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Abstract: This paper presents a novel variational method for image segmentation which
is obtained by unifying boundary and region-based information sources under the Geodesic
Active Region framework. A statistical analysis over the observed density function (image
histogram) using a mixture of Gaussian elements, indicates the number of the different
regions and their intensity properties. Then, the boundary information is determined using
a probabilistic edge detector, while the region information is given directly from the observed
image using the conditional probability density functions of the mixture model. The defined
objective function is minimized using a gradient-descent method where a level set approach
is used to implement the resulting PDE system. According to the motion equations [PDE],
the set of initial curves is propagated towards the segmentation result under the influence
of boundary and region-based segmentation forces, and being constrained by a regularity
force. The changes of topology are naturally handled thanks to the level set implementation,
while a coupled multi-phase propagation is adopted that increases the robustness and the
convergence rate by introducing a coupled system of equations for the different level set
functions. Besides, to reduce the required computational cost and to decrease the risk of
convergence to a local minimum, a multi-scale approach is also considered. The performance
of our method is demonstrated on a variety of synthetic and real images.
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Couplage des Régions Actives Géodésiques pour la
Segmentation d’Image

Résumé : Dans ce rapport, nous présentons une approche variationnelle pour traiter le
probléme de la segmentation d’image a I’aide du modéle de Régions Actives Géodésiques
qui permet de prendre en compte de maniére unifiée les informations liées aux régions et
aux contours.

En premier, 'histogramme de 'image observée est approximé par une mixture de Gaus-
sienne. Cette densité de probabilité est ensuite utilisée afin de déduire le nombre de régions
et leurs propriétés statistiques. Les contours des régions sont ensuite caractérisés par une
analyse statistique qui permet de définir une énergie qui inclut aussi bien un terme de région
qu’un terme de contour. L’équation d’Euler-Lagrange associée a la minimisation de I’énergie
est alors résolue & 'aide de la méthode des courbes de niveaux. Un ensemble de courbes
initiales va ainsi se déplacer sous I'influence d’une contrainte de régularite et de forces asso-
ciées aux contours et aux régions. Les changements de topologie sont naturellement traités
grace & la mise en oeuvre d’une approche & base de courbes de niveau. Afin d’augmenter
la robustesse de I’approche et pouvoir par exemple segmenter aussi bien les éventuelles par-
ties intérieures qu’extérieures des régions, nous proposons et développons une propagation
multi-phase 4 base d’un systéme d’EDP couples. Afin de réduire le cott de calcul exigé, une
approche multi-échelle est considérée. Plusieurs résultats expérimentaux, obtenues & partir
de séquences d’images réelles, illustrent les diverses potentialités de cette approche.

Mots-clés : Segmentation d’image, régions actives géodésiques, théorie de courbes de
niveau, propagation multi-phase, segmentation multi-échelle.
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1 Introduction

The segmentation of a given image [15, 23, 27, 31], is one of the most important techniques
for image analysis, understanding and interpretation. Besides, it is required as a low-level
step to a large number of high level computer vision tasks.

Feature-based image segmentation is performed using two basic image processing tech-
niques: the boundary-based segmentation (which is often referred as edge-based) relies
on the generation of a strength image and the extraction of prominent edges, while the
region-based segmentation relies on the homogeneity of spatially localized features and
properties.

e Early approaches for boundary-based image segmentation have used local filtering
techniques such as edge detection operators [6, 16]. These approaches are a compro-
mise between simplicity, with accompanying light computational cost and stability
under noise, but have difficulty in establishing the connectivity of edge segments. This
problem has been confronted by employing Snake/Balloons models [14, 26] which can
provide a closed curve as a compromise between regularity of the curve and high gradi-
ent values among the curve points. This type of approaches have been extensively used
to deal with the image segmentation problem [21, 25]. Their main handicap is that
they require a good initialization step. Recently, the geodesic active contour model
has been introduced [7, 28] which combined with the level set theory [33] deals with
the above limitation resulting in a very elegant and powerful segmentation tool.

Although for many real cases the use of boundary-based segmentation methods are
inappropriate, they provide some important advantages. Shape variations are natu-
rally handled and they are not sensitive to global illumination changes due to the fact
that they rely on relative illumination changes, rather than the absolute illumination
intensities. Additionally, these methods require low computational cost and localize
better the region/object boundaries.

e The region-based methods are more suitable approaches for image segmentation
and can be roughly classified into two categories: The region-growing techniques
[2, 4, 29, 43] and the Markov Random Fields based approaches [5, 17, 19]. The region
growing methods are based on split-and-merge procedures using statistical homogene-
ity tests, where the statistics are generated and updated dynamically, while the manner
with which initial regions are formed and the criteria for splitting and merging them
are set a priory. The resulting segmentation will inevitably depend on the choice
of initial regions, while irregularities on the boundaries will appear since the region
shapes depend on the particular growing algorithm. Another powerful region-based
tool, which has been widely investigated for image segmentation, is the Markov Ran-
dom Fields (MRF) [20]. In that case the segmentation problem is viewed as a statistical
estimation problem where each pixel is statistically dependent only on its neighbors
so that the complexity of the model is restricted. The segmentation is obtained by
finding the maximum a posteriori map given the observed data. The main advantage
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4 Nikos PARAGIOS and Rachid DERICHE

of this type of approaches is that they are less affected from the presence of noise, and
provide a global segmentation criterion. The optimization problem turns to be equiv-
alent with the minimization of a global objective function and is usually performed
using stochastic (Mean-field, Simulated Annealing) or deterministic relaxation algo-
rithms (Iterated Conditional Modes [3], Highest Confidence First [12]). Although the
MRF-based objective function is a very powerful model, usually it is time consuming
(especially when the solution space is large), which might be perceived as a handicap.

e Finally, there is a significant effort to integrate boundary-based with region-
based segmentation approaches [9, 13, 22, 36, 37, 39, 42, 43]. The difficulty lies
on the fact that even though the two modules yield complementary information, they
involve conflicting and incommensurate objectives. The region-based methods attempt
to capitalize on homogeneity properties, whereas boundary-based ones use the non-
homogeneity of the same data as a guide.

In order to better introduce the proposed approach and to demonstrate the new key
issues with respect to the existing ones, some of the most representative as well as most
closely related segmentation approaches with the one proposed in this section, are following.

Kass, Witkin and Terzopoulos in [26] have proposed the snake model for image segmenta-
tion, that aims at minimizing a curve-based objective function towards a regular curve that
is attracted by pixels with important gradient values. Cohen in [14] has proposed a modi-
fication of the snake model by adding a pressure force that helps it to avoid local minima.
Finally, Caselles, Kimmel and Sapiro in [8] and Kichenassamy et al in [28] have proposed
the geodesic active contour model, which combined with the level set theory overcomes a
large number of limitations imposed by the classical snake model and provides a powerful
tool for image segmentation. A similar model (implemented within the level set framework)
that is based on a geometric-based minimization approach was proposed by Malladi, Sethian
and Vemuri in [30].

Beveridge et al in [4] have proposed a region growing segmentation algorithm that makes
use of local histogram picks to determine the number and the form of the initial regions.
Then, this number is decreased by performing a region growing phase. This method has
been successfully exploited to deal with multi-modal/multi-feature data.

Adams and Bischof in [2] have proposed a seeded region-growing algorithm for image
segmentation. Their approach is based on region growing but is also very close to the
watershed mechanism. The region growing is controlled using a small number of pixels
that refer to the seeds, and can provided very satisfactory results without involving many
parameters.

