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Abstract: Among the various formalisms for the design of reactive systems, the SIGNAL-
CoqQ formal approach, i.e. the combined use of the synchronous dataflow language SIGNAL
and the proof assistant C0OQ , seems to be especially suited and practical.

Indeed, the deterministic concurrency implied by the synchronous model on which S1G-
NAL is founded strongly simplifies the specification and the verification of such systems.
Moreover, COQ is not limited to some kind of properties and so, its use enables to disregard
what can be checked during the specification stage.

In this article, we underline the various features of this SIGNAL-C0Q formal approach
with a large scale case study, namely the Steam Boiler problem.
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Le probléme du steam-boiler en Signal-Coq

Résumé : Parmi les différents formalismes permettant la conception des systémes réactifs,
Papproche formelle SIGNAL-COQ , i.e. P’utilisation combinée du langage de programmation
synchrone & flot de données SIGNAL et de l'assistant de preuve CoQ , semble étre partic-
uliérement adaptée.

En effet, la concurrence déterministe induite par le modéle synchrone sur lequel SIGNAL
est fondé simplifie fortement la spécification et la vérification de tels systémes. En outre,
CoQ n’est pas limité & un certain type de propriétés et ainsi, son utilisation permet de faire
abstraction de ce qui peut étre vérifié pendant la phase de spécification.

Dans ce document, nous soulignons les différents aspects de cette approche formelle
SIGNAL-CO0Q & I’aide d’une étude de cas issue de I'industrie, & savoir le probléme du steam
boiler.

Mots-clé : systémes réactifs, modéle synchrone, vérification, model-checking, assistant de
preuve, co-induction



The Steam Boiler Controller Problem in Signal-Coq 3

1 Introduction

In this article, we investigate the combined use of the synchronous language SIGNAL and of
the proof assistant CoqQ for specifying and verifying properties of a large scale case study,
namely, the steam boiler problem.

This document is divided into two main parts. Firstly, after a short recall of the context,
we present the SIGNAL-Co0Q formal approach for the design of reactive systems. Then, we
report the results of specifying and verifying the steam-boiler problem with this method.
Notably, we describe our SIGNAL implementation in details.

1.1 Reactive Systems

Reactive systems are often safety critical applications which are in charge of handling mul-
tiple interactions with the environment. They are also often composed of several parallel
components that cooperate to achieve the expected behaviour. Those components roughly
belong to two main process classes. They are either part of the interface with the environ-
ment which ensures the exchange of the data, or they carry out processing on these data.
Therefore, concurrency is often an important feature that specification and programming
formalisms have to take into account.

Another essential aspect, maybe the most important, is reliability. Indeed, reactive systems
are often in charge of critical human or economic resources. Thus, they often require formal
verification tools when being designed.

Specification Asynchrony is the most natural model for concurrent programming and
seems thus to be well adapted for the specification of reactive systems. Asynchronous
languages like CSP [14] or ADA [4] are based on this model. Since the programming model of
these languages is founded on the interleaving of external events, verification soon becomes
a challenging issue.

The synchronous approach to concurrency (which started to be investigated in [16]) enables
to avoid this difficulty, disregarding execution and communication durations. It thus enables
to specify, verify and simulate a reactive system at a functional level. The real-time feature
of the system will only be checked at the implementation stage on a particular architecture.
Many programming languages like LUSTRE [12], ESTEREL [7, 9] or STATECHARTS [13] are
based on this synchronous approach. Namely, SIGNAL [6, 15] is a dataflow language which
handles infinite sequences of data: the signals.

Verification The most common way to verify safety properties of reactive systems is
model-checking, which relies on searching expected properties in a finite model of the system.
This method has several advantages. For instance, it is completly automatic and quite
fast. Moreover, it produces counterexamples when the verification happens to fail. But the
main drawbacks of model checking are the state explosion problem and the restriction of
expressible properties to a given, decidable, logic. Indeed, properties that involve parameters
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4 Mickaél Kerbeuf, David Nowak, Jean-Pierre Talpin

or non linear numerical values cannot be proved directly with a model-checker.

Theorem proving is not limited by those restrictions. On the other hand, this method,
which is based on a mathematical logic given by a formal system, requires interaction with
a user. The theorem proving process is therefore slower than the model checking one, and
it can sometimes be tedious. Theorem provers can be classified according to their degree of
automation. Tools like CoQ [5] or LEGO require a higher interaction with the user and thus
they are called proof assistants.

