N
N

N

HAL

open science

Towards Portable Hierarchical Placement for FPGAs
Florent de Dinechin, Wayne Luk, Steve Mckeever

» To cite this version:

Florent de Dinechin, Wayne Luk, Steve Mckeever. Towards Portable Hierarchical Placement for
FPGAs. [Research Report] RR-3776, LIP RR-1999-50, INRIA, LIP. 1999. inria-00072885

HAL Id: inria-00072885
https://inria.hal.science/inria-00072885
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00072885
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--3776--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Towards Portable Hierarchical Placement
for FPGAS

Florent de Dinechin, Wayne Luk, Steve McKeever

No 3776
Octobre 1999

THEME 2

apport
derecherche







%I INRIA

RHONE-ALPES

Towards Portable Hierarchical Placement
for FPGAs

Florent de Dinechin, Wayne Luk, Steve McKeever

Théme 2 — Génie logiciel
et calcul symbolique
Projet Arénaire

Rapport de recherche n 3776 — Octobre 1999 — 17 pages

Abstract:

Field Programmable Gate Arrays (FPGASs) are usually programmed using
languages and methods inherited from the domain of VLSI synthesis. These
methods, however, have not always been adapted to the new possibilities ope-
ned by FPGASs, nor to the new constraints they impose on a design. This paper
addresses in particular the issue of laying out the various components of an
architecture on an FPGA. The problem is to embed placement information
in FPGA-oriented hardware description languages, in a way that is both ex-
pressive enough to be useful, and abstract enough to be portable from one
FPGA architecture to the other. A generic placement framework is defined to
address this problem, and two prototype implementations of this framework
are presented, for Xilinx 6200 and Xilinx 4000 devices, on the example of a
bit-serial complex multiplier.

(Résumé : tsup)

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Téléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Teélécopie : 04 76 61 52 52 - International: +33 4 76 61 52 52



Vers un placement hiérarchique reciblable
pour les FPGAs

Résumé :

Les réseaux de cellules reconfigurables (FPGAs) sont programmés au moyen
de langages et de méthodes héritées de la syntheése VLSI, mais ces méthodes
ne sont pas toujours adaptées aux nouvelles possibilités offertes par les FPGAs,
ni aux nouvelles contraintes qu’ils imposent. Cet article s’intéresse en parti-
culier aux questions de placement des différents composants d’un circuit dans
le FPGA. Le probléme est I’expression de contraintes de placement dans les
langages de description de matériel pour ces architectures, et ce d’'une maniére
suffisamment expressive pour étre utile, mais suffisamment abstraites pour étre
portable d’une architecture a 'autre. Un cadre formel est défini pour répondre
a cette attente, et deux prototypes d’implémentation de ce cadre sont présen-
tées sur les architectures trés différentes des circuits Xilinx 4000 et 6200, avec
I’exemple d’un multiplieur bit-série complexe.



Towards Adaptable Hierarchical Placement for FPGAs 3

1 Introduction

The complex issue of programming FPGAs may be approached in a wide
range of ways. One extreme is to consider that the designer should only have to
sketch his design in an abstract way, leaving to automatic tools as much of the
implementation job as possible, with as little human intervention as possible.
This hands-off approach reduces development time and costs, at the expense
of the performance of the implementation. At the other extreme, when per-
formance is critical, the designer has to intervene in the whole design process.
This may include low-level implementation work and require important expert
knowledge and much longer development time.

Usually the implementation of a design on FPGA falls somewhere in the
middle of these two extremes. The tools, while increasingly useful, still require
a lot of technology-dependent knowledge from the designer. This balance bet-
ween automation and manual intervention has to be considered in the three
steps of a typical implementation flow for an FPGA : technology-mapping,
placement and routing. One of the factors to consider in each of these steps,
for example, is whether to keep the design hierarchy or flatten it to perform a
global analysis.

Technology-mapping is obviously technology dependent, and currently well
handled by automatic tools. So is routing, which the designer usually only
controls by expressing simple and abstract timing constraints.