Leonardis, Gupta and Bajesy in [29] have proposed a method for segmenting range im-
ages into planar and second order surfaces. This approach consists of two steps; the model-
selection and the model-recovery, that are solved sequentially within an iterative procedure
where partially recovery of the models is followed by model selection (optimization proce-
dure) that rejects the “weak” models. This interactive sequentially procedure is performed
until convergence.

INRIA
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Derin et al in [17], have proposed a recursive MRF-based segmentation algorithm. This
algorithm makes use of a Bayes smoothing operation that yields to the a posteriori distribu-
tion of the real scenes (segmentation) values given the noisy image. However, the assumption
that the given image is corrupted by white noise constrains the model applicability.

Geiger and Yuille in [19], have proposed a Bayesian framework that unifies several ap-
proaches of image segmentation. This approach is implemented in the context of Markov
Random Fields, where a very flexible objective function is defined that can be transformed
to several well known image segmentation techniques by modifying its parameters. This
method is quite general and seems to have an impressive performance.

Haddon and Boyce in [22] have proposed a two-stage segmentation method. An initial
pixel classification is obtained by analyzing the distributions of the co-occurrence matrices.
The local consistency of pixel classification is then implemented and updated by maximizing
the entropy of local information, where region information is expressed via conditional prob-
abilities, which are estimated from the co-occurrence matrixes. Additionally, the boundary
information is expressed via conditional probabilities, which are determined o priori.

Pavlidis and Liow in [36] have proposed a method that combines region growing and
edge detection for image segmentation. The first stage of this approach relies on a split-and-
merge algorithm that aims at providing an over-segmented result. Then, the output of the
split-and-merge procedure is combined with boundary criteria and measurements resulting
on the final segmentation map (during this step, the initial region boundaries are either
modified, or totally eliminated).

Pentland in [37] has proposed a specific application that performs segmentation and
modeling. This approach is divided into two stages. During the first stage the input image
is segmented into convex components. The second stage relies on fitting parametric 3D
deformable models to the segmented image. However, this approach has limited applicability
set.

Bouman and Shapiro in [5], have proposed a multi-scale Bayesian formulation for image
segmentation that minimizes the size misclassified regions and decreases drastically the re-
quired computational cost. Furthermore, the authors have proposed a method to determine
optimally the model parameters.

Mumford and Shahin [32] have proposed a variational framework for segmenting an image
into homogeneous regions. Their method combines three different aspects: the length of the
hypothetical boundary, the gradient values among the boundary pixels and the difference
between the given image and a smooth version of it. Additionally, a regularity constraint is
imposed for the boundary.

Chakraborty et al in [9], have proposed a technique that integrates gradient and region
information within a deformable boundary finding framework. Zhw and Yuille in [43] have
proposed a statistical variational approach which combines the geometrical features of a
snake/balloon model and the statistical techniques of region growing. This approach has
been recently implemented with the level set framework in [40].

Samson et al in [38] have proposed a supervised classification model that aims at finding
a partition composed of homogeneous regions. They assume that the number of classes

RR n° 3783
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Figure 1: Multi-phase Coupled Geodesic Active Regions for Image Segmentation: the flow
chart.

as well as their intensity properties are known, and formulate the classification problem
using a variational framework, that aims at propagating mutually exclusive regular curves
towards the different classes. The curve propagation is implemented using the level set
theory. However, this model assume important prior knowledge, is very sensitive to the
initial conditions and does not make use of any “edge’-based information.

A similar framework is proposed by Chan and Vese in [10]. This model follows the
same principle with the one in [38] but is constrained by a bi-modal assumption, where the
input image is assumed to be a synthesis of two classes. However, this model deals with
the un-supervised image segmentation case, where there is no need of a priori knowledge.
Similarly with the approach in [38], the curve propagation is implemented using the level
set theory. This model is sensitive to the initial curve conditions and does not make use of
any “edge”-based information.

Here, we will present a unified approach for image segmentation that incorporates bound-
ary and region information sources under a curve-based minimization framework. This
framework is exploited directly from the Geodesic Active Region [34, 35] model and
presents some very nice properties. This approach is depicted in [fig. (1)].

The first stage refers to a modeling phase where the observed histogram is approximated
using a mixture of Gaussian components. This analysis denotes the regions number as
well as their statistics, since a Gaussian component is attached to each region. Then, the

INRIA
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segmentation is performed by employing the Geodesic Active Region model. The different
region boundaries are determined using a probabilistic module by seeking for local disconti-
nuities on the statistical space that is associated with the image features. This information
is combined with the region one, which is expressed directly from conditional probabilities,
resulting in a geodesic active region based segmentation framework. The defined objective
function is minimized with respect to the different region boundaries (multiple curves) using
a gradient descent method, where the obtained equations are implemented using the level set
theory. Moreover, the set level set equations are coupled by demanding a non-overlapping
set of curves since each pixel of the image cannot belong to more than one region. The
resulting model deals automatically with the changes of topology thereby allowing either
several sub-regions with the same intensity properties to be the output of a single initial
curve, or a single curve to be the output of multiple initial curves. Finally, the objective
function is used within the context of a coarse to fine multi-scale approach that increases
the convergence rate and decreases the risk of converging to a local minimum.

The reminder of this paper is organized as follows. In section 2 the problem of deter-
mining the number of regions and their intensity properties is considered, while in section 3
a Geodesic Active Region-based approach for image segmentation is proposed. The imple-
mentation issues of this approach are examined in section 4, while the coupling between the
different level set functions is introduced in section 5. Section 6 contains the final form of
the proposed segmentation paradigm that is considered in a multi-scale approach presented
in section 7. Finally, conclusions and discussion appear in section 8.

2 Regions and their Statistics

In order to simplify the notation and to better and easier introduce the proposed model, let
us make some definitions:

e Let I the input image, and let H(I) be the observed density function (histogram) of
this image,

e Let P(R) = {R; : i € [1,N]} be a partition of the image into N non-overlapping
regions, and let P(R) = {OR; : i € [1, N]} be the region boundaries,

e And, let h; be the segmentation hypothesis that is associated with the region R;.

The key hypothesis that is made to perform segmentation relies on the fact that the
image is composed of homogeneous regions. This can be easily projected to the probability
density space that is associated with the image features (histogram) by assuming that each
region is represented to the observed density function with a Gaussian element.

Let p() be the probability density function with respect to the intensity space of the image
I (determined directly from the histogram H(I)). If we assume that this probability density
function is homogeneous, then an intensity value x is derived by selecting a component k

RR n° 3783
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with a priori probability P, and then selecting this value according to the distribution of
this element pi (). This hypothesis leads to a mixture model of Gaussian elements

N
pz) = Z Py pr(z)
k=1

1 _(E—I‘k)z
252
) =
k

where
e N is the number of mixture components (regions number),
e P is the a priori probability of the component k,

e And pi() is the intensity probability density function that is followed by the component
k.

This mixture model consists of a vector © with 3N+1 unknown parameters © = {(Px, tix, 0%) :
kell,.., N}

e The number of components [N],
e The a priori probability of each component [P],

e And, the mean [u] and the standard deviation [o%] of each component.

Hence, there are two key problems to be dealt with: the determination of the compo-
nents number, and the estimation of the unknown parameters © of these components. The
component number is derived automatically from the observed density function by looking
for local maxima that initially correspond to the mean intensity values within the different
regions.

