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Abstract: Motivated by problems in telecommunication satellites, we investigate rear-
rangeable permutation networks made of binary switches. A simple counting argument
shows that the number of switches necessary to build a n x n rearrangeable network (i.e.
capable of realizing all one-to-one mappings of its n inputs to its n outputs) is at least
[log, (n!)] = nlogyn — nlog, e + o(n) as n — oo. For n = 27, the r-dimensional Benes
network gives a solution using nlogy, n — 4 switches. Waksman, and independently Gold-
stein and Leibholz, improved these networks using nlog, n —n 4+ 1 switches. We provide an
extension of this result to arbitrary values of n, using >, [log, (¢)] switches. The routing
algorithm used in Bene§ networks is also generalized for arbitrary values of n. Finally the

fault-tolerance issue of these networks is discussed.
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Réseaux de Waksman Généralisés
et leur Vulnérabilité

Résumé : Motivée par des problémes de conception de réseaux embarqués dans des
satellites de télécommunications, notre étude porte sur les réseaux de permutation réar-
rangeables composés de commutateurs binaires. Un simple argument de comptage montre
que le nombre de commutateurs nécessaires pour construire un réseau réarrangeable n X n
(capable de réaliser toutes les permutations de ses n entrées vers ses n sorties) est au moins
[log, (n!)] = nlogyn — nlog, e + o(n), quand n — oo. Pour n = 27, le réseau de Benes
de dimension r fournit une solution utilisant nlog,n — 5 commutateurs. Waksman, et
indépendamment Goldstein et Leibholz, ont amélioré cette construction en utilisant n log, n—
n+ 1 commutateurs. Nous donnons une généralisation de ce résultat pour toute valeur de n,
en utilisant Y7 | [log, (i)] commutateurs. L’algorithme de routage utilisé dans les réseaux
de Benes est également généralisé pour notre construction. Enfin, nous abordons la tolérance

aux pannes de ces réseaux.

Mots-clés : commutation, réseaux multi-étages, réseaux de permutation, réarrangeabilité,
tolérance aux pannes.



On Arbitrary Waksman Networks and their Vulnerability 3

1 Motivation

The following problem arises in the design of on-board networks in telecommunication satel-
lites. The purpose of these satellites is to relay incoming audio or video signals, via deter-
mined output amplifiers, according to the geographical areas targeted, the traffic variations
and/or the compatibility between signals and amplifiers. Incoming signals are routed to
output amplifiers through a network made of switching elements interconnected by wave-
guides. Each switching element can perform mechanically (by rotation) the two following

connections of its 4 ports:

Figure 1: Possible connections (states) of a rotative switch

Furthermore, once on board, amplifiers can fail and switches can lock definitively in one
state. In [1, 2] it is assumed that amplifier failures can occur and that any input signal can
be routed possibly to any output amplifier. In contrast, we consider in this paper the case
where amplifiers do not fail and where each incoming signal needs a specific amplifier.

For many reasons (layout properties, reliability, energy saving, etc), but mainly to de-
crease launch costs, it is crucial to minimize the network physical weight, i.e. to minimize
the number of switches, the number of links (waveguides) and their length. As launch costs
are dramatically high, it is worth saving even one switch. In case of switch locking the
problem becomes minimizing the number of additional switches needed to guarantee the
satellite’s purpose, despite a number of possible locked switches predetermined by the ex-
pected satellite lifetime. This difficult problem is tackled at the end of this paper in the
case of only one locking and will be the subject of a forthcoming paper [3] in the case of an
arbitrary number of faults.

A practical way to realize such networks is to refer to the classical multistage permutation
networks made of 2 x 2 switching elements (also called binary switches), which have been
well studied in the literature for both telecommunication and parallel applications. In this
model, each switch can be set in a direct or a crossed connection state as follows:

e s e_1 s
e1 S’ e1 _><_ S’

Figure 2: Settings of the binary switch

e S e S
e e
S S

Figure 3: Emulation of a binary switch by a rotative switch
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4 Beauquier & Darrot

Figure 3 shows that rotative switches of figure 1 and binary switches are functionally
equivalent. However, note that the implicit orientation (from left to right) of binary switches
as they are used in multistage networks restricts the use of rotative switches regarding their
actual capabilities.

The paper is organized as follows. In section 2 we recall some definitions and known
results on rearrangeable permutation networks. In section 3 we present a constructive way of
building an arbitrary size permutation network and we give the associated routing algorithm.
This construction is the best known at this time in terms of switch count and improves
previous results as shown by Table 1 (section 2) and by computation (section 4). Finally, in
section 5 we extend our results in case of one faulty switch.