The placement problem is a difficult, NP-hard optimisation problem. Cur-
rently, the mainstream approach is to leave it to the back-end tools as well,
because good heuristics exist which can take timing constraints into account
(see for example [8] and its references), and placement constraints are difficult
for the designer to manage because of the great number of degrees of freedom.
However, most designs involve regular arrays of similar components, and there
is often a straightforward “ideal” placement, ideal in the sense that it places
connected components close to another. In such case, expressing this placement
should greatly improve both implementation time and quality of the result : a
general rule of place and route tools (both in VLSI and FPGA) is that if the
placement is good (i.e. if it minimizes the distance between connected logic
blocks) then the routing will be good as well and, perhaps more important,
obtained quickly. The purpose of this paper is therefore to define a simple and

RR n"3776



4 Florent de Dinechin

yet powerful way of expressing this kind of placement information in an FPGA
design.

Another strong motivation of expressing placement is run-time partial re-
configuration, as allowed by some recent FPGAs. The idea is that one can
change a small part of a design at run-time, for example to change the value
of a hard-wired constant, without the time penalty of reconfiguring the whole
design [5]. For this feature to be useful and efficient, one needs to control the
placement of the components which will be swapped in and out at run time.

We investigate a placement framework which is adaptable (or portable) : it
can easily be adapted to suit a specific FPGA technology. There are several
motivations to this approach. The first is the design of libraries of macro-
components similar to the “intellectual property cores” which have appeared
in the VLSI world. These cores are usually placed and routed optimally, and we
wish to offer the same possibility in the FPGA world. The second motivation
of an adaptable placement is to provide a simple back-end to high-level tools.
For example, Alpha [3, 1] is a language for the manipulation of recurrence
equations which can generate systolic arrays. Currently, Alpha outputs VHDL
which can be synthesized for most FPGAs. However the placement information
— important in the case of systolic arrays, and present in Alpha — cannot be
included in this VHDL in a general way. We believe that Alpha should output
its systolic arrays in some HDL including generic placement information. The
mapping of this placement on a target FPGA should then be done by back-end
tools for each FPGA, just like technology mapping.

This paper is organized as follows. In section 2 we discuss placement ques-
tions specific to FPGA programming, and the features that a general place-
ment framework should have. Section 3 proposes such a framework. Sections 4
and 5 describe two of its implementations : in the Pebble HDL [4] and in the
PamDC development system |[2|. Both implementations are compared on the
same example design. Section 6 discusses the results of these experiments.

2 Layout approaches for FPGAs

Placement issues in the design hierarchy The hierarchy of a complex
design may be split into three (roughly defined) levels for which the problem of

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 5

technology dependence is very different. Figure 1 illustrates this decomposition
in the case of an FFT using bit-serial arithmetic. In this example, the whole
chip may contain a full FFT, or only a part of it, depending on its size. The FFT
is built from a certain number of butterfly elements. Each of these elements is
made primarily of a complex multiplier and two adders. A complex multiplier
is made of four real multipliers and two adders. A bit-serial Lyon fixed-point
multiplier is a systolic array made of two types of basic cells [6] 1. Finally each
cell is made of a few gates and registers.

The lowest level The base bricks of a design are primitive gates and simple
base blocks, either combinatorial (a full adder...) or sequential (a small finite
state machine, the basic cell the bit-serial multiplier on Fig. 1...).

The optimal design of such components depends obviously on the tech-
nology, notably on the granularity of the FPGA (how many FPGA cells you
need to implement a given function). These components may be hand-coded,
although their small size ensures that the vendor tools optimise them effi-
ciently. They may also be best expressed as behaviourial hardware description
languages.

The top level The main two placement problems there are to take the size
of the chip into account, and to match the inputs and outputs of the design
with the actual boundaries of the chip. These questions are technology-, chip-
and application-dependent, and will usually need manual intervention. Most

! Bit serial arithmetics have the advantage that the size of a bit-serial adder is constant
with respect to the number of bits (in standard arithmetic it is proportional to this number).
More important, the size of the multiplier is linear with respect to the number of bits, where
standard multipliers have a quadratic size. Even more important, there is no need for data
busses, as the data are propagated in series, which proves a real advantage on FPGAs where
routing is limited like the 6000 series. The speed penalty of bit-serial communications is
compensated by pipelining, and by the fact that the clock speed of bit-serial operators is
independent of the bit number.