Thus, the observed probability density function (discrete image histogram) is sorted
according to the probability values and is processed hierarchically as follows:

INRIA
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i. The most probable un-processed intensity value is considered,

ii. if  this value corresponds to a local maximum (histogram peak),
then it is considered as an eligible mean value.

if it presents a certain distance from the already selected mean values,

the component number is increased by one and the candidate

th . .
en value is added to the initial set of components.

else  go to step i.

else go to step i.

iii. if there are still un-selected values, then go to step i.

To depict the above flow-chart, an intensity value is selected as a candidate component
mean value if it refers to a local maximum and satisfies a distance constraint with respect
to the already selected ones !.

Then, given the component number and an initial estimation of the unknown parame-
ters 2, the final estimation is obtained using an iterative scheme that is derived from the
Maximum Likelihood Principle [18] where the parameter vector (P, ©) is the value of (P, ©)
that maximizes the joint density.

Moreover, a correction step is performed to the a posteriori estimates that eliminates the
components with insignificant probability. Then, same principle is applied to re-estimate the
parameter vector of the mixture model (the component number is decreased). The efficiency
of the method is demonstrated in [fig. (2,6)].

3 Geodesic Active Regions for Image Segmentation

Given the region number as well their expected intensity properties, we can proceed to the
segmentation phase of the proposed approach within the Geodesic Active Region model.

3.1 Setting the Boundary Information

The first demand of this model relies on extracting some information regarding the real
boundaries of each region. This can be done by employing an edge detector, thus by seek-
ing for high gradient values on the input image. Given the hypothesis that this image is

LAn alternative choice is the selection of the components number manually, by the user. This can be
done by employing a small distance constraint that gives a large number of initial components. Then, the
requested number is reached by eliminating successively the component with the smallest a priori probability.

2The standard deviation values are estimated using the first and the second order density moments, while
the assumption that all components are equally probable is used to determine the a priori probabilities.

RR n° 3783



10 Nikos PARAGIOS and Rachid DERICHE
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Figure 2: (a) Input Image, (b) Image Histogram and its approximation: Components Num-
ber: 4, Mean Approzimation Error: 1.04641e-05, Iterations Number: 117, (c) Region Inten-
sity Properties [Component 1: black pants, Component 2: background, Component 3: (hair,
t-shirt), Component 4: skin].

composed of homogeneous regions, this method will provide reliable global boundary infor-
mation. However, this information is blind, since its nature cannot be determined. In other
words, a pixel with important gradient value (boundary pixel) cannot be attributed to the
boundaries of a specific region [OR,].

Here, an alternative method is proposed to determine the boundary-based information.
Let s be a pixel of the image, N(s) a partition of its neighborhood, and the Ng(s) and
N1 (s) be the regions associated with this local partition. Moreover, let p(By|I(N(s))) be
the boundary probability density function with respect to the k hypothesis. This
function measures the probability of a given pixel s with observed intensity values I(N(s))
in its neighborhood of being at the boundaries of the k region. Then, this probability is
given by the Bayes rule as follows

P(BlI(N(s))) = %pww -

P(I(N(s))|Bi)_
P(I(N(s))I[BE] O [Be])

p(B) (2)

where

e p(I(N(s))|Bk) is the conditional boundary probability with respect to the &
hypothesis (s belongs to the & boundaries),

e p(I(N(s))|Bx) is the conditional non-boundary probability with respect to the
k hypothesis (s does not belong to the & boundaries),

INRIA
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Figure 3: (a) Neighborhood partition that indicates a boundary point, (b) Neighborhood

partition that indicates a non-boundary point, (¢) Neighborhood partitions that are con-
sidered.

e p(I(N(s))) is the probability of observing the neighborhood values I(N(s)) globally
in the image. This probability can be determined by assuming that this neighborhood
values either refer to a k boundary point s [p(I(N(s))|Bk)], or to a non-k boundary
point [p(I(N(s))|B)]-

e Finally, p(B) is the a priori boundary probability.

Due to the fact that the a priori boundary probability is a constant scale factor, it can be
ignored. Moreover, the conditional boundary [p(I(N(s))|Bx)] as well as non-boundary prob-

ability density function [p(I(N(s))|Bx)] can be estimated directly from known quantities.
Thus, if s is a boundary pixel of the k& hypothesis, then

k Boundary Condition [fig. (3.a)]:

i. Either there is a partition [Ny(s), Ngr(s)] where the most probable assignment for
Ni(s) is k and for Ng(s) is j,[j # k]:

[NL(s) € R N Nr(s) € R;],

ii. Or, there exist a partition [NL(s), Ng(s)] where the most probable assignment for
Ni(s)is 4,[j # k] and for Ng(s) is k:

[Nr(s) € Rj N Nrg(s) € Ri].

Thus, the k conditional boundary probability can be estimated directly from known
quantities as follows,

RR n° 3783
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P(I(N(s))|Br) = p([Nc(s) € Ri N Nr(s) € Rj]U[Ne(s) € R; N Nr(s) € Ri] [I(N(s)))

= pr(I(N&())) pi(I(Ni(s) + piI(Nr(s)) pe(I(Nz(s))) (3)
NR(s)GRk‘I’:NL(s)GR]- NR(s)eR]-l:NL(s)G’Rk

where

- p(I(Ng(s))) is the probability of “right” local region [Ng(s)] being at the k region,
given the observed intensity values within this region [I(Ng(s))],

- p;(I(Nr(s))) is the probability of “left” local region [Nz (s)] being at the j region, given
the observed intensity values within this region [I(Ng(s))].

Moreover, if s is not a k boundary pixel [fig. (3.b)], then for every possible neigh-
borhood partition the most probable assignment for N (s) as well as for Ng(s)
is either the k, or i and j where {i,j} # k. As a consequence, the conditional k
non-boundary probability is given by,

PU(N()|B) = p([Nr(s) € Ri N Na(s) € Ri] U[Nr(s) € Ri N Nr(s) € Ri] |I(N(s)))
= pr(I(N&(s))) pe(I(Ni(s))) + pi(I(Nr(s))) pi(I(Nrs)))

(4)

where {i,j} can be intendical. Then, the probability of a pixel s being at the boundaries of
k region, given a neighborhood partition N(s) is defined as

PUNG)IB)
P(I(N(s))[Bx) + p(I(N(s))|Bx)

Given the definition of the probability for a pixel s being a k boundary point, the next
problem is to define the neighborhood partition. We consider four different partitions of
the neighborhood (the vertical, the horizontal and the two diagonals) [fig. (3.b)]. These
partitions can be obtained by assuming four different orientations [6 = {0, %, %, 2% }]; it
has been found experimentally that the optimal neighborhood regions are 3 x 3 directional
windows. The use of 1 x 1 windows creates quite instable measurements, while the use of
5 x 5 windows smoothes significantly the region boundaries. We estimate the boundary

probability by using the mean values over these windows, and we generate the vector:

(5)

PBy (5> =

m 7r 3
Buls0) = [p(BiI(-0.0), p (Bl )s b (Belt(. 2), p(Bel1(. 2]
where the vector elements correspond to the boundary probabilities with respect to the
different neighborhood partitions. Then, the boundary information [pg k(s)] for the given
pixel s with respect to the k region is determined by the highest component value of the
boundary information vector Bi(s,6). The same procedure is followed for all regions, given

INRIA
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Figure 4: Boundary information with respect to the different regions for the woman image
[fig. (2.a)]. (a) Region 1 (black pants), (b) Region 2 (background), (c) Region 8 (hair,
t-shirt), (d) Region 4 (skin).

their intensity properties (Gaussian component) resulting on N boundary-based information
images [pp,k(s) : k € [1,N]]. A demonstration of the extracted boundary information using
this framework can be found in [fig. (4)].

