does not apply here, since the LDP is weak and M, (E?)
is not locally compact. The uniqueness is derived by inequality (3.1)
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Hence,
P [L? € B(A,¢), X, = x| <P [L}, € B(p,e), Xn = 1],

which gives
H(AIP) > I (i), VA : AD = p.

Thus inf 4a)—, H(A||P) = Iy(p) > I (), which is the expected result.

Note that the machinery has to be re-run, in order to show that the rate function
I; is not too large, which was a priori not obvious for measures with infinite
support.

INRIA
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Appendix

A The reducible case

For the sake of completeness, we give in this section a LDP for reducible kernels.
No concept is really new, nor is the result surprising, but there is a dense notational
thicket hiding the simple idea stated now: instead of evolving ad sternam with the
transitions A = (a;;), under the twisted probability IP* the chain behaves for a long
time like A(1), then like A(2), and so on, where the A(k) correspond to different
classes of irreducibility.

In fact, in this case, the bounds are obtained by a change of measure which is not
time-homogeneous, and the subset M is not convex nor is the rate function, thus
rendering the convex analysis ineffectual.

Theorem A.1 (reducible case) Let X be a Markov chain with kernel P, and let
M be the set of serial measures relatively to P. The pair empirical measure of X
satisfies a weak large deviation principle, with the rate function

H(A||P), for Ae M;

def
Him(AllP) = { 00, otherwise. (A1)

A.1 TIrreducible classes and associated objects

Throughout this section, P will be a reducible transition matrix. When P (z, y) >
0, there exits a path of length n, of positive probability, connecting the points z and
9, and we shall write  ~~ y. Two points belong to the same class of irreducibility
if, and only if, £ ~» y and y ~ =x.

The state space is partitioned into classes of irreducibility E' = (J;c; E;, the graph of
P on E; being denoted by G;. Then there is the following classical partial ordering
>~ between the classes: E; > E; if there exist x € E; and y € Ej, such that z ~ y.
Thus z ~ y for all z € E; and y € E;. Eventually, the points reachable from = € E;
are all the sets E; with E; >~ E;. The forthcoming definition is a formal description
of the “suitable” measures.

Definition A.1 (serial measures) A serial measure A relatively to P is a balan-
ced measure

A= "uiA(), with A(i) € My(G;) and Biyy = By, Vi.
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In addition it is required that v({z € E : E; = z}) > 0, where v is the initial
distribution of the chain. The set of serial measures will be denoted by M.

Lemma A.2 Serial measures are characterized by the equivalence

JA(m) "= 4,

A€M<:){

Proof : The sufficient condition <

Let 4,5 be such that a;; > 0. This implies a;;(m) > 0 for large m , so that i ~ j,
and, by the balance assumption, j ~ % also. Therefore A can be split into irreducible
classes, and one can write

A= "uiA(), with A(i) € My(Gy).

Take now jo € E; and ko € Ey, with ajyar, > 0, so that u;ur > 0. Consequently,
for m sufficiently large, we have aj,(m)ag,(m) > 0, and a path crosses jo and ko
with a positive probability. So, either E; >~ Ej or Ej > E;, which means that > is
a total order relation on the sets E; for which u; > 0. Consequently, A is serial.

The Necessary condition —

Assume first A has a finite support and construct the sequence A(m). The decom-
position of A as a serial measure is finite and so is its decomposition into cycles
(see® Proposition C.2). Hence A = Y% _, u;L(C;), and cycles can be ordered so that
Cit1 > C;. There exist paths Tj ;11 = (%n;,...,%n,;,,), with positive probability,
such that z,, € C;, for i > 1, and v(zp,) > 0. Then, taking integer approximations
a;(m) of mu;, modified by the length of C;, the path

T(m) = T C* ™1, ™y . Cor™

def

has also a positive probability. Finally A(m) = L(T'(m)) converges to A when m
grows and, by construction, L,y = A(m).

In the case A has an infinite support, there exists a sequence of serial A(n) with
finite support converging to A. For each A(n), the above paragraph shows there
exists a sequence A(n,m) converging to A(n), with positive probability.

Finally, letting A'(n) < A(n, my), with m,, such that

I4"(n) = A(n)|| < 1/n,

one sees that the sequence A’(n) also converges to A, and the proof is concluded. m

8Note that Proposition C.2 does not postulate irreducibility.