Numerically, on the 6000 series, a bit-serial multipliers for n-bits number needs 12n cells,
whereas the standard multiplier requires 4n? cells. Therefore a bit-serial approach is worth-
wile as soon as n = 4. The ratio of performance is roughly constant : the bit-serial approach
has a constant critical path of about 20ns and the time of a multiplication is n times this
period, while the period of the multiplier is roughly proportional to n with a proportionality
constant of about 10ns.

RR n"3776



6 Florent de Dinechin

oooooooooooo ooouooogoooooo
B g I B ) g
Smal
5 2 FPGA 5 :
: E : o E Application level
P — g g ¢ |Application leve
g = g E
E NG Bigger b g
m] g m] g
j!‘H‘H’H’H’H‘H’H’H’H‘H‘H’H’\E FPGA jﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂt
] | % E L ComplexBSMult
1 r 1 BSMult
1 1 - i1 BSMult
EFT r2 BSMult
2 BSMult
BSMult
1 cell C
1 ocel [C type2
| | | typer | C
Full n - Low level:
| Adder [ .
@ : behavioural or structural

F1G. 1: A typical design hierarchy for a FFT

FPGAs, however, have facilities to alleviate the last problem. Examples include
the “Veraring” for Xilinx 5000 devices and the “wireless registers” for Xilinx
6200 devices.

Intermediate levels Components such as FFTs, filters or microcontrolers
often have a straightforward placement ensuring both compactness and locality
of routing, especially for regular designs. The dependence to technology of this
placement should only be in the low-level components used. The example we
take throughout this paper is a bit-serial complex multiplier (see Fig. 1) whose
basic cell is a 4x3 block on a Xilinx 6200 series and a 2x2 block on the 4000
series, the rest of the placement being the same on both technologies. That is
what we will call an adaptable placement.

Such a placement, however, should be flexible enough to depend on more
factors than just the technology : it should adapt to the lower-level components
used, since there is often a range of tradeoffs there between time and area. It

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 7

should also be able to depend on the top-level placement : one may want, for
instance, to rotate a placement (according to the external inputs and outputs)
or to change its aspect ratio (according to chip size).

Only recent FPGAs allow designs large enough to have various intermediate
layers. However it is obvious that the ongoing increase of the number of gates
in an FPGA will make these component layers increasingly important (FPGA
libraries begin to appear, albeit not adaptable and without placement).

Adaptable placement It is currently possible, using standard languages as
VHDL or Verilog, to port the same middle-hierarchy component on almost any
FPGA family, provided one is content with the push-button implementation
approach.

It should be fairly easy to standardize the expression of timing constraints
in such languages. The task is more difficult if we want to standardize the
placement constraints, because placement is much more technology dependent,
as the metrics change from one FPGA to another. To address the problem of
adaptable placement, we first have to answer the following question : what is
common to the placement and routing problem on most current (and hopefully
future) FPGAs? Answers are few :

— The logic blocks are laid out as a grid, in such a way that a 2D carte-
sian coordinates system can be used to describe placement. However the
granularity and the size of this grid varies from one FPGA to another.

— Local connexions should be encouraged : routing resources are limited,
and expensive in term of time. Since the routing is programmable, signals
from one component to the other have to go not only through wires, but
also through switches : there is logic on the wires as well. This is a major
difference between FPGA and VLSI, and its cost is bound to increase
with integration.

Our placement framework tries to address these constraints.

3 An adaptable placement framework

The adaptable placement framework we define here is based on several
existing placement methods, notably the RLLOC hierarchical relative placement

RR n"3776



8 Florent de Dinechin

attributes for the Xilinx 6000 series [11], the placement engine of PamDC
[10, 2], and the high-level placement features of Ruby [9]. We atttempt to
combine and generalise these techniques in an useful way.

We describe here our placement framework in a very abstract way, wich is
independent of any HDL. Note that implementations of this framework will
depend a lot on the HDL, as we show in sections 4 and 5.

Basics For each instance of a component of the hierarchy, its placement is
very classically defined by a standard set of wariables holding the size of its
bounding box, the coordinates of its inputs and output pins, and the coordi-
nates of its sub-components. Coordinates are relative to some reference point
of the component, say the bottom-left corner. We will denote, for a component
A, the width and height of the bounding box of A as A.w and A.h, and its
coordinates as A.x and A.y (for simplicity, we will ignore in the following the
placement of the 1/O ports).