Practically, the pixel-wise boundary information is estimated as follows: Initially, this
information for all pixels and for all hypotheses is equal to zero [Vi € [1,N]: pg,i(s) = 0].
Then, for each pixel, the four possible neighborhood partitions are considered. Moreover,
for each partition the probabilities for the two local regions with respect to the different
region hypotheses are estimated. Then, the most probable labeling assignments [h;, h..] with
respect to the local regions (left, right) are considered:

i. If these assignments refer to the same hypothesis [h; = h,], then the existing estimates
of the boundary information are not affected,

ii. On the other hand, if these assignments are different [h; # h,] then the temporal
boundary probabilities with respect to these two [hy, h,] hypotheses are given by

DB, (8) = DBt (8) = P, (I(NL(s))) pe,(I(Nr(s)))
T gD p IR + p T W) 2 T W)

~~ ~~
boundary probability non—boundary probability

where the conditional non-boundary probability is the one that maximizes the joint
probability of the two local regions given the observation set I(Ng(s)), and is given

RR n° 3783
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by

{z € {l,r}: max, [p,, (I(NL(5)))ps, (Li(Nr(s))]}

If these boundary probabilities [pg.+,(s), B+, (8)] are superior to the existing ones
[pB,4 (), pB.1,(8)], then, they are used to update the old ones

p.u(s) =Ppu(s), P (5) = DB (5)-

Finally, the boundary information with respect to the k hypothesis for a given pixel s is
given by the density function [pp r(s)]. However, this information can be combined using
other boundary-based information sources (high gradient values, etc.).

3.2 Setting the Region Information

As far the region-information is concerned, it can be expressed directly from the Gaussian
elements of the mixture model [p;()] estimated in the observed image [p;(I(s))].

3.3 Setting the Energy

Then, the segmentation task can be considered within the geodesic active region framework.
According to this model the best segmentation map is determined using a set of regular
curves, where each curve [OR;]:

i. Is attracted by the boundaries of a specific region [R;],

ii. Defines an interior region with maximum joint segmentation probability given the
observed intensities and the expected ones [p;()].

This map is obtained by minimizing following objective function,

’

E(P(R) = a Y [[ —log (b 1(2.9))) dody +
1=1 R, .

region fitting

N 1 .
(1-a) Y [ gon.ORe)) om)  JOR(ed] e

~~

\ boundary attraction regularity constraint
where

- OR;(c;) is a parameterization of the region R; boundaries into a planar form,

22

. . . 2
- and g(z,0p) is a Gaussian function: [g(a:,aB) = \/%U e B
b
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Within this framework the set of the unknown variables consists of the the different
region boundaries (curves) [OR;]. Let us now try to interpret the defined objective function,
which is composed of 2N terms (N regions, two terms for each region). For each region R,
it aims at finding a curve OR; with the following properties:

¢ Regularity

It is regular and smooth,

¢ Region Fitting

It defines an interior region, that is composed of pixels with observed intensity prop-
erties close to the expected ones that are determined by the distribution [p;()].

e Boundary Attraction

It is attracted by pixels which belong to the real region boundaries of R;. These
boundaries are determined using the ¢ conditional boundary probability [ps,:()]-

3.4 Minimizing the Energy

The defined objective function is minimized using a gradient descent method. Thus, the
system of the Euler-Lagrange motion equations with respect to the different curves (one for
each region) is given by:

( Vie[l,N],
0 0 o [ BUORD T a1
aaRz(cz) = 1og e @R (1)) Ni(OR:i( z))} +(1-a)
< Region—b:sed force

(9(pB,i(0Ri(ci)), o B)Ki(ORi(ci)) + Vg(pB,i(ORi(ci)), oB) - Ni(ORi(ci))) Ni(ORi(ci))

~

\ Boundary—based force

(7)

where K; (resp. N;) is the Euclidean curvature (resp. normal) with respect to the curve
aRi(Ci).

Moreover, the assumption that the pixel OR;(¢;) lies between the regions R; and
Rr, was done implicitly to provide the above motion equations which are composed of
two forces, both acting in the direction of the inward normal:

i. A region-based force that aims at moving the curve towards the direction that maxi-
mizes the a posteriori segmentation probability. Thus, if the propagation of curve OR;
is considered and s is one of its pixel, then:
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o If this pixel really belongs to R;, then this force is negative and aims at expanding
the curve

pi(1(s)) pi(1(s))
Pri(1(s)) Pr; (1(s))

e While, if this pixel does not belong to R;, then this force is positive and aims at
shrinking the curve

s €R; = pi(1(s)) > pr,(1(s)) = > 1= —alog [ ] <0,

pi(I(s))
pr;(1(s))

i. And, a boundary-based force that aims at shrinking the curve towards the region
boundaries constrained by the curvature. This force is composed of sub-forces:

s € Ri, = pi(I(s)) < pr;(I(s)) = < 1= —alog [ ] > 0.

e The first moves the curves towards the region boundaries, constrained by the
curvature,

e While the second adjusts the curve towards the real region boundaries (the cur-
vature does not affect this term).

The above system of equations relies on a multi-phase curve propagation (one
for each region), where the interaction between the different curves is obtained
thanks to the region-based term.

4 TImplementation Issues

The obtained motion equations can be implemented using a Lagrangian approach, where
we produce equations of motion for the position vector R (c,t), and then updating these
position using difference approximation scheme. However, there are several problems with
this approach. The main problem is that the evolving model is not capable to deal with
topological changes of the moving front.

This can be avoided by introducing the work of Osher and Sethian [33]. The central idea
is to represent the moving front 9R(c, t) as the zero-level set {Pp(OR(c, t),t) = 0} of a function
¢. This representation of 9R (¢, t) is implicit, parameter-free and intrinsic. Additionally, it is
topology-free since different topologies of the zero level-set do not imply different topologies
of ¢. It easy to show, that if the moving front evolves according to

%872(0, t)=F(p) N

for a given function F', then the embedding function ¢ deforms according to

%qs(p, t) = F(p) |Vé(p,1)]
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For this level-set representation, it is proved that the solution is independent of the embed-
ding function ¢, and in most of the ases is initialized as a signed distance function.

Thus, the system of motion equations that drives the curve propagation for segmentation
is transformed into a system of surfaces evolution given by,

Vi€l N],
O, (O oy

(1 — o) (g(pB,i(s),0B)Ki(s) |Véi(s)| + Vg(pB,i(s),08) - Vbi(s))

The main assumption that has been considered to obtain these equations is that a given
pixel s of the i curve lies between the regions ¢ and k,. However, the region Ry, might not
be known during the evolution of the level set function ¢;. Hence, a temporal assignment is
required to continue the evolution process. This issue can be dealt with by assuming that
the region k; is the one that corresponds to the most probable hypothesis 2, different from
i.

Thus, the hypothesis k; is determined by seeking the hypotheses set {j € [1, N]} and es-
timating the conditional probabilities [p;(I(s))] according to the observed value I(s). Then,
the hypothesis that is different from i and presents the maximum conditional probability is
selected.