2 Rearrangeable Permutation Networks

A switching network is an arrangement of switches and transmission links allowing some
input terminals (input signals in our case) to be connected simultaneously to some output
terminals (the amplifiers) by edge-disjoint paths. Such a network can potentially perform all
or only some of the possible connections of its inputs to its outputs, but is usually restricted
to one-to-one connections. A switching network with n inputs and n outputs is said to be a
rearrangeable permutation network if, for any one-to-one mapping 7 of the set of the inputs
on the set of the outputs, there exist a set of edge-disjoint paths connecting the input i to
the output 7 (), for each 1 < i < n.

As specified in section 1, we restrict ourselves to binary permutation networks constructed
solely from binary switches. However, our results can be easily extended to k-ary permuta-
tion networks where every switch can realize any mapping of its & inputs to its & outputs.

Since one binary switch has two possible settings, s switches have 2° settings. However,
note that this does not imply that s switches will realize 2° distinct network mappings, as
different settings may produce the same network mapping. But at least [log, (n!)] (nlog, n—
1.443n from Stirling’s formula) switches are needed to realize all n! possible mappings of a
network with n inputs and n outputs.

The first rearrangeable binary permutation networks were designed by Benes [4, 5, 6] and
were based on the Clos 3-stage network [7]. The r-dimensional Bene§ network can realize
any permutation of its n = 2" inputs to its n = 2" outputs on edge-disjoint paths, through
27 — 1 levels of 27~1 switches, for a total of nlog, n — 5 switches. Benes networks are thus
asymptotically optimal in terms of the switch count. The 3-dimensional 8 x 8 Bene§ network
is shown in Figure 4.

Further works by different authors [8, 9, 10, 11] have shown that one switch could be
spared at each step of the recursive construction of Bene§ networks, without affecting its
rearrangeability. We call Waksman networks the corresponding optimized networks, having
nlog, n —n + 1 switches, n being a power of two. The case n = 8 is shown in Figure 5.

Recently Chang and Melhem generalized Bene§ networks for any size n [12] and called
them AS-Benes (arbitrary size) networks. Although they wished to reduce the number of

INRIA
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Figure 4: 8 x 8 Bene§ network Figure 5: 8 x 8 Waksman network

switches used, their construction does not take into account the possibility of sparing one
switch in the even case of the recursion, presented here.

We call AS-Waksman networks our permutation networks. By denoting by S(n) the
number of switches used for any number n of terminals, we obtain:

S(n) = S([g-‘)+5([gJ)+n—l - Zn:[logQ(z')]. 1)
1=1

Note that this result is mentioned in a footnote on page 447 of [10] and is attributed to
M. W. Green, no publication being known though. Table 1 presents the values obtained by
the different constructions.

3 Network Construction

Three binary switches can be used to construct a 3 x 3 permutation network as shown in
Figure 6. This network can be seen as being built from a 2 x 2 network (a switch) and a 1x 1
network (a link). Figure 7 shows the 4 x 4 Waksman network using five binary switches. It
can be seen as being built from two 2 x 2 permutation networks.

Figure 6: 3 x 3 AS-Waksman Figure 7: 4 x 4 Waksman
network network

The procedures used to construct these networks can be generalized to recursively con-
struct a network of any size. Specifically, a n x n AS-Waksman network is constructed
recursively from a [§] x [§] AS-Waksman network and a [ 5 | x [ 5] AS-Waksman network.

RR n° 3788



6 Beauquier & Darrot

H Lower bound ‘ Benes [4] ‘ AS-Benes [12] ‘ Waksman [11] ‘ AS-Waksman

3

2 1 1 1 1 1
3 3 3 3
4 5 6 6 5 5
) 7 8 8
6 10 12 11
7 13 15 14
8 16 20 20 17 17
9 19 22 21
10 22 26 25
11 26 30 29
12 29 36 33
13 33 39 37
14 37 44 41
15 41 49 45
16 45 56 56 49 49
32 118 144 144 129 129

Table 1: Comparative switch count.

When n is even, the construction is similar to that of Waksman. The n inputs are connected
to 5 switches and each switch is connected to two § x § AS-Waksman networks. Any n —2
outputs are connected to 5 — 1 switches and each of them is connected to the two AS-
Waksman subnetworks. The last two outputs are connected directly to the two subnetworks
as shown in Figure 8(a).

To construct an AS-Waksman network when n is odd, any n — 1 inputs are connected
to | 5] switches and each switch is connected to a | §] x [ 5] AS-Waksman and a [F] x [F]
AS-Waksman. Similarly, any n — 1 outputs are connected to |3 | switches and each switch
is connected to the two AS-Waksman subnetworks. The last input and the last output are
connected directly to the [2] x [$] AS-Waksman subnetwork as shown in Figure 8(b).