These variables use the coordinate system of the target FPGA. This coor-
dinate system is discrete, therfore these variables will be integers. It will thus
be possible to express absolute placement (for example for the device-specific
part of a design at the top level) as for example :

Ax=12; Ay=0

The placement of a middle-hierarchy component is adaptable if it is not
expressed absolutely, but as a function of the variables of its sub-components.
For example, if the component C is built out of components A and B, the
following expresses that A is placed to the right of B :

B.x = A.x + A.w; B.y = A.y

This placement is adaptable since it is a function of the variable A.w. More
generally, an adaptable placement is described as a system of equations (and
possibly inequations) relating variables. An actual placement, on an actual
FPGA, will be a solution to this system.

These relations may involve other variables of the HDL, including notably
the generic parameters of a component and loop indices. Moreover, although it
is not the subject of this paper, a standardized expression of timing constraints
should eventually be integrated in this framework.

Program 1 is the complete example of a adaptably-placed adder in our
Pebble implementation. Note that this is mostly a toy example, since an adder

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 9

will probably belong to the low level of our hierarchy decomposition. A more
realistic sized example is that of the FFT seen in Fig. 1, where the relative
placement of all the components is apparent. The corresponding program will
be partly given later.

Program 1 A placed adder in Pebble
BLOCK AddCompactTall (n:GENERIC)
[a, b: VECTOR (n-1..0) OF WIRE; cin: WIRE]
[sum: VECTOR (n-1..0) OF WIRE; cout: WIRE]
LOCAL carry: VECTOR (n..0) OF WIRE;
BEGIN
carry(0) <- cin;
GENERATE FOR i = 0..(n-1)
BEGIN
fa(i): FullAdder [a(i), b(i), carry(i)] [s(i), carry(i+1)];
LET fa(i).x = 0; LET fa(i).y = i*fa(0).h;
END;
cout <- carry(n);
LET w = fa(0).w; LET h = n*fa(0).h;
END

This program consists of a header, defining a generic parameter n, then
input busses (vectors of wires) a and b and input wire cin, then output bus sum
and output wire cout, then a local bus carry. The body of the program then
structurally describes the adder, in a way very similar to structural VHDL.

The placement is expressed by equations as in previous examples (here
fa(i) is a component instance name). It is adaptable in the sense that it is
independent on the size of the full adder fa.

In this basics approach, some of the equations have to define the size of
the component, usually as a composition of the sizes of the sub-components
(see the last lines in Prog 1, where the dotless variables are the variables
of the block AddCompactTall itself). Using higher-level placement constructs
(see the following paragraph), however, makes it possible to compute the size
automatically.

To get an actual placement of this adder, one must somehow inject in
this system of equations the sizes of the low-level component FullAdder. This

RR n"3776



10 Florent de Dinechin

component will typically be automatically placed and routed by the back-end
tools.

High-level placement expressions These relations may have a high-level
syntax, for example to express relative placement. For examples the two pre-
vious equations

B.x=A.x+ A.w; B.y=Ay

may be written Beside(A,B). See program 3 for a real example. Classical
placement constructions such as a row, column or matrix of component may
also be expressed this way. Placement transformations such as symmetries and
rotation also have simple expressions in this framework. The exact syntax of
high-level placement, however, is very dependent on the HDL, and its reduc-
tion to basic equations is not always as simple as in the case of the Beside.
This is the subject of current active research, and well beyond the scope of
this paper.

Resolution This system of constraint is resolved in some way. This may
require interaction with the designer : in most cases the placement will initially
be under-constrained. Unknown placement may be either left to the back-end
tools, or pointed to the designer for him to add relevant relations.

4 Polynomial placement in Pebble

Pebble is a structural HDL developed at Imperial College |4]. It was the-
refore a good choice to experiment on adaptable placement.

Polynomial placement expressions For this implementation, placement
information is restricted to polynomial equations of several variables, these va-
riables including the generics and loop indices. These polynomials are handled
internally in their normal developed form. The purpose is to avoid unrolling all
the loops, so as to manipulate all the placement information of a regular design
in a compact form. This not only allows to perform several static checks, but
also greatly improves the user interface in the resolution of the placement, as
seen below. There are drawbacks, though : placement expressions can only use

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 11

the 4+, — and x operators, which excludes in particular the very useful maz
operator. Similarly this choice limits the expressive power of the generate if
statement. However what remains is a language well suited to regular designs.