Moreover, analyzing the motion equations (7,8), some hidden problems might be observed
due to the fact that the region forces are estimated using a single intensity-based probability
value. This force seems to be plausible, since in the ideal case, the Gaussian components do
not overlap and the segmentation decision can be taken with a lot of precision. However,
for real image segmentation cases this situation is met very rare, since the most common
case refers to slightly overlapping Gaussians, while the worse to Gaussians with close mean
values and different variances. Furthermore, due to presence of noise, isolated intensity
values incoherent with the region properties can be found within it. As a consequence, it is
quite difficult to categorize a pixel, based on its very local data (single intensity value).

To cope with these problems, a circular window approach can be used, as proposed in
[43]. Hence, a centralized window W (s) of m pixels is defined locally around s and the

probability term [p;(I(s))] is replaced with the joint probability l I »( (v))] within
vEW(s)
the local window. Hence, the objective function is modified as,

3This assumption also is not always valid since there are cases where due to the initial curve conditions, a
pixel is not attributed to any region or it lies between two regions where the second is not the most probable
one. However, an alternative method to define the py, (1(s)) region probability will be presented later.
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BP®) =(1-0) Y [ 90n0Rie)).00) [oRuleo)| des +

N 9)
o ZZ/ ﬁ // G, (4, v)log (pi (I(u, v))) dudv| dzdy

j W (z,y)

where the function G ,(u,v) follows a Gaussian form and accounts for the distance of the
pixel (u,v) from the window center (z,y). This function gives more importance to the
pixels that are close to the window center, while the pixels that are far away from the
actual position are less considered. Moreover, this function is inversely proportional to the
geometric distance from the window center. Finally |W| is a normalized constant given by

|W| = > Gmyy(u,v)‘| .
(u,0)EW (z,y)

The interpretation of the above objective function is the same with the one in [eqn.
(6)]. The main difference is that the pixel-wise region probabilities have been substituted by
block-wise region probabilities (weighted sum). These modifications drive to the following
system of level set evolution equations:

Vi€ [1,N],

9 (s) = —a 1 u) |lo Ppill(w) (s
51 %) (|W| > als g(pkﬂ(u)))]) Vol + (10)

wEW (s)

Vi(s)
(1= o) (9(rm., 02 + Valpn(9).05) - LoD (Vo)

However, by adopting this approach, the model is strongly affected by the window size.
Moreover, the region-based information becomes completely unreliable at the region bound-
aries due to use of probabilities sum over pixels that correspond to different hypotheses.
Experimentally, it has been observed that the most probable assignment for the boundary
windows is the one that lies between the two real hypotheses that compose the window (in
term of intensity properties). To deal with this problem, a penalization of the region term
for a given hypothesis might be performed for the pixels that belong to the boundaries of
another hypothesis. A more elegant solution will be presented later where the idea of a
“circular” window is adopted in the context of a multi-scale approach.

Then, the segmentation phase is performed as follows: A set of N initial curves is given
(on for each region) and the Geodesic Active Region model is activated under a level set
implementation to perform segmentation using boundary and region-based forces.

The form of these curves as well as their position is a relatively free selection. As it
concerns their form (single or multiple components), there is not limitation. On the other
hand their position is slightly restricted, since we demand that for each region a part of it
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belongs to the interior area of the corresponding initial curve. For cases where a region is
composed of multiple components, we demand that a part of each component belongs to
the interior area of the initial curve. Although, this demand seems to be very strong, it can
be easily met either by initializing all curves at the borders of the frame, or by generating
multi-component initial curves with a large number of small areas spoiled randomly at the
image.

The performance of the proposed method is demonstrated in [fig. (15,16,17)]. The level
set multi-phase evolution is implemented using the Narrow Band approach [1, 11]. In [fig.
(15)] all the curves are initialized at the borders of the image. On the other hand, a random
initialization step is used in [fig. (16,17)], with a large number of overlapping spoiled sub-
regions. The propagation of the curves is shown in [fig. (16)], while the evolution of the
segmentation maps in [fig. (17)].

Based on the obtained results, some remarks concerning the behavior of the proposed
method can be extracted. Topological changes because of the level set implementation are
naturally handled, hence a number of curves can be the output of a single initial curve
(splitting), or a single curve can be the output of a multi-component initial curve (merging).
This is a very important property of the proposed method, since it liberates the model from
the initial conditions, while splitting and merging are performed automatically without
introducing any special procedures.

The obtained system of motion equations can provide a very accurate solution to the
segmentation problem. Although, that the coupling between the different curves (level set
functions) is performed thanks to the region-based term and is derived from the observation
set, it does not use any information regarding the position of the other curves. Hence,
image pixels at the same time instant might be attributed to several regions, without being
constrained by the model. Additionally, an image pixel can stay un-labeled without being
attributed to any region. For obvious reasons, these situations are completely undesirable
and is not appropriate to tolerate them. Hence, to deal with these problematic situations,
a special “coupling” procedure has to be introduced. This can be done by introducing some
ideas of the work proposed in [41].

5 Coupling the Level Sets

The use of the level set theory provides a very elegant tool to propagate curves, where their
position is recovered by seeking for the zero crossing points. Moreover, using this function
we can decide if a given pixel either belongs to the interior curve region (negative level
set value), or to the exterior one (positive value). Thus, given an pixel location, we can
determined very fast the number and the nature of regions in which it belongs. Finally,
if the level set function is defined as the distance function from the curve, then a step
further can be done by estimating the distance of the given pixel from each curve. This
information might be very valuable during the multi-phase curve propagation cases, where
the overlapping between the different curves should be prohibited.
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However, the overlapping between the different curves is almost an inevitable situation
at least during the initialization step. Moreover, the case where an image pixel in not been
attributed to any hypothesis may occurs. Let us now assume that a pixel is attributed
initially to two different regions (there are two level set functions with negative values at
it). Then, a constraint that discourages a situation of this nature can be easily introduced,
by adding a force (alway in the normal direction) on the corresponding level set motion
equations that penalizes pixels with multiple labels (they are attributed to several regions).
Additionally, a similar force can be introduced which discourages situation such as pixel
with no label (they do not belong to any region). This can be done by modifying the motion
equations [eqn. (10)] as,

4

\

Vie|[l,N],
D6i() = 6 Y Hili,ds(s) 1966 -
J€[1,N]
o [ PiU() (s 11
”{[‘ « ()] 7o I -

~~
Region Force

5 (90 )rm)Ks(s) + Volon (9. 08) - LoCL) 1961(s)

~

~
Boundary force

where 3,7, § are positive constants [3 + v + é = 1], and the function H;(, #()) is given by

0,if m=1

Hi<m’¢n(8>>:{ —sign(d;(s)), if m #i "

Let us now interpret the new artificial force that has been added to the motion equation
1, for a given pixel s:

Expanding Effect:

If this pixel does not belong to any region, (the corresponding level set values at s
are positive for all level set functions), then the new force is negative, equal to f. =
—(N —1)|V¢;| and aims at expanding the region R; to occupy this pixel (appearance
of non-attributed pixels is discouraged).

Shrinking Effect:

On the other hand, if this pixel has been already attributed to another region [Rx],
then the corresponding level set function [¢x] will contribute with a positive force that
aims at shrinking locally the region R; (the overlapping is discouraged).