This recursive process is illustrated in Figure 9 where a 9 x 9 AS-Waksman is built from
a 4 x 4 AS-Waksman and a 5 x 5 AS-Waksman. In general, a n x n AS-Waksman network
may be constructed in this way, for any n.

Remark. Notice that our connection rules allow many possible constructions, according
to which and how inputs/outputs are connected, and thus they define actually a family of

INRIA
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5 x5 21721
(a) n even (b) n odd

Figure 8: General construction of AS-Waksman networks

AS-Waksman networks. Nevertheless, in the figures and for the main proof, we suppose for
convenience that inputs 2k — 1 and 2k are connected to the same switch for 1 <k < %, as
well as outputs 2l —1 and 2/ for 1 <1 < "T’l, while the remaining connections are direct as
shown in Figure 8.

Figure 9: A 9 x 9 AS-Waksman network

Theorem 1 Given any one-to-one mapping ©™ of n inputs to n outputs in a n X n
AS-Waksman network, there is a set of edge-disjoint paths from the inputs to the outputs
connecting input i to output w(i) for 1 <i < m.

RR n° 3788



8 Beauquier & Darrot

Proof. The proof is by induction on n. If n = 1 or n = 2, the AS-Waksman network
consists of a single link or a single binary switch respectively and the result is obvious.
Hence, we assume that the result is true for the AS-Waksman networks of sizes || and
[5]. The key of the induction is to observe that the middle part of an AS-Waksman network
comprises two AS-Waksman subnetworks. Hence, it will be sufficient to decide whether each
path is to be routed through the upper or the lower subnetwork.

The only constraints that we have on whether paths use the upper or lower subnetworks
are that paths from inputs 2k — 1 and 2k must use different subnetworks for 1 < k < n/2,
as well as paths to outputs 2/ — 1 and 2! for 1 <1 < (n — 1)/2. This is because each switch
on the first and last levels of the AS-Waksman network has precisely one connection to each
of the upper and lower subnetworks. There is no choice when either the input or the output
is connected directly to a subnetwork.

The routing problem to realize any given permutation 7 can be reduced to a bipartite edge
coloring problem as follows. If n is even then let n = 2p and if n is odd then let n = 2p — 1.
Consider the bipartite multi-graph G, = (V, E) with vertex set V = {ug, v }1<p<p and
with edge [ug,v;] € E if there are ¢ € {2k — 1,2k} and j € {21 — 1,2l} such that (i) = j.
From this definition, it follows that G, has maximum degree 2. It is a classical result from
graph theory (see e.g. [13]), known as Konig-Hall’s theorem, that the edges of a bipartite
multi-graph of maximum degree A can be colored using exactly A colors, so that adjacent
edges are assigned different colors.

Now we assume that the edge coloring problem is solved for G, using two colors and we
show how this leads to a routing of the permutation 7 in the n x n AS-Waksman network.
Let color 1 be the color assigned to the edge [u [x=1(n)/2]» vp]. Note that the path connecting
input 7=1(n) to output n must use the lower subnetwork. Thus, for each i we decide
to route the path from input ¢ to output 7« (¢) through the lower subnetwork if the edge
[u [i/2]5 V[r(s) /ﬂ] has color 1 and through the upper subnetwork if it has color 2. In case of
n odd, another constraint is that the path connecting input n to output «(n) must use the
lower subnetwork. However, the edge [u,, Urx(n)/27] has necessarily color 1, due to a parity
argument.

In this manner, all paths are assigned the upper or lower subnetworks without conflict,
i.e. we can set the switches at the first and last levels of the AS-Waksman network so that
both ends of every path are connected to the same subnetwork. The remainder of the path
routing and switch setting is handled by induction in the subnetworks. Hence, we have
established the inductive hypothesis, thereby proving the theorem. O

As an example, we illustrate the routing algorithm in Figure 10 for the mapping

1 23 456 7 89
T =
8 76 91 4 3 2 5
in a 9 x 9 AS-Waksman network, color 1 being black. The associated bipartite multi-
graph G is drawn on the left and the edge coloring induces the subnetwork assignment for

each connection between i and 7(7). The routing inside each subnetwork can be obtained
recursively by the same procedure.

INRIA
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Figure 10: Routing a permutation in a 9 x 9 AS-Waksman by bipartite edge coloring

4 Switch Count

In this section, we compute S(n), the number of binary switches used for a nxn AS-Waksman
network.

Theorem 2 For any n > 1, the number of binary switches used for the rearrangeable n X n
AS-Waksman permutation network is S(n) =Y -, [log, (4)].