Resolution A hierarchical placement resolution engine has been written. It
propagates known values in the polynomials equations, until one of these turn
into either a contradiction (which generates an error) or a definition for the
value of a new variable. The placement of the block is considered successful if
all the standard variables and generics of the instances are known. A known
variable is defined as a polynomial function of the block generics and (possibly)
the loop indices.

When a placement is underdefined (which is usually the case initially) the
resolution engine points out the still undefined variables, and asks the designer
to give their values. Thanks to the polynomial internal form, this process is
very explicit, with typical messages like :

Couldn’t resolve equation: add2.x - add0.x - add0.w - n*addl.w =
Unknown variables: add2.x, addO.x

This message invites the designer to define either add0.x or add?2.x.

Implementation on the 6000 series A successful placement can then
be translated into Xilinx RLOC attributes for VHDL. The advantage of our
framework over standard RLOCs is the flexibility : one may change the size
of a component without having to propagate this change by hand to all the
parts of the design where this component is involved. This is examplified in
the following.

The complex multiplier example We wrote a hierarchical complex multi-
plier (the biggest part of the bit-serial FFT which could fit on our 6216 chip).
We first wrote it without any placement and performed logical simulations.
Then we began adding placement constraints and running the code through
our placement engine, until the only unresolved equations were due to unk-
nown sizes for the low-level components celll and cell2. The corresponding
adaptable placed code is given as programs 2 and 3 (note the use of BESIDE
and BELOW constructs).

RR n"3776



12 Florent de Dinechin

Program 2 A placed bit-serial multiplier in Pebble
/* Lyon’s bit-serial multiplier (adaptable placement) */
BLOCK bsmult (n) [xi,yi,ri,clk,rst: WIRE]
[pso, ro: WIRE]
LOCAL x, y, ps, r : VECTOR (0..n) OF WIRE ;
X0, yo : WIRE

BEGIN
x(0) <- xi; y(0) <- yi; ps(0) <- FALSE; 1r(0) <- ri;
GENERATE FOR i = 1..n-1
BEGIN
cells1(i): bsmultcell [x(i-1), y(i-1), ps(i-1), r(i-1), clk, rst]
[x(i), y(i), ps(i), r(i)]
END;
LET cellsli(i).x = cellsl(i).w*(i-1); LET cellsi(i).y=0;
cell2: bsmultcell2 [x(n-1), y(n-1), ps(n-1), r(n-1), clk, rstl]
[(x(n),y(n),ps(n),r(n)];
LET cell2.x = cellsl.w * (n-1); LET cell2.y=0;
xo <- x(n); yo <- y(n); pso <- ps(n); ro <- r(n);
LET h = cell2.h; LET w = cell2.x + cell2.w
END

We then had these two low-level components placed by Xact6000 auto-
matically, reported the sizes (4 x 4) in the Pebble code (there would be no
theoretical difficulty in having this size information moved around by the tools
themselves, however this would involve more development work to read pro-
prietary file formats), and performed the final placement in our tool. Then
we output VHDL with RLOCs to Xact6000, which could route it in a few
seconds (when we disable the RLOC output, Xact6000 is no longer even able
to place and route the design). This lead to the bit-serial complex multiplier
given in fig. 2. One can see that the basic type 1 cell is a 4 by 4 block, and that
some of the cells are only used for routing. The timing analyzer estimated the
frequency of the bit-serial multiplier at 45MHz.

Later we spent some time optimizing the initial automatic placement of the
basic cells. The type 1 cell changed from a 4 by 4 block to a 4 by 3 block. We
then only needed to change one line in the Pebble code to get a new placement

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 13

Program 3 A placed complex multiplier in Pebble
/* complex multiplier: (at+ib)*(c+id) */