Although that the selection of the function [H;(¢())] seems to be proper, it introduces
some problems. Thus, the not-attributed pixels are penalized with the same manner similarly
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1 x=+a

0.5

Hy,  (x)=-tan(x/a)/tan(1)

Figure 5: The trigonometric basis of the level set coupling function.

with the ones that have been attributed to multiple regions. Moreover, their distance values
from the corresponding curves are not considered and hence valuable information is lost.
Finally, the defined coupling function is discontinuous which is a not desirable property
since it creates stability problems during the level set evolution.

To summarize, the coupling function has to be redefined by taking into account the
following considerations:

i. A pixel that is already attributed to a region j and is far away from OR;, should
strongly discourage the evolution of the level set ¢;() to include this pixel in R;,

ii. On the other hand, a pixel which belongs to the region R; and is close to its boundaries
(small level set value ¢;()), can be reached or be liberated by R, during the next
few iterations, and hence, the coupling force should be less powerful and “tolerate” a
temporal overlapping.

Thus, inspired by the properties of the trigonometric functions, the following function
that is going to be used as basis for coupling force [fig. (5)] is defined

+1,if z>a
H,(z) = — -1,if z<—a (13)

) tan(z/a), if |zl <a

with @ € R*. This trigonometric function is the basis of the coupling force given by,
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0, if j=i
Hi(j,d;(s)) = { Ha(8;(5)), if j#iand¢;(s)>0 (14)
A H,(¢;(s), if j#iand [ﬂﬁzl,k#}qﬁk(s) >0

To interpret this force via the new function, a level set function [¢;()] and a pixel location
[s] are considered,

i.

ii.

If s is already attributed to another region, then there is an hypothesis j for which
¢;(s) < 0 which will contribute with a positive value (shrinking effect) to the coupling
force,

$i(s) <0 = Hi(j, ¢;(s)) = Ha(¢;5(s))

if < —a
tan (z/a), if |z|<a

mGon={ 7

tan(l)
Furthermore, its contribution is proportional to the distance from the curve OR; which
is a very desirable property because if the given pixel is far away from the curve OR;,
then, it will remain for a certain number of iterations under the occupation of R;.
Hence, the level set function ¢; has to strongly discourage the attribution of this pixel
to the region [R;]. On the other hand, if the distance is small, then it is possible
that the curve OR; will liberate this pixel soon, thus the coupling force should be less
powerful.

A similar interpretation can be done if this pixel is not attributed to any region.

B5(5) > 0= Hi(j,65(5)) = 5 Hald5(s)

) 1 if z>a

Hi(j,¢;(s)) = N_1 { ’tan(l) tan (x/a), if |z| <a
However, for this case the coupling force has to be normalized because is not appropri-
ate to penalize with the same way the situation of overlapping and the case in which
the given pixel is not attributed to one of the regions. At the same time this force is
plausible if and only if this pixel is not attributed to any region [ﬁf;:l’ koti} or(s) > 0] .
Finally, it is important to note that this force allows the overlapping when the curves
are located exactly at the real regions boundaries.
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Input Density Mixture Components

Mixture Approximation f\\
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Figure 6: (a) Input Image, (b) Image Histogram and its approximation: Components Num-
ber: 5, Mean Approximation Error: 2.283931e-06, Iterations Number: 421, (c) Region
Intensity Properties.

The last issue to be considered is the determination of the parameter [a] of the [H,()]
function. This parameter can be easily defined within the context of the Narrow Band
level set evolution algorithm. Thus, according to this algorithm the level set evolution is
performed within an active band of pixels, which are located within a zone determined by a
maximum distance constraint from the latest front position. Hence, the [a] parameter can be
defined using the maximum allowed distance (active band size). As a consequence, if pixel
does not belong to the active band of a given level set, then this level set will contribute
maximally (in terms of absolute value) to the coupling force and will strongly encourage or
discourage the evolving level set to reach this pixel.

The performance of this new system of motion equations for image segmentation is
demonstrated in [fig. (7)] for the house image [fig. (6)]. This image is composed of five
different regions that are described/determined by strongly overlapping Gaussian functions.

The obvious constraint imposed by the coupling force is non-overlapping (at least par-
tially) between the initial curves. When this condition is not respected, then it has been
observed experimentally that the system of motion equations suffers from instability module
the weight [3] of the coupling force. This problem can be resolved by modifying the weight
for the coupling force as a function of time. Thus, by considering that

i. During the early states of the segmentation process the obtained map is not optimized,
and the temporal overlapping should be partially tolerated,

ii. When the PDEs converge towards their asymptotic solutions [t — o0], the segmenta-
tion map is finalized and the overlapping as well as the case of non-attributed pixels
should be strongly prohibited.

the weight of the coupling force is modified as follows
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Figure 7: The segmentation of the house image into five regions. Curve propagation: left to
right. (a) House walls, (2) Sky, (b) Ground, (4) Windows, (5) Small trees, flowers, shadows
[8 = 0.10,7 = 0.40,6 = 0.50).

where t is the current time and T'(c0) is the convergence time (this parameter is practically
defined by the user by giving the iterations number). Thus, a confidence parameter has
been introduced to the coupling force. This confidence is related with the current state of
the segmentation procedure.

6 The final Model

The proposed method has made implicitly the assumption that the image is composed of
N regions and a given pixel s lies always between two regions [R;, Ry,|- However, given
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Input Density Mixture Components

Mixture Approximation

Figure 8: (a) Input Image, (b) Image Histogram and its approximation: Components Num-
ber: 4, Mean Approzimation Error: 6.279981e-05, Iterations Number: 3524, (c¢) Region
Intensity Properties.

the initial curves [regions| positions, some image pixels might not belong to any region.
Moreover, other image pixels might be attributed to several regions.

On the other hand, during the propagation of the ¢ curve, the region force for a given
pixel s was estimated using as alternative hypothesis the most probable assignment k;,
different from i. However, this assumption is not valid if either the pixel s is attributed to
an hypothesis which is not the most probable, or it is not attributed to any region.

To deal with this problem, a temporal spending region Ry has to considered. This region
(i) does not correspond to a real hypothesis (it is composed from pixel with different
hypotheses origins), (ii) does not have a predefined intensity character (it depends
form the latest segmentation map) and (iii) has to be empty when convergence is
reached.

These remarks indicate that a new temporal region has to be added to the objective
function, as a region-based term in the following form

N
B(P(R) = a Y [ ~1og (b (1(s.))) dody +
=0 Ri
. (16)
(1=0) Y [ (wn(0Re)).m) os(c0) de

where the new region [Ry] is introduced. The next problem is to define the intensity proper-
ties of this region , thus the probability density function po(). This can be done by seeking
the region pixels and estimating directly from the observed intensity values probability den-
sity function po(). The pixels of this region can be very easily determined within the level
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Figure 9: Segmentation for [fig. (8.a)] medical image:) part 1. (1) Region 1, (2) Region 2,
[3(0) = 0.33,~ = 0.33,6 = 0.33].

set framework, since they correspond to image locations with positive level set value for all
regions. Then, the minimization of the objective function leads to the following system of
motion equations,

Vi€l N],
0 pUERED V] riome
51 0Ri(c) [‘ g (pkz-uwni(ci))))] Ni(@Rilei)) + (17)

(1 — ) (9(pB,i(ORi(cs)),08)Ki(u) + Vg(p,i(u), o8) - Ni(0Ri(ci))) Ni(OR:(c:))

where now the probability pg, () is given by,
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_ po(s), if s¢ U;‘V:I,j;éi [R;]
Pri(s) = {pm(s), m = max {pm(s) :m € [L, N],m # 4,5 € R} (18)

and for the ¢ motion equation is interpreted as follows:

o If the given pixel is not attributed to any region, then the spending region distribution
po() is used to determine the k; hypothesis.