Proof. The proof is by induction on n. As S(1) = 0, the result is true for n = 1. From
the recursive construction given in section 3, we have, for any n > 2:

st = s([2]) +s ([3]) +n -1 g

Note that for any two positive integers ¢ and r, if we have 27! < ¢ < 27, then we have
2" < 2 — 1< 2i < 2" hence [log, (20 — 1)] = [log, (2i)] = [log, (i)] + 1. Thus, recalling
that log, (1) = 0, we have:

[n/2] [n/2]
S(n) = Z [log, (4)] + Z [log, (4)] +n —1 (3)
i=1
[n/2] [n/2]
= > (Mogy ()1 +1)+ > ([logy (i) +1) (4)
1=2 =1
[n/2] [n/2] n
= Y [og (2i = 1)1+ Y [logy (20)] Zflogz ()
=2 =1 j=1
The inductive hypothesis being satisfied, the proposition holds. O

RR n° 3788



10 Beauquier & Darrot

Corollary 3 For anyn > 1, S(n) < nlog,n —0.91n + 1.

Indeed, a different computation approach can give a more expressive value: S(n) =
nlogyn — n(2* — X) + 1, where A = [log, (n)] — log, n. This allows to estimate the worst
case obtained for A = —log, (log, €) ~ 0.53. Note that when n is a power of two, it can be
computed by induction that S(n) = nlog,n —n + 1, as already obtained by Waksman [11].

5 Fault-Tolerance Issue

Now, we consider the possibility for switches to lock and to remain definitively in the same
state. A switching network with n inputs/outputs is said to be a k-tolerant permutation
network if, for any one-to-one mapping 7 of the inputs on the outputs and for any k switches
locked each in some state, there is a set of edge-disjoint paths connecting the input i to the
output 7(7), for each 1 < ¢ < n. We denote by N(n, k) the minimum number of switches for
such a network. In this paper, we restrict ourselves to 1-tolerant permutation networks.

Theorem 4 For anyn > 1, N(2n,1) < 2N(n,1) + 2n.

Proof. The proof is based on the construction illustrated in Figure 11. Both the 2n
inputs and the 2n outputs are connected two by two to 2n switches and each switch is
connected to two 1-tolerant permutation networks of size n. We claim that this 2n x 2n
network, made of two n X n 1-tolerant networks using each N(n,1) switches, is a 1-tolerant
permutation network.

Actually, we have a stronger result: any permutation can be realized despite one faulty
switch in each subnetwork, plus one faulty switch at the first or last level. Indeed, in this
case each subnetwork can still handle by assumption any mapping of its n inputs to its
n outputs. Moreover, one switch locking at the first or last level corresponds to have the
two associated inputs or outputs directly connected to the two subnetworks, similarly to
the construction of even AS-Waksman networks. Thus, the arguments used in the proof of
Theorem 1 can be easily adapted to decide through which subnetwork each path is to be
routed, thereby proving our claim. O

Unfortunately, no similar good construction is known for the odd case. Note also that
the construction for the even case is not necessarily the best possible, in particular for
n = 4. The last result is thus interesting only to build a twice larger 1-tolerant permutation
network when a good one is already known. For this purpose, we present now in Figures 12,
13, 14 and 15 some 1-tolerant networks obtained by hand for n = 3, 4, 5 and 6 respectively.
For space reasons, proofs are omitted but can be done by restricted case analysis. These
constructions together with the proof of Theorem 4 give rise to the summary of results
presented in Table 2.

INRIA
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1 onxn |
| 1-tolerant |

| nxn |
‘| 1-tolerant |:

Figure 11: Construction of even 1-tolerant permutation networks

VSV AVt eVl

Figure 12: 1-tolerant 3 x 3 network Figure 13: 1-tolerant 4 x 4 network
Figure 14: 1-tolerant 5 x 5 network Figure 15: 1-tolerant 6 x 6 network
Size 213|456 |8 10|12 |16

Switches || 2 | 5| 7| 11 | 14 | 22 | 32 | 40 | 50

Table 2: Number of switches for 1-tolerant permutation networks.

6 Conclusion

This paper has provided a simple way for building rearrangeable permutation networks of
arbitrary size n using > ., [log, ()] binary switches. An efficient algorithm for routing
any permutation in such networks has been given. The fault-tolerance issue has also been
tackled in the case of one locked switch. It is worth pointing out that all these results can
easily be adapted for rearrangeable networks using p-ary switching elements.

In a forthcoming paper [3], the fault-tolerance results will be extended by presenting
constructive ways for building k-tolerant permutation networks, for any number k of switch
faults.

RR n° 3788
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