Coq is well suited to resolve complex problems. It enables to manipulate formulas of the
calculus of inductive constructions [19], extended with co-induction [11], a logical language
coming from type theory. Thus, since COQ can handle infinite objects, it is well adapted to
represent signals.

1.2 The Steam-Boiler Control Problem

W : maximal outcome of steam
U; : maximum gradient of increase
U, maximum gradient of decrease

| steam measurement device

|_steam boiler -+ M,
maximal capacity: C
minimal limit: M;
maximal limit: M, 4N,

e e
— e
— | F==1 | mixime rorma 1

| PUMps
capacity: P
provided data: status

pump controllers
provided data: flow

| water level measurement device
| provided data: quantity of water

Figure 1: Physical environment

Several formal methods enable to specify and verify a reactive system. In order to
compare their strengths and weaknesses, a common case study, i.e. the steam boiler control
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The Steam Boiler Controller Problem in Signal-Coq 5

specification problem, has been proposed by J.-R. Abrial, E. Borger and H. Langmaack [3,
1, 2]. The original specification is informal, biased to a particular implementation and it
contains some ambiguities. Then, some precisions and some decisions about the program
and the physical environment must be made at first.

Physical environment The physical environment is composed of several units (F1aG. 1).
Each one is characterized by physical constants and some of them provide data.

Problem statement The program has to control the level of water in the steam boil-
er. This quantity has to be neither too low nor too high. Otherwise, the system might
be affected. The program also has to manage physical units failures. For that purpose, at
every moment, its takes into account the global state of the physical environment which is
denoted by an operation mode. According to this state, the program decides at each cycle if
the system must stop or not, and if not, it activates or deactivates pumps in order to keep
the level as much as possible in the middle of the steam boiler.

The specification also gives additional information concerning the physical behaviour of the
steam boiler. Namely, new values, called adjusted and calculated values, are proposed. They
enable to keep the control of the system, managing a vision of its dynamic, when a mea-
surement device is defective.

We chose this case study because it is well adapted to our aim, i.e. to show the interest
of the SIGNAL-CoQ formal approach. Indeed, the program has to handle several physical
parameters and it may use non linear numerical values. Thus, safety properties cannot be
proved directly with a classical model checker.

2 The SIGNAL-COQ Formal Approach

We present in this section the SIGNAL-Co0Q formal approach for the design of reactive
systems which has been proposed in [17]. After an informal recall of the principles of co-
induction, we briefly describe the C0Q co-inductive axiomatization of SIGNAL , which is
also presented in details in [17].

2.1 Co-induction

The common principle of induction enables to underline the characteristics of co-induction.
We informaly introduce those ideas in some examples.

Inductive and co-inductive sets A list, i.e. a finite sequence of values, is defined in
CoqQ with the Inductive command. For example,

Inductive natList : Set :=
Nil : natList
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6 Mickaél Kerbeuf, David Nowak, Jean-Pierre Talpin

| Cons : nat->natList->natlList.

defines a finite list of natural numbers.

Informally, this definition says that a list is either the empty list Nil, or Cons(z,!) i.e. a
value z followed by a list /.

More formally, natList defines L, the set of the lists of natural numbers. It denotes the
smallest fixpoint of a I' monotonous operator on lists of natural numbers:

['(X) = {Nil} U {Cons(z,l) | € N and [ € X}

We now consider an example of a co-inductive definition. We define a stream, i.e. an
infinite sequence of values. We use for that purpose the CoInductive command in CoQ .
For example,

CoInductive natStream : Set :=
cons : nat->natStream->natStream.

defines an infinite stream of natural numbers.

Informally, this definition says that a stream is always built with the cons constructor, i.e.
it is always a value followed by a stream.

More formally, natStream defines Fy, the set of the streams of natural numbers. It denotes
the largest fixpoint of a A monotonous operator on streams of natural numbers:

A(X) = {cons(z,F) |z € Nand F € X}

Note that the smallest fixpoint of this operator is the empty set. It is therefore uninteresting
in this case.