INRIA
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A.2 Lower bound
Theorem For any open set O C My(FE?),

1
o1 > _ i . '
liminf —logIP [L,, € O] > AelgrﬁM H(A||P) (A.3)

n—oo N

Proof : The argument is like in the irreducible case, but classes have to be sepa-
rated. Let A € O N M be a measure with finite support, so that the decomposition
A=Y%", u;A(4) is finite. Define

{log 240 4,5 € Supp(A(k)), (A4

0 otherwise.
Fix a large integer N, take n < N, and let
to=0 and ;= |N(ui+--+u;)| An.
The martingale M, of equation (2.2) is replaced by a sequence of martingales

4 123

MM Zexpd S 3T m(X, Xiga) ¢ - (A.5)
k=1 i=tp_1+1

By the definition of #;, the summation is taken over the n first terms at most. It is
easily checked that MT(lN) is a martingale, for n < N, defining a new measure IP*.
Under IP*, X is a Markov chain, which is no longer time homogeneous: it behaves
like A(i) on Supp(A(i)) and like P outside, for a duration [¢;_1 +1,¢;], for all ¢ > 1.
For each k, we introduce the partial empirical measures

t—1

er 1
Lk — 6x:iXitn T 0x0 X0, 41 | € Ms(Gy). (A.6)
tk k k—1
i:tk_1+1

Choose an open neighborhood V4 C O of A. For n sufficiently large, the ghost
transitions are small enough, since their total mass being less than k/n. Hence,
there exist open neighborhoods V4 (k) of A(k), with

LE e Va(k), Vb = L, € V4. (A7)

Combining (2.3) and (A.7), yields, when N = n,
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1 1 . Ld L
ElogIP[Ln € V4| > ﬁlog]E [H Tk cvathyy (MT(L )> ]

p
123 .
—— ag;hx (4, ) (A.8)
231 n A EVA(k)ﬁMs(G ) i %E:G, Y
1 *
+ E lOg E lH ]I{L,IQEVA(]C)} exp(hk (th,th_1+1))] , (Ag)
k=1

where G}, reads both for the graph and the support of A(k). By continuity, the term
in (A.8) gives uyH(A(k)||P), and hence the sum tends to —H(A||P), for n — oo
and V4 small enough.

The expectation appearing in (A.9) is not that complicated. The k-th functional
indeed depends only on X;, for i € [ty_1 + 1,%x] , and X behaves like A(k) on this
time interval. The chain has been split into p pieces, to each of which the result of
the irreducible case can be applied. But the chain must hit once G}, and only after
this moment it behaves like A(k). Remembering that IP* depends on n, it is not
obvious whether the probability of ever reaching G) under IP* remains uniformly
bounded on the sets of interest.

One will show by induction that there exist nj and by > 0, such that
IP* [ Xy, ,4n, € Gy, VI< K] > by >0, (A.10)

independently of n. Since v({z € E: E; > z}) > 0, the assertion is true for k£ = 1.
Assume it is true for k. Then

IP* [Xy,_,4n, € Gj, VI <k and Xy, € G| > by, (A.11)
as, under IP*, G}, is absorbing during the time interval [t + 1,¢41]. Choose ng4q
such that

1Ent, IP* [Xt, 4npyy € Gra| Xt = 3] = ¢ > 0. (A.12)
T

This can be done since Ejyq > Ej and G) is finite. Thus, applying the Markov
property to equations (A.11)—(A.12),

P* [ Xy, ,4n, € Gy, VI<k+1] > by =bgy1 >0, (A.13)

INRIA
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and (A.10) holds for k + 1.
Now, one will use the ergodic theorem on the interval [t;_1+ng, tx]. Since ni+---+n,
is constant, independently of n, it is easy to modify the partial empirical measures
(see (A.6)) to ensure finally

p p
.. " H hi(Xt, , Xt, - 4ny) H : hy(4,5)
l}nIr—lj)Iéf]E k=1 ]I{L"I%GVA(k)}e k e Z bp k=1 (Z’Jl)nengc " g 0,

because G, is finite, so that the infima are strictly positive. Therefore the (modified)
sum of line (A.9) tends to 0 when n — oo.