e On the other hand, if this pixel is already attributed to one, or more than one regions,
then the hypothesis that gives the highest probability is selected

This system of motion equations is implemented using the level set theory, where a
coupling force is also introduced,

Vie[L N,
— s ) — o 1o [ 2iU(3) "
4:(5) QL;N]H (56| 1V6:0)] = [tog (2L woutol + 4
i(s)
6[g(pB’i(s)"’B)’Ci(s>+Vg<pB,i(s),oB) V6:(s) |] Vi (s)]

where now the function py, () can be defined using the level set functions as follows

P, (8) = { po(s), if U;‘Vzl,j;éi [6;(s) > 0] "

Pm(8), m:=max {pm(s):m € [1,N],m #i,¢m(s) <0}

To summarize, if a given pixel s is reached by a curve and it does not belong to any
region, then this pixel is attributed to the spending region. On the other hand, if this pixel
is already attributed to other regions, then the region with the most probable alignment
given the pixel intensity is considered.

Then, the segmentation is performed as follows. Given the set of initial curve, the
intensity distribution of the spending region is estimated. Then, a multi-phase propagation
is performed using the Narrow Band algorithm. This method requires the re-initialization
of the active band and the level set function when the front approaches the active band
borders. During this procedure (re-initialization), the statistics of the spending region are
updated and the processing is continued until convergence.

However, convergence might be reached with a non-empty spending region. This case
appears when the initialization step is not “appropriate”. In that case there are image regions
which are never recovered by the corresponding curves. This problem might be resolved by
performing a “correction” step after convergence (the curves do not propagate any more)
with respect to the spending region. Thus, the pixels of this region are re-attributed to the
other regions, and the processing is continued until convergence.
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Figure 10: Segmentation for [fig. (8.a)] medical image:) part 2. (1) Region 3, (2) Region
4,[8=0.33,v=0.33,8 = 0.33].

Besides, during the segmentation process we can update our statistics modules (Gaus-
sian) with respect to the different regions. This can be done by introducing an iterative
approach that uses the current segmentation output to re-estimate the region statistics,
and then performs a new segmentation step (the boundary/region statistics have changed).
However, in that case it is very important to obtain a relatively good segmentation map
after the first step using the statistics that have been obtained using the mixture model
on the observed density function. Practically, this correction step is performed once, when
convergence is reached using the Gaussian components of the mixture models and aims at
eliminating the errors of the global statistical modeling reflecting on a better segmentation
map.
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Figure 11: A Multi-Scale Approach for Image Segmentation. (a) Multi-Scale curve propaga-
tion using the full resolution data space, (b) Initialization (extrapolation) and convergence
scheme at different levels.

7 Multi-scale Image Segmentation

It is well known that the use of multi-scale techniques reduces significantly the required
computational cost of the minimization process and performs a smooth operation to the
objective function that eliminates the risk of converging to local minima. These techniques
have been widely used in image processing and computer vision problems with a beneficial
contribution.

The main idea is to solve the minimization problem in different solution spaces, which
are subsets of the original one. Thus, given a sub-space of the solution set, the solution
that is adopted correspond to a set of pixels in the original space. Using a coarse to fine
pyramid, an extrapolation of the solution from level with low resolution to level with finer
solution configurations takes place [fig. (11.b)]. This extrapolation scheme is used as an
initial solution for this level and a new minimization process is performed.

A rather sophisticated approach is to implement this technique consists in defining a
consistent coarse-to-fine multi-grid contour propagation by using contours which are con-
strained to be piecewise constant over smaller and smaller pixel subsets [24]. The objective
function which is considered at each level is then automatically derived from the original
finest scale energy function. Additionally, the finest data space is used at each level, and
there is no necessity for constructing a multi-resolution pyramid of the data [fig. (11.a)].
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2)

Figure 12: Multi-scale segmentation of the squirrel image into two regions. Curve propa-
gation: left to right. (1) Level 1, (2) Level 0 (full resolution level). The final segmentation
map at level 1 is used to determined the initial curve conditions at level 0. The convergence
at level 0 is achieved very fast ( 2-3 iterations; for level 1, 50 iterations are required).

We define the system of corresponding objective functions at level L as:

EX(P =a Z// // —log (pi (I(u,v)))| dzdy +

RL WL(z,y)

1-w Z/ ||WL|| // g (pB,i (u,v) |op) dudv ‘672 (pi)

\ W(ORE(p:))

’

dp;

(21)

where ORL is the region boundary of i at L level, WL(x,y) is the full resolution window
that corresponds to the (z,y) pixel of level L, and ||[WL|| is the size of this window.

This multi-scale approach overcomes the limitations of the circular window approach.
At the low resolution levels, a window of probabilities is used to move the contour, where
window probabilities are quite reliable. On the other hand, the boundary term is not very
precise due to the performed smoothing operation. This problem is dealt when we proceed
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Figure 13: Multi-scale segmentation of the hand image into two regions. Curve propagation:
left to right. (1) Level 1, (2) Level 0 (full resolution level). The final segmentation map at
level 1 is used to determined the initial curve conditions at level 0. The convergence at level
0 is achieved very fast ( 2-3 iterations; for level 1, 40 iterations are required).

from a lower resolution to a higher resolution level, because the window size gets smaller
and smaller and the boundary-based term becomes more accurate. Simultaneously, at the
low resolution level, we have obtained a segmentation where the noise influence has been
removed, and since this result is used to initialize the operation at the next level we don’t
meet the noise problems that were mentioned above.

The performance of this multi-scale consideration of our model is demonstrated in [fig.
(12,13)].

8 Discussion, Summary

In this paper, a new multi-phase level set approach for un-supervised image segmentation
has been proposed. Real images of different nature (outdoor, medical, etc.) which have been
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used from other segmentation approaches (woman, hand, squirrel) have been used as input
to validate the proposed approach.

The obtained experimental results are very promising [fig. (15,7,9,10,12,13,14)]. How-
ever, an evaluation of the proposed approach is required. Three aspects are considered,
namely the initialization step, the performance/contribution of the different segmentation
modules, and the computational cost.

Based on the experimental results, it can be easily observed that the initial curve condi-
tions do not constrain the model performance. However, there are some necessary conditions
that have to be respected during the initialization procedure. Hence, the initial curves with
respect to the different hypotheses should define image regions which include a part (even
small) of the real regions that have to be recovered. To interpret this condition, let us now
assume that an image sub-region Ry, ;1 (part of the region R,,) of the hypothesis m is
completely surrounded by a sub-region of the hypothesis n. In that case, if the initial curve
for m does not define an interior region that includes some pixels of Ry, ;;, then the seg-
mentation procedure will fail to attribute the sub-region Ry, ;; to the m hypothesis. This
requirement can be easily met by performing a random initialization step with an important
number of small spoiled regions which are randomly positioned in the image. However, such
initialization steps introduce extra computational (curve propagation).