Recursive and co-recursive functions CoQ enables to define recursive and co-recursive
functions with the Fixpoint operator and the CoFixpoint operator. For example,

Fixpoint lsum [1l:natList] : nat :=
Cases 1 of
Nil => 0
| (Cons x 1) => (plus x (1lsum 1))
end.

defines a function which calculates the sum of the values of a list.
More formally, this fuction is the smallest fixpoint of the F}guym monotonous function of
funtions:

Flgum : n —N) — (Ly — N)
Nil — 0
F =\ Coms(z,l) +— z+ f(I)

CoqQ also enables to define recursive functions on co-inductive sets. Such functions
implements the lazy evaluation principle. Thus, the result of such a function applied to a
co-inductive object is computed only during an explicit call of this function. For instance:

INRIA



The Steam Boiler Controller Problem in Signal-Coq 7

CoFixpoint map : (nat->nat)->natStream->natStream :=
[g:nat->nat] [F:natStream] Cases F of
(cons x G) => (cons (g x) (map g @)
end.

applies the g function to each element of a stream. A call to this function on a stream X,
infinite by definition, cannot cause its evaluation for every elements of X. In return, g can
be applied to the first values of X if these values are explicit. Then, recursive calls must be
guarded, i.e. the CoQ interpreter must be able to find the first value of the stream, to which
it will apply the function, in a finite time.

The map function defined in this example is the largest fixpoint of the Fmap monotonous
function of funtions:

Fpap : (N+— N) x Fx +— Fn) — ((N+ N) x Fx — Fn)
f +— ((9,cons(z,1)) — cons(g(x), f(g,1)))

Inductive and co-inductive predicates We can express in CoQ the smallest set of
elements verifying a relation defined by a set of axioms. For that purpose, we use the
Inductive operator. For example, the following Mem,, predicate denotes the smallest set
of lists of natural numbers that contains a given n:

1. VI € Ln, Mem,,(Cons(n,1))
2. Vm € N,Vl € Ln, Memp(l) = Memy(Cons(m,1))

The CoQ specification of this predicate is the following;:

Inductive Mem [n:nat] : natList->Prop :=
mem_head: (l:natList)(Mem n (Cons n 1))
| mem_tail: (m:nat) (1:natlList) (Mem n 1)->(Mem n (Cons m 1)).

On the other side, the CoInductive command enables to express the largest set of ele-
ments verifying a relation defined by a set of axioms. For example, the following Eq natStream
predicate denotes the largest set of natural streams that have the same values in the same
order:

1. Vn e N,V(X,Y) € (Fn)?, Eq_natStream(X,Y)
= Eq_natStream(Cons(n, X), Cons(n,Y))

The CoQ specification of this predicate is the following:

CoInductive Eq_natStream : natStream->natStream->Prop :=
eqnatstream: (n:nat) (X,Y:natStream)
(Eq_natStream X Y)->(Eq_natStream (cons n X) (cons n Y)).

More generally, co-inductive predicates enable to express properties of invariance over
streams, whereas inductive predicates enable to express properties of liveness.

RR n~°3773



8 Mickaél Kerbeuf, David Nowak, Jean-Pierre Talpin

2.2 Co-inductive axiomatization of SIGNAL in C0OQ

Proofs of program properties in CoQ are built on a set of axioms that denotes the semantic
of the language with which the program is written. Thus, in order to have efficient proofs,
this semantic has to be well suited to CoQ . We use for SIGNAL a variant of the semantic
of traces [18], completely described in [17], in which a signal is a co-inductive object.
Informally, in the semantic of traces, signals are represented by a numerical sequence of
values and L symbols denoting the absence of value. Then, a SIGNAL process is defined as
a set of such sequences in respect of some constraints. In the co-inductive variant of this
semantic, a signal is a co-inductive set of values and of L symbols denoting the absence of
value. The Coq specification of such objects is the following:

Inductive SValue [U:Set] : Set :=
absent : (SValue U)
| present : U->(SValue U).

Definition Signal := [U:Set](Stream (SValue U)).

The absent constructor denotes the absence of value 1. The parameter U denotes the type
of the signal. When this signal has a value v at one moment, it is denoted by present(v).
The co-inductive type (Stream V) denotes a stream of V' values and it is defined in standard
CoqQ libraries.