For measures with infinite supports, approximations and continuity arguments [Pro-
position B.3 still holds for reducible kernels| yield the result along the same way as
in the irreducible case. n

Remark : Note that the proof would have been more difficult in taking directly
infinite support measures, for uniformity reasons.

The above construction can be related to the control and cost structure des-
cribed in [20], but we do not need here to deal with all control policies, since
it is possible to choose directly the optimal one. However the aims are somew-
hat different and the change of measure allows to obtain the rate function in a
closed form, instead of an expression as a “limit of limit”.

A.3 Upper bound
Theorem For any compact set K C Ms(E?),

1
i — < — i . .
limsup —logP [L,, € K| < Aelll{lrf]M H(A||P) (A.14)

n—oo T

Proof : Tt is much simpler. When A is not serial, by Lemma A.2,
AEgM = FVy, Ing:V¥n>mng, IP[L, € Vy|=0,

where V4 is an open neighborhood of A. Then IP [L,, € K \ V4] equals IP [L,, € K],
for n large enough, and the upper bound becomes

1
li —logIP[L, € K| <— inf H(A'||P).
msup-~loglP[Ly € K] < —  inf = H(A'|P)
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This can be achieved by means of finite number of neighborhoods. Using the lower
semi-continuity of H and the closure of K N M, we get

inf inf  H(A'|P), 4,...,A — inf H(A|P
in {A,eK{ElevAi (A|P) , Ai, ,p§ZM} odnf  H(A|P),

which gives the upper bound (A.14). [

B Properties of the relative entropy function

The entropy function lies in the heart of the LDP, and we need to analyze some of
its properties to derive the large deviation assertion. In this section, P is again a
Markov kernel on the countable state space FE.

B.1 Entropy and its information theoretic interpretation

Definition B.1 (balanced measures) The set M(E?) of balanced measures is
the set of measures on E?, with both identical 1-dimensional projections

A€ M,(E*) < A(E,.)=A(,E) € My(E). (B.1)

Let G be a graph on E. M(G) C Ms(E?) is the set of balanced measures with
support included in G.

For A € M,(E?), let us put
® a;j < A({(i,7)}) the 2-dimensional law;
¢ q; & A({i} x E), the unique 1-dimensional projection, also denoted by A(");
o Ay &t A(E x {j}|{i} x E), the conditional law, and hence a;; = a;A;;.

Definition B.2 (relative entropy) Let A € M (E?). The relative entropy of A
with respect to P is defined by

HAIP)E Y o tog (22, (B.2)

“ a; P;;
i,jEE 1

with the usual convention

01og(0/0) =0, 1/0=+oc0, 0log0 = 0.
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This definition extends in a natural way to finite positive measures A and substo-
chastic matrices P. Hpgr is the restriction of the entropy H to E', i.e. taking the
indices i,j € E' in equation (B.2).

All results, and the next as well, do have an information theory significance. The
reader is referred to Rényi [37], which provides an excellent introduction containing
the link between information theory and probability. For a more complete study,
see [1], and Hamming [25].

Recalling that the information brought by a Bernoulli trial Y is — logIP [Y], one sees
—n"1logIP [L, € F] as the mean information brought by the knowledge of L,, being
in F'. By the way, we think the expression “relative entropy” not to be as illuminating
as information gain. Indeed the relative entropy is the mean information gain:

A
H(A|IP) =) ai ) Ayjlog (p—) =B (A, IPx)),  (B3)
i€cE  jEE t

def

where I(Ax, ||Px,) = >_; Aijlog(A;;/P;;) is the information gain® for X, conditio-
ning on the event {X; = i}. Thus H(A|P) is the mean information gain for each
sample, under the dynamics A.

Lemma B.1 The relative entropy H(A||P) is positive, conver and lower semi-
continuous with respect to A. It is null if, and only if, one can write A = P as
a Markov kernel, i.e. A;j = Py;, Vi,j € E.

Proof : Positivity, lower semi-continuity and convexity are immediate from equa-
tion (B.3).