BLOCK ComplexBsmult (n) [a,b, c,d, ri,clk,rst: WIRE]
[rp, ip, ro: WIRE]
LOCAL
pac, pbd, pad, pbc, roac, robd, road, robc : WIRE
BEGIN
ac: bsmult (n) [a,c,ri,clk,rst] [pac, roac];
bd: bsmult (n) [b,d,ri,clk,rst] [pbd, robd];
ad: bsmult (n) [a,d,ri,clk,rst] [pad, road];
bc: bsmult (n) [b,c,ri,clk,rst] [pbc, robcl;
sub: bssub [pac,pbd,clk,rst] [rp]l;
add: bsadd [pad,pbc,clk,rst] [ip];
LET ac.x = 0; LET ac.y = 0;
LET BELOW(ac,bd,ad,bc);
LET BESIDE(bc, add);
LET BESIDE (bd,sub);
LET w = ac.w+tadd.w; LET h = 4*ac.h;
ro <- roac;
END

of the whole complex multiplier shown in fig. 3, and again, the whole computing
time of our tool and Xact6000 to get this layout, routing included, was less

F1G. 2: Complex multiplier in XactStep 6000 (first version)

RR n"3776



14 Florent de Dinechin

RLOCSs for the bsmult component :

attribute rloc of celll : label is "X,3*n-3,Y,0,";
attribute rloc of cell2 : label is "X,3%i-3,Y,0,";

RLOCSs for the ComplexBsmult component :

attribute rloc of ac : label is "X,0,Y,0,"
attribute rloc of bd : label is "X,0,Y,4,"
attribute rloc of ad : label is "X,0,Y,8,"
attribute rloc of bc : label is "X,0,Y,12,";

attribute rloc of sub : label is "X,3%n+1,Y,4,";
attribute rloc of add : label is "X,3%n+1,Y,12,";

B R e e B R e e

F1G. 3: Complex multiplier in XactStep 6000 (optimized version)

than ten seconds. The estimated frequency of the bit-serial multiplier is here
54MHz. This figure also shows some of the RLOCs generated in the VHDL
code by our placement tool.

5 Prototype implementation in PamDC

Work is underway on a translator from Pebble to PamDC [2] to target
the 4000 series of FPGAs. To evaluate its feasability we translated by hand
the whole design, trying to port the placement as well (having to rewrite the
whole hardware description to target a second FPGA family otherwise some-
how contradicts the objective of adaptability).

The object-oriented model of PamDC and its built-in placement engine
simplified the implementation of our framework on this environment. We just
needed to define a new PlacedNode class inheriting from the basic Node class.

Placement for the 4000 series PamDC outputs annotated netlist files
for the Xilinx back-end tool XactM1. This last tool is very timing-oriented,
therefore we present two series of experiments, the first without and the second
with timing constraints. Each of these experiments consists of implementing a
non-placed complex multiplier, and a placed one.

Figure 4 shows the result of the untimed experiment. The unplaced design
is evaluated at 71Mhz by the timing analyser, and the placed one is evaluated
at 94 MHz. This shows that, in the absence of timing constraints, placement
improves timing and area as expected.

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 15

F1G. 4: Unplaced and placed complex multiplier on the 4000

However, when we repeat the experiment with a timing constraint of 100Mhz
(which is the maximum allowed by the logic depth involved) on all the nets,
we obtained very similar layouts, but both placed and unplaced designs are
evaluated at little more than 100Mhz. Besides, the unplaced design is obtai-
ned more than twice as fast as the placed one (5mn30 vs. 2mn30) : obviously,
giving a placement annoys XactM1 more than it helps.

The only advantage of our placed design seems therefore to be compacity.
This, however, is only the case because XactM1 has spare space and has no
reason not to use it : when we try to increase the multiplier to 21 bits (in which
case it occupies more than 95% of the chip resources), XactM1 can still place
it and get a 100MHz estimated frequency for an initially unplaced design.

6 Discussion and conclusion

Some negative results The main result of this second experiment is thus
that it is useless, on a 4010 and using XactM1 tools, to spend effort on the
placement : one gets as efficient a circuit, both in terms of speed and area,
from an unplaced description. Expressing placement doesn’t even reduce the
implementation time as it does under Xact6000. Our example design is special
in that it is completely linear, with few inputs and outputs, and the experiment
should be repeated with more complex netlist structures. However, these re-

RR n"3776



16 Florent de Dinechin

sults with the 4000 series justify the current trend in FPGA synthesis, which
is to center design optimization on timing constraints more than on placement
constraints, and to discard the design hierarchy to perform the place and route.