This variant is equivalent to the original semantic and has an important advantage: it
enables to disregard temporal index which is explicit in numerical sequences.
We can now give the set of axioms that co-inductively models in C0oQ the operators of the
SIGNAL kernel language:

e Instantaneous relations :

CoInductive Relation3 [U,V,W:Set; P:U->V->W->Prop]
(Signal U)->(Signal V)->(Signal W)->Prop :=
relation3_a: (X:(Signal U))(Y:(Signal V))(Z:(Signal W))

(Relation3 P X Y Z)->
(Relation3 P (Cons (absent U) X)
(Cons (absent V) Y)
(Cons (absent W) Z))
| relation3_p: (X:(Signal U))(Y:(Signal V))(Z:(Signal W))
(u:U) (v:V) (w:W)
(P uv w)->(Relation3 P X Y Z)->
(Relation3 P (Cons (present u) X)
(Cons (present v) Y)
(Cons (present w) Z)).

e Deterministic merge default :

INRIA



The Steam Boiler Controller Problem in Signal-Coq 9

CoFixpoint default : (U,V:Set) (Signal U)->(Signal V)->(Signal U+V)
[U,V:Set] [X:(Signal U)][Y:(Signal V)] Cases X Y of
(Cons (present u) X’) (Cons _ Y’) =>
(Cons (present (inl 7 7 u)) (default X’ Y’))
| (Cons absent X’) (Cons (present v) Y?) =>
(Cons (present (inr 7 7 v)) (default X’ Y’))
| (Cons absent X’) (Cons absent Y’) =>
(Cons ( absent U+V) (default X’ Y?))
end.

e Down-sampling when :

CoFixpoint when : (U:Set)(Signal U)->(Signal bool)->(Signal U) :=
[U:Set] [X:(Signal U)][Y:(Signal bool)] Cases X Y of
(Cons x X’) (Cons (present true) Y’) => (Cons x (when X’ Y’))
| (Cons _ X’) (Cons _ Y’) => (Cons (absent U) (when X’ Y?))
end.

e Delay operator :

CoFixpoint pre : (U:Set)U->(Signal U)->(Signal U) :=
[U:Set] [u:U] [X: (Signal U)] Cases X of
(Cons absent X’) => (Cons (absent U) (pre u X’))
| (Cons (present v) X’) => (Cons (present u) (pre v X’))
end.

SIGNAL equations are naturally transcripted in CoQ with this formalization of the lan-
guage.

3 The steam boiler in SIGNAL-COQ

Because of the flexibility with which the original specification of the steam boiler can be
interpreted [3], we first need to make some details more precise on the physical behaviour
of the steam boiler and the logical behaviour of it implementation in SIGNAL . Then, we
present our proposal in details and the properties that can be checked with CoqQ .

3.1 Precisions on the original specification

Those precisions concern the behaviour of the physical units, the constitution of the ex-
changed messages and the reaction they imply, the failure detection, and the management
of the vision of the dynamic of the system (fig. 1, p 4).
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10 Mickaél Kerbeuf, David Nowak, Jean-Pierre Talpin

3.1.1 Distinction between pumps failures and pump controllers failures

A pump controller tells the program if its associated pump is pouring water into the boiler
or not. Then, it may enable to check the real state of a pump. For example, when the status
of a pump is ON and when this pump tells it, the controller has to confirm it, telling the
program if this pump really provides water at this moment. But the controller can also be
defective. Thus, it is impossible to distinguish, only with those data, the two following cases
for instance:

pump | controller || status | state provided | state provided real

failure failure by the pump | by the controller || state
case 1 yes no OFF OFF ON ON
case 2 no yes OFF OFF ON OFF

Moreover, the specification [3] does not state precisely what kind of failure a pump or a
controller may have. In the specification, a pump or a controller is defective if its state is
inconsistent with its status, and a pump is also defective if it provides a false state. Thus, if
the pump and its controller provide a false state but consistent with the pump status, the
program cannot detect the failure. For example, the following cases are not distinguishable:

pump | controller || status | state provided | state provided real

failure failure by the pump | by the controller || state
case 1 yes yes OFF OFF OFF ON
case 2 yes no OFF OFF OFF OFF

Because of these ambiguities, the specification states more precisely that in order to de-
tect a controller failure, the program has to know from elsewhere that its associated pump
works correctly. In such conditions, if the controller provides a state which is inconsistent
with the state provided by the pump, the controller is obviously defective.

But how could we be sure that a pump works correctly, i.e. how could we know exactly
the real state of a pump? We cannot suppose that controllers are infallible because this
hypothesis is too restricive with regard to the original specification. Then, in order to know
the real state of a pump without controllers information, we must be able to detect precisely
which pumps provided water at each cycle according to the level changes.