As for the convexity, let A, A’ € M,(E?), z,2' > 0 with z + 2’ = 1. Then B =
zA+ ' A" is also balanced with

b = wa; + z'aj, Bjj = (zay; +2'al;)/(za; + 2'a)),

so that
sH(A|P)+ s’ HA'|P) = Y zaid(Ai|P)+ o'a}I(4}| )
i€E
> Z I(za;A; + 2'alAll|(za; + 2'a}) P;)
i€E
= WI(Bi|P) = H(B|P),
i€EE

9Here, one writes I, but this is actually the relative entropy of measures in M (E).
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by the convexity and the 1-homogeneity of I. [ |
We will state now an important negative property. Let

U(K) = {A e M,(E®) : H(A|P) < K}
denote the level set of the entropy function.

The closed level set U(K) is not necessarily compact.

Proof : Consider the irreducible ergodic kernel P defined on IN by

3/8 if j=i-1,
Py =1, and Pjij=4q 1/2 if j=i, for s > 1.
1/8 if j=i+1,
Then, for each ¢ > 0,
H(6q4]|P) = —log Pyy = log 2.
Hence, the set {64, : ¢ > 1} C ¥(log2) is not tight and ¥(log2) is not compact. =
Remark : Consequently, a full LDP will, in general, not hold, since it would
require the entropy function to have compact level sets. In this paper, we prove

that there is a weak LDP for all Markov chains. Obviously, a full LDP will hold
only for some restricted classes of chains.

B.2 Continuity properties of the entropy function

The proof of the lower bound of the LDP needs continuity properties of the entropy
function. According to (Definition C.1), the graph G will be assumed, in this section,
to correspond to an irreducible transition matrix P. Note that H(A||P) is finite only
if A € My(G).

Proposition B.2 (continuity) Let G’ be a finite subgraph of G. Then H(.|P) is
finite and continuous on Ms(G').

Proof : The entropy function is a finite sum, for (,j) € G’, of finite continuous
functions A — a;;log(a;j/a;iP;;), since Py > 0, Vi, j. [
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Proposition B.3 (exact l.s.c.) Let A € My(G). There exists a sequence of mea-
sures A(n) € Ms(Q), with finite support, converging to A, such that their entropy
converges to H(A|P).

lim A(n) =A and lim H(A(n)|P) = H(A|P).

n—00 n—0o0
Proof : Assume H(A||P) < co. By Proposition C.2, there exists a decomposition
into cycles A = >, u;L(C;), from which one can define the sequence

A(n) d:eleuiL(C,-) + .ZluiL(Cl) € M,(G) =% A. (B.4)
1= 1=n-+

In addition, let K & Supp(Cy). Since K is finite, there exists go such that
K C {1,...,qO}2.
Introduce the measure m;; et a;P;; and the ratios

def
Tij = i/ Tij,
rij(n) £ aij(n) /i,

ri(n) € a;(n)/a;.

By construction,

—e ! <r;(n)logrij(n) < max{0,r;; logri;}, V(i,j) & K, (B.5)
—e ! < ri(n)logri(n) <0, Vi > qo. (B.6)

These inequalities are derived from special forms of the decomposition equation (B.4).
Indeed, writing for the sake of shortness f(z) = zlogz,

HAMIP) = Y mjf(rij(n)) = ) aif (ri(n)) (B.7)

(i,)eEK 1<qo
+ Y mf(ri(n) = Y aif (ri(n))
(i,j)EK® 1>qo

The first two sums in equation (B.7) are finite and converge, because f is continuous
and there is finite number of terms. Similarly, using the bounds in (B.5)—(B.6), one
sees the last two sums in (B.7) are also finite. Thus, Lebesgue’s theorem implies
that
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H(A(n)|P) =" H(A||P).

When H(A|P) = oo, then a finite number of terms are sufficient to prove that
H(A(n)||P) is larger than any fixed number, so that the limit is still true. The proof
of Theorem B.3 is terminated. [ ]

C Cycles and decomposition of balanced measures

The main goal of this section is to provide in Proposition C.2 an effective decomposi-
tion of balanced measure, in order to analyze the continuity of the entropy function.
To this end, convenient tools are graph theory [3], convex sets properties [38, 2, 28]
and the bible [6].

A graph will be described as a subset G of E x E = E?, where E is countable. This
appendix is independent of Markov chains, although all graphs considered hereafter
are indeed associated with Markov transition matrices.

Definition C.1 The graph G of a Markov transition matriz P is the set of all
possible transitions, i.e. (i,j) € G <= P;; > 0.