On the other hand, our approach proves very useful and efficient on the
6000 series, with its hierarchical routing and hierarchical approach to place
and route. However this FPGA family is notorious for the poor quality of its
automatic place and route tools.

Long term considerations We still believe that the long-term evolution
of the FPGA technology will make the flatten-all approach of current place-
and-route tools less and less viable |7]. The complexity of the place and route
problem increases much faster than the size of the design (however heuristics
will improve as well, along with routing resources).

Besides, the VLSI world is more and more relying on libraries of “intellectual
property” cores, and this begin to filter to the FPGA world. The weakness of
the flatten-all approach in this case is already examplified in FPGA-based
PCI coprocessor where the (rather huge) PCI interface is implemented on
the FPGA, and has to be placed and routed along the user design in each
iteration of the development process. This may add several hours to the design
compilation time.

Xact6000 is very bad at the push-button approach, however it has a clever
approach to hierarchical place and route which allows placement reuse, which
considerably speeds development of big designs consisting of several well de-
fined functional units. We believe that the ideal back-end tools should allow
for this hierarchical approach to place-and-route, while retaining the efficient
automatic approach of current tools for the lower components of the hierarchy.
In this case, a unified placement framework will be useful.

Current and future work This work now needs to be extended in two
directions : on its back end, we need to study more FPGA families and their
most recent back-end tools to find ways to exploit placement information if
it is available. On the front end, there is a lot of ongoing work on language
aspects, concerning the high-level placement constructs which have only been
evoked here. Another point is that we have only considered equations so far in

INRIA



Towards Adaptable Hierarchical Placement for FPGAs 17

placement, while it is clear that inequations should also be incorporated in the
framework. This, of course, will lead to more complex resolution strategies.

Acknowledgements

This work was partly done at the Imperial College of Science, Technology
and Medicine in London, UK, and partially supported by an INRIA post-
doctoral fellowship.

Références

|1] Florent de Dinechin. Libraries of schedule-free operators in Alpha. In
Application Specific Array Processors. IEEE Computer Society Press, July
1997.

[2] Digital Equipment Corporation. PamDC : a C++ Library for the Simu-
lation and Generation of Xilint FPGA Designs, 1997.

[3] Hervé Le Verge, Christophe Mauras, and Patrice Quinton. The Alpha
language and its use for the design of systolic arrays. Journal of VLSI
Signal Processing, 3 :173-182, 1991.

[4] W. Luk and S. McKeever. Pebble : a language for parameterized and
reconfigurable hardware design. In International Workshop on Field Pro-
grammable Logic and Applications, Tallin, Estonia, September 1998.

[5] W. Luk, N. Shirazi, and P. Cheung. Compilation tools for run-time recon-
figurable designs. In IEEE Symposium on FPGAs for Custom Computing
Machines, pages 5665, Napa Valley, CA, April 1997.

[6] R. F. Lyon. Two’s complement pipeline multipliers. IEEE Trans. Comm.,
94 :418-425, April 1976.

[7] J. Rose and D. Hill. Architectural and physical design challenges for
one-million gate FPGAs and beyond. In FPGA’97, ACM Symposium on
FPGAs, pages 129-132, Monterey, CA, February 1997.

[8] S. A. Senouci, A. Amoura, H. Krupnova, and G. Saucier. Timing dri-
ven floorplanning on programmable hierarchical targets. In FPGA’98,

RR n"3776



18 Florent de Dinechin

ACM/SIGDA International Symposium on FPGAs, pages 85-92, Monte-
rey, CA, February 1998.

[9] R. Sharp and O. Rasmussen. Using a language of functions and relations
for VLSI specification. In FPCA’95, Conference on Functional Program-
ming Languages and Computer Architecture, pages 45-54, La Jolla, CA,
June 1995.

[10] J. Vuillemin, P. Bertin, D. Roncin, H. Shand, M. andTouati, and P. Bou-
card. Programmable active memories : Reconfigurable systems come of
age. IEEFE Transactions on VLSI Systems, 4(1) :56—69, March 1996.

[11] Xilinx Corporation. XactStep Series 6000 User Guide, 1997.

INRIA



/<

Unit e de recherche INRIA Lorraine, Technop6le de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit“e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhdne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit“e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit"e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399