We first consider a more simple system in which only one pump is involved. Then,
suppose that the following conditions hold at instant t¢:

e the steam measurement device works correctly and provides v;.
¢ the water level measurement device works correctly and provides g; -
e the pump (of capacity P) tells that its state is ON.

e the status of the pump is ON

INRIA



The Steam Boiler Controller Problem in Signal-Coq 11

We now define the following variables:
e minimal accessible level for the next instant ¢ + 1 if the pump is stopped: g2,,,,.
e maximal accessible level for the next instant ¢ + 1 if the pump is stopped: ga,,..
¢ minimal accessible level for the next instant ¢ 4 1 if the pump provides water: ¢5 .

¢ maximal accessible level for the next instant ¢ 4 1 if the pump provides water: g5

We have the following relations:

1
42,min = q1— ’UlAt - §U1At2
1
42.man = q1— ’UlAt + §U2At2
qémin = q2min + PAt
Trrae = Do T PAL

In order to be sure that the boiler has actually been supplied in water, the following
condition must be verified:

[@2nins ©oae) N1 5 @2 ] =0 (1)

Indeed, values of this intersection represent levels accessible with or without supply of
water. Thus, this constraints enable to be sure that the system has been supplied actually
in water if and only if:

G, > Graw & PAL> @, — 2,000 (2)
1

& PAt> 5At?(Ul + Us) (3)

& | P> %At(Ul +Us) (4)

We now generalize this relation, considering a system with n pumps with capacities p;

to pp.
We define the following functions:

B—+ N

Piieqt,m) * | p o {gz gfm
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12 Mickaél Kerbeuf, David Nowak, Jean-Pierre Talpin

For each combination of pumps (activated or deactivated), we define the cumulated
throughput with those functions. Just as in the first case, we settle the following constraint
in order to be able to assert that the boiler has actually been supplied in water:

Vb;...b, € B, Z?:l R(bz) > %At(Ul + Uz) (5)

Thus, when this constraint holds, we know how to detect the supply of water by one or
several pumps. We have moreover to distinguish exactly which pumps provided water at
each cycle. For that purpose, each activated/deactivated combination of pumps must have
a unique cumulated throughput. Then the system must also hold the following constraint:

Vbi..bn, V5. b, € B, (3i € Lon,b; # ) = Y0 Pi(b;) # iy B (8)) 6)

As a conclusion, to know exactly the real state of each pump disregarding any informa-
tion coming from the controllers, the system must hold constraints 5 and 6. Now:

e Constraint 5 implies that the exhaust of steam at the exit of the steam boiler is too
slow with respect to the troughput of the pumps. Indeed, even the pump which has
the lowest capacity must be able to provide in one cycle a higher quantity of water
than the maximal quantity of steam which can come out of the boiler. For example,
if a pump is defective and cannot be stopped, its repairing must be fast because the
level ineluctably rises at each cycle to a critical limit.

e Constraint 6 does not permit to consider pumps which have the same capacity. We
can generalize the specification authorizing pumps to have possibly different capacities.
But this constraint is too restricive with regard to the original specification.

e Those constraints are useless when the steam measurement device or the water level
measurement device is defective. Indeed, those constraints are based on real measure-
ment.

e This method makes the controllers useless. Indeed, the states they provide are not
needful for the processing.

For all these reasons, we chose to settle the real state of a pump, only regarding its
status, the state provided by the pump and the state provided by its controller. Then, we
can also settle the real throughput of a pump at each cycle, should it be defective or not
(flow indicator). This is exactly the choice made in [10], a solution of the steam boiler
problem in LUSTRE. The table 1 lists the twelve combinations of possible states and status
provided, and the decision on the real states and flow corresponding to each situation. This
table was proposed in the LUSTRE implementation. We chose this solution because it seems
to be the most reasonable and intuitive one. Moreover, this solution is coherent with the
expected role of pump controllers.

e When a pump provides a state which is not coherent with its status, it is defective.

INRIA
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Pump State provided | State provided Detected detected
status by the pump | by the controller flow failure
OFF OFF OFF no -
OFF OFF ON no controller
OFF ON OFF no pump
OFF ON ON yes pump
ON OFF OFF no pump
ON OFF ON yes pump
ON ON OFF yes controller
ON ON ON yes -
SWITCHED-ON OFF OFF no pump
SWITCHED-ON OFF ON no pump and controller
SWITCHED-ON ON OFF no -
SWITCHED-ON ON ON no controller

Table 1: Pump and controller failure detection

When a pump provides a state which is coherent with its status, it is not defective.
When a controller provides a state which is coherent with the status, it is not defective.