Another interesting issue refers to the evaluation of the different segmentation modules
(boundary, region) and forces (boundary, region and coupling) that are used to propagate
the initial curves towards the final segmentation map. Recall that the boundary force aims
at shrinking the initial curve towards the region boundaries under a regularity constraint.
Hence, if this curve defines a region which partially includes the real one (the region that has
to be recovered), then the boundary force has a beneficial contribution for the curve parts
that are located outside from the real region, while it discourages the curve parts that are
located inside the real region to evolve towards the correct direction (outwards). However,
the contribution of this force is very important. Thus, thanks to this force, the curve is
attracted very accurately by the real boundaries (an important issue for many
applications, e.g. segmentation of medical images) and remains regular and
smooth. The evaluation of the region force is a straightforward step. This force creates
positive and negative propagation velocities that move the curve in the direc-
tion that maximizes the o posteriori segmentation probability, and liberates the
model form the initial conditions. Hence, the curve can be propagated either inwards
or outwards thanks to image-based measurements which is a very nice property. Finally, the
coupling force has a complementary contribution since it eliminates the risk concern-
ing the appearance of undesirable situations (not attributed pixel/attribution
of a pixel to multiple regions) and increases significantly the convergence rate.

As far the computational cost* is concerned, the two stages of the proposed approach
will examined separately; the modeling and the segmentation phase. The modeling phase
is not time consuming since the approximation of the observed histogram with a mixture

4An ULTRA-10 Sun Station have been used for all experiments with 256 MB Ram, and a processor of
299 MHZ.
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Figure 14: Segmentation for a Coronal T1 Weighted Image of the Wrist. Three different
regions are detected (rows: 1,2,3). The last column corresponds to the final segmentation
result with respect to the different regions projected at the image, [3(0) = 0.10,v = 0.50,6 =
0.40).

of Gaussian elements takes less than one second. The segmentation phase consists of two
steps; the extraction of the boundary/region information and the propagation of curves.
The extraction of the region information is performed very fast, while the same procedure
is time consuming as far the boundary information is concerned. Thus, according to the
probabilistic boundary module, for each pixel location four different partitions are consid-
ered. Moreover, for each partition the probability values for all hypotheses have to estimated
twice (left and right local region) over a 3 x 3 window. As a consequence, this step is time
consuming especially when the image is composed of many different regions. However, to
give an idea about this cost, for a 256 x 256 with four hypothesis, the estimation of the
boundary information takes approximately 3 to 5 seconds. Moreover, the computational
cost of the propagation phase can be estimated with a lot of difficulty and is strongly re-
lated with the hypotheses number (number of level set functions). Additionally, it is strongly
affected by the initial curve conditions. However, by considering the experiments related
with the complexity of the Narrow Band algorithm, some predictions can be done regarding
the computational cost of the propagation phase. These predictions are not accurate and
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are affected by a large number of parameters such as: initial curve conditions, hypotheses
number, weights of the different segmentation modules, narrow band size, time step, etc...
Thus, for a 256 x 256 image (Coronal image [fig. (14)]) with a random initialization step,
the propagation phase takes approximately 20 seconds. This cost is significantly decreased
by the use of the multi-scale approach (three to five times).

Summarizing, in this paper a new variational framework has been proposed to deal with
the problem of image segmentation. This framework unifies boundary and region-based
segmentation modules within the Geodesic Active Region model. Initially, the number of
regions and their intensity properties are determined automatically by performing a statis-
tical modeling procedure on the observed density function (image histogram). Then, the
boundary information is estimated using a probabilistic edge detector, while the region-based
information is expressed using conditional probabilities. Both information sources are inte-
grated using a Geodesic Active Region-based objective function. This function is minimized
using a gradient descent method resulting on a system of motion equations that deform the
set of initial curves towards the boundaries of the different regions. These equations are im-
plemented using the level set theory. Moreover, a coupling procedure is introduced between
the different level set functions to increase the convergence rate and to deal with undesirable
situations (pixels that are not attributed to any region, pixels that are attributed to multiple
regions). Finally, to decrease the risk of convergence to local minima and to decrease the
required computational cost, the proposed framework is considered in a multi-scale imple-
mentation. To summarize, the contributions of the proposed image segmentation model are
the following;:

e An adaptive method that determines automatically the regions number and their in-
tensity properties,

e A variational image segmentation framework that integrates boundary and region-
based segmentation modules and connects the optimization procedure with the the
curve propagation theory,

e The implementation of this framework within level set theory resulting on a segmen-
tation paradigm that can deal automatically with changes of topology and is free from
the initial conditions,

e The interaction between the different curves [regions] propagation using an artificial
coupling force that increases the convergence rate, and eliminates the risk of conver-
gence to a non-proper solution,

e And, the consideration of the proposed model in a multi-scale framework, which deals
with the presence of noise, increases the convergence rate, and decreases the risk of
convergence in a local minimum.

As far the future directions of this work, the use of color images is a challenge. However
for this case, the statistical modeling phase where the number of regions and their intensity
properties are determined is more complicated since we have to deal with multi-variate
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distribution. A step further is the un-supervised segmentation of textured images, using the
proposed framework. Finally, there is number of practical issues to be solved like the initial
curve conditions, the selection of the model parameters, etc.

References

[1] D. Adalsteinsson and J. Sethian. A Fast Level Set Method for Propagating Interfaces.
Journal of Computational Physics, 118:269-277, 1995.

[2] R. Adams and L. Bischof. Seeded Region Growing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16:641-647, 1994.

[3] J. Besag. On the statistical analysis of dirty images. Journal of Royal Statistics Society,
48:259-302, 1986.

[4] R. Beveridge, S. Griffith, R. Kohler, R. Hanson, and M. Riseman. Segmenting Images
Using Localizing Histograms and Region Merging. International Journal of Computer
Vision, 2:311-352, 1989.

[5] C. Bouman and M. Shapiro. A multiscale random field model for bayesian image
segmentation. IEEE Transactions on Image Processing, 3:162-177, 1994.

[6] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:769-798, 1986.

[7] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In IEEE International
Conference on Computer Vision, Boston, USA, 1995.

[8] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal
of Computer Vision, 22:61-79, 1997.

[9] A. Chakraborty, H. Staib, and J. Duncan. Deformable Boundary Finding in Medical
Images by Integrating Gradient and Region Information. IEEE Transactions on Medical
Imaging, 15(6):859-870, 1996.

[10] T. Chan and L. Vese. n Active Contour Model without Edges. In International Con-
ference on Scale-Space Theories in Computer Vision, pages 141-151, 1999.

[11] D. Chop. Computing Minimal Surfaces via Level Set Curvature Flow. Journal of
Computational Physics, 106:77-91, 1993.

[12] P. Chou and C. Brown. The theory and practice of bayesian image labeling. Interna-
tional Journal of Computer Vision, 4:185-210, 1990.

[13] C. Chu and J. Aggarwal. The integration of image segmentation maps using region and
edge information. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15:241-1252, 1993.

RR n° 3783



36 Nikos PARAGIOS and Rachid DERICHE

3)

Figure 15: Segmentation for the woman image [fig. (2.a)]. Multi-phase Curve Propagation.
All initial curves are located at the borders of the image. (1) Region 1 (black pants), (2)
Region 2 (skin), (3) Region 3 (background), (d) Region 4 (hair, t-shirt).
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Figure 16: Segmentation for the woman image [fig. (2.a)]. Multi-phase Curve Propagation.
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Figure 17: Segmentation of the woman image [fig. (2.a)]. The evolution of the segmented
regions (regions color: black). A random initialization step is used with a large number
of spoiled regions. The initial regions are the same for all hypothesis. (1) Region 1 (black
pants), (2) Region 2 (skin), (3) Region 8 (background), (d) Region 4 (hair, t-shirt).
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