Clearly, G is strongly connected if, and only if, P is irreducible. A cycle is described
as an n-tuple (z1,...,xz,), with all (z;,z;11) € G. It is minimal if, and only if, it
passes through each vertex at most once, so that the number of minimal cycles is at
most countable. These cycles are denoted by (C;);ew. They will play an important
role, essentially because any cycle has at least one minimal cycle. The empirical
measure L(C) of a cycle C belongs to M(G). The following proposition introduces
some approximations that are needed for the method of change of measure.

Proposition C.1 Let G be a strongly connected graph, A € My (G) with a finite
support. There exists a finite subgraph G' C G and balanced measures A(n) conver-
ging to A, such that Supp A(n) is strongly connected and belongs to G'.

Proof : Let {z1,...,z,} be the support of A. Since G is strongly connected, there
exists a G—path T; ; from z; to x;, hence C' = T15...T}, 1 is a cycle connecting all
points of the support of A.

Taking G’ = Supp(C)USupp(4) and A(n) = n 'L(C)+(1—n"1)A, the proposition
is proved. [ |
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We also need finite approximations. One can easily guess that the L(C;) generate
M,(G), but, when G is countable, there is also a countable number of minimal cycles,
hence M, (@) is neither finitely generated nor compact, so that a Krein-Millman like
theorem must be proved for our special situation and this is the content of the next
Proposition C.2.

Convex sets will be considered in a topological vector space denoted by M£(G), the
set of finite signed balanced measures on G. Endowed with the Li-norm

Al =" lai;| < oo,
(4]

Mg (QG) is even a Banach space. The cone M, (G) C ME(G) of positive balanced
measures is the right object to study, since the extreme points of M;(G) correspond
to extreme generatrices of the cone, but we will strive to focus rather on simplicity
than on full generality.

Proposition C.2 (balanced measure decomposition) The set of balanced mea-
sures having their support in G is the closed conver hull generated by the empirical
measures of the minimal cycles of G, that is

M,(G) =co ({L(Ci)}z.em). (C.1)

Proof : Since M,(G) is closed, T6({C;i}tiew) C Ms(G), because the closed convex
hull is the closure of the convex hull.

Conversely, take A € M (G), and consider A —uL(C7). This is a balanced measure,
positive for v = 0. Introduce the sequences

(C.2)

ui+1 = max {u : B; — uL(C;) € M} (G)},
Bi—l—l = Bz — ’U,ZL(CZ), Vi > 1, with B1 = A.

This yields a decomposition with non-negative coefficients w1, us,... and

B=A-Y wL(C;)

is positive, since M, (G) is closed. Suppose now B # 0. Then there exists 1, such
that by, =€ > 0. Since B is positive and balanced,

bz = szj = Zbiwa V:E,
7 %
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so that one can define by induction the sets

Sl d:ef {561}, Sn_|_1 d:ef {CL‘n+1 : bwnwn+1 > 0, an € Sn} 7é @,

where
Z Z bij > €. (C.3)
ZESn j68n+1

If a cycle could be extracted from Si,S9,..., then B would possess a minimal

cycle Cy, and u; would not satisfy equation (C.2). On the other hand, if all S,
would be disjoint, then ||B|| would as large as the quantity obtained by summing
equation (C.3) over all n > 1, which is infinite. Both conclusions are contradictory.
Consequently,

B=0, A=) uwL(C),

which implies as well that M,(G) C co({L(C1),. .., L(Cp)}).
The proof of Proposition C.2 is terminated. [ |

D Notation

The following notation is used throughout the paper.

e FE is a countable state space isomorphic to {1,...,|E|}.
o {X,k > 1} is a Markov chain on E, with transition matrix P = (F;;).

e M (E?), introduced in Definition B.1, is the set of balanced measures on E x
E = E% For any A € M,(E?),

— a;; £ A({(3,)}) is the 2-dimensional law;

— A is the 1-dimensional projection, with
a; 4 AD({i}) = A({i} x B) = A(E x {i});

— A;j, is the conditional law, so that a;; = a;A;;;
— Supp(A) C E? is the support of A.

e G is a graph, M,(G) is the set of balanced measures on this graph.
e L,(w) is the pair empirical measure (Definition 1.1).

e H(A||P) is the relative entropy of A with respect to P (Definition B.2).

INRIA
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