When a controller provides a state which is not coherent with the status, but coherent
with the state provided by the pump when this pump is defective, the controller is
not defective. This case underlines the interest of a controller. Indeed, we decide here
to trust the controller when a pump is defective and when the controller confirms the
state provided by its associated pump. Thus, we are able to know the real throughput
of this pump.

When a controller provides a state which is not coherent with the status when the
pump works correctly, the controller is defective.

When a controller provides a state which is not coherent with the status and not
coherent with the state provided by the pump when this pump is defective (there is
only one case), the controller is also defective.

From those detected failures, we are able to settle the real flow regarding the controller.
The flow corresponds to the state provided by the controller when it works correctly. In
return, it corresponds to the opposite of this state when the controller is defective.
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14 Mickaél Kerbeuf, David Nowak, Jean-Pierre Talpin

3.1.2 Precisions about messages

According to the specification [3], some messages must be received at each cycle. We decided
to reduce this constraint for some of them. Of course, those messages can still be received
at each cycle.

Moreover, the meaning of some messages, and the reaction they imply, must be specified
more precisely.

Communication with pumps and controllers The original text does not specify
how many pumps or controllers the program can simultaneously communicate with. The
messages coming from these physical units are presented with a parameter (e.g. OPEN-
PUMP(n)). This parameter may be regarded as a unit identifier. In this case, the program
is able to receive only one message of a certain type (e.g. OPEN-PUMP) from one pump
or one controller per cycle. In the same way, the program can send only one message of a
certain type to one unit. In particular, it can activate or deactivate only one pump at the
same time, which is not very realistic.

The parameter of these messages can be considered as the unique identifier of a particular
combination of pumps (or controllers). For instance, if the value 2 concerns pumps number 1
and 2, OPEN-PUMP(2) enables to activate them simultaneously. Then, a PUMP-STATE(b)
message should be sent back. It could provide the global state of each pump by a (ON /
OFF) combination identifier of states (parameter b).

This solution implies that all pumps and controllers have to provide their state after a
command concerning only one pump. To reduce this constraint, we decided to use sever-
al indexed messages (e.g. OPEN-PUMP1,...,OPEN-PUMP4) corresponding to a particular
unit, instead of using one parameterized message (e.g. OPEN-PUMP(n)). This solution
increases the number of messages, but it has the advantage of making it possible to manage
simultaneously and completely independently each pump and each controller. Moreover, the
processing of these messages is some simplified.

Message classes We classify messages in three main classes:

Messages for initialization. We find in this category:

¢ PROGRAM-READY : This message is a signal sent once during the second phase
of the initialization mode to each physical unit.

o STEAM-BOILER-WAITING() : The original text does not specify exactly which
unit sends this message. Then we decided that each physical unit must send
it. We could have therefore decided to create individual communication lines for
this message like the messages concerning pumps and controllers. But we do not
need in this case to receive simultaneously those messages. Then, we just have
to parameterize this message with a unit identifier and we suppose that the line
which carries this message is bufferized.

INRIA
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o PHYSICAL-UNITS-READY (%) : This message must be received from each physical
unit. It is implemented in a same way than the previous message.

Messages for failure management. We find in this category the following messages.
Each message is sent once to the concerned unit. Messages coming from physical
units are also sent only once. They must appear in this order:

e Messages for failure detection:

— PUMPi-FAILURE-DETECTION
— PUMP-CONTROL:-FAILURE-DETECTION
— LEVEL-FAILURE-DETECTION
— STEAM-FAILURE-DETECTION

o Messages for failure acknowledgement:

— PUMPi-FAILURE-ACKNOWLEDGEMENT
— PUMP-CONTROL:-FAILURE-ACKNOWLEDGEMENT
— LEVEL-FAILURE-ACKNOWLEDGEMENT
— STEAM-FAILURE-ACKNOWLEDGEMENT
e Messages for repairing report:
PUMPi{-REPAIRED
PUMP-CONTROL:-REPAIRED
— LEVEL-REPAIRED
STEAM-REPAIRED
e Messages for repairing acknowledgement:
— PUMP¢-REPAIRED-ACKNOWLEDGEMENT
— PUMP-CONTROL:-REPAIRED-ACKNOWLEDGEMENT
— LEVEL-REPAIRED-ACKNOWLEDGEMENT
— STEAM-REPAIRED-ACKNOWLEDGEMENT

Messages for the processing. They belong to two main classes:

¢ Information messages:

— MODE(m) : Sent at each cycle to the physical units.

— PUMP-STATE: : This message can be received at each cycle but it is com-
pulsory only at the moment which follows a command of deactivation and at
the two moments following a command of activation (to secure the succes-
sive changes to the status SWITCHED-ON and ON). Moreover this message is
compulsory at the initial moment.

— PUMP-CONTROL{-STATE : This message must be present, only when the
corresponding PUMP-STATE: message is present.
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— LEVEL(q) : This message must imperatively be present at each cycle. Indeed,
the interval of accessible values for the next cycle is calculated with the help
of a fixed and preset frequency of measurements. Without this constraint,
the vision of the dynamics of the system is false and then, decisions of pump
activation or deactivation are not founded.

— STEAM(v) : For the same reason, this message must imperatively be present
at each cycle.

e Action messages :

— VALVE : This message is sent to the boiler and enables to make the state
(open or close) of the valve change for the opposite of its current state.

— OPEN-PUMP; : This message, sent at the instant ¢, activates the pump at
the instant (¢4 1) (so the PUMP-STATE: message must be received at (t+1)
and (t +2)).

— CLOSE-PUMP; : This message, sent at the instant ¢, deactivates the pump
at the instant (¢t + 1).

— STOP

In addition to these messages, we introduce a new message H. This message is a pure
signal, which is sent every five seconds. This signal is the main clock of the program. All
involved signals in the program have a clock which is an sub-clock of H. This signal is
supposed to be reliable and makes it possible to detect the absence of compulsory messages.

3.1.3 Behaviour of the physical units in case of a failure

When a failure is notified, the behaviour of the physical unit which is concerned must be
specified more precisely.

Measurement devices Measurement devices (steam and water level measurement de-
vices) must always provide a value at each cycle even if they are defective. This constraint
is not inconsistent with the idea of failure. Indeed, a unit is defective when it provides an
incoherent measurement with the dynamic of the system. Failure detection of these devices
relies on provided measurements and not on their presence. When a measurement misses, a
transmission failure is detected, which implies the stop of the system in any case.

Thus, when the unit tells the program it is repaired, at the same time, this unit provides
a measurement. Since the moment when its failure is detected, the program manages an
interval of accessible values for this measurement. Then, it is still possible to estimate
(though less precisely) the coherence of this measurement. It is thus possible for the program
to detect the failure of a measurement device simultaneously when this unit announces its
repairing.
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Pumps and contollers When a pump failure is detected, we consider that its state does
not change until its repairing. Thus, as the program knows the real flow of a pump when this
pump becomes defective, we consider that this flow does not change until the repairing. We
also consider that the repairing agent knows the last command which has been given to the
pump. Thus, this agent does not only repair the pump. It also puts the state of this pump
in a state which is consistent with its expected status when its repairing is notified. Example:

| instant | Status | State | Flow | Failure || Repairing agent |
t1 OFF OFF no - No repairing
in progress.
t1+1 SWITCHED-ON | OFF no YES Failure notified:
beginning of the procedure.
t1+ 2 ON OFF no YES Repairing procedure

in progress.

to ON ON no YES Procedure finished :

pump activation.
to+1 ON ON yes - Repairing correctly
finished.
to + 2 ON ON yes - No repairing

in progress.

Thus, it is also possible to dectect a pump failure simultaneously when this pump an-
nounces its repairing.

We decided not to give commands to a pump which is defective or whose controller is
defective. Then, the flow of such a pump does not change while the concerned physical
unit is not correctly repaired. We must make this decision when a controller is defective
because without its information, the program is not able to settle neither the real state of
its associated pump, nor its real flow. As we consider that this flow does not change until
the repairing, the processing is still based on reliable data.

3.1.4 Activation and deactivation of the pumps

In this implementation, the program is only based on the interval of accessible levels for the
next cycle, to decide to make the level move up or down, to do nothing if the level is good,
or to stop the system because of a critical level.

Decision concerning the level For that purpose, we first consider the following pairs:
(gc1,qa1) and (ges, qaz). The program computes for each pair the appropriate decision. A
decision is one of the following values:

e ATT UP : The level must absolutely move up.
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o ATT_DOWN : The level must absolutely move down.
o OK_UP : The level should move up but is not critical yet.

o OK_DOWN : The level should move down but is not critical yet.

STOP : Critical situation: the system must stop.

NIL : The level is perfect and does not need to be changed.

qc;
Case 1 : |

qc; qa;
Case 2 : i I

qc; ga; > M,
Case 3 : I

qc;
Case 4 : I

qcq
Case 5 : :

qc;
Case 6 : I

qa; < M qc;
Case 7 : I

qa; qc;
Case 8 : I I

qc;
Case 9 : I

0 M, N; N, M, C

For each case, the program makes the following decisions:

e Case 1: STOP. Whatever the current adjusted level may be, the program cannot risk
to empty the boiler. Thus, the system must be stopped.

e Case 2 : STOP. The current adjusted level is in a critical zone. The level could still
be there at the next cycle because gc; < M;. As the level cannot risk to remain more
than five seconds in this hot zone, the system must be stopped.

e Case 3: ATT_UP. The current adjusted level is not in a critical zone but it risks to
reach such a zone at the next cycle. Then, the level must move up.
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e Case 4 : OK_UP. The level is not in a critical zone. Nevertheless, the level is not
included in the interval [N1, N3]. Then, the level might move up.

e Case 5 : NIL. The extremum level for the next cycle is included in the interval [N1, No].
Then, the program has to maintain the system in its current state.

o Case 6 : OK_DOWN. The level might move down.

e Case 7: ATT _DOWN. The current adjusted level is not in a critical zone but it risks
to reach such a zone at the next cycle. Then, the level must move down.

e Case 8 : STOP. The current adjusted level is in a critical zone. The level could still
be there at the next cycle because gc; > Ms. As in case 2, the level cannot risk to
remain more than five seconds in this hot zone. Then, the system must be stopped.

e Case 9 : STOP. Whatever the current adjusted level may be, the level cannot risk to
reach the capacity of the boiler. Thus, the system must be stopped.

Then, the program confronts the decisions relating to each extremum in order to make
a global decision. The various possible cases are listed in table 2.

To sum up, when a relative decision is STOP, the global decision is STOP. When a
relative decision is NIL, the global decision corresponds to the other relative decision. When
the kind of a relative decision is ATT, the global decision is STOP when the kind of the
other relative decision is also ATT, but in the opposite direction, or when the other relative
decision is STOP. In the other cases, the global decision corresponds to the direction of this
relative decision. Finally, when the kind of the two relative decisions is OK, if they have the
same direction, the global decision corresponds to this direction. Otherwise, the program
decides not to change the state of the system (decision NIL).

Quantity of water to be provided At this stage, the global decision is final. If this
decision is not STOP, the system will not stop in the current cycle because of a critical
level. Thus, even if the decision is UP because of a ATT _UP relative decision, and if all the
pumps are defective with a zero flow, the system will not stop because it is not in a critical
situation. In fact, this situation will probably become critical during the following cycles
but the STOP decision will be made only at this moment and not before. Hence, the global
decision unifies relative decisions of kind ATT and OK.

Then, when the program decides that the level has to move up or down, it has two main
ways to make the level progress towards the expected direction:

¢ When the global decision is UP, the program can open all the pumps. When the deci-
sion is DOWN, it can close all of them. These activation and deactivation commands
are only given to pumps which work correctly or whose controllers work correctly.
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| Decision coming from (g1, ga1) | Decision coming from (gcs, gaz) || Global decision |

STOP STOP STOP
STOP ATT_UP STOP
STOP OK_UP STOP
STOP NIL STOP
STOP OK_DOWN STOP
STOP ATT_DOWN STOP
ATT_UP STOP STOP
ATT_UP ATT_UP UP
ATT_UP OK_UP UP
ATT_UP NIL upP
ATT_UP OK_DOWN UP
ATT_UP ATT_DOWN STOP
OK_UP STOP STOP
OK_UP OK_UP UP
OK_UP NI UP
OK_UP OK_DOWN NI
OK_UP ATT_DOWN DOWN
NIL STOP STOP
NIL NI NI
NIL OK_DOWN DOWN
NIL ATT_DOWN DOWN
OK_DOWN STOP STOP
OK_DOWN OK_DOWN DOWN
OK_DOWN ATT_DOWN DOWN
ATT_DOWN STOP STOP
ATT_DOWN ATT_DOWN DOWN

Table 2: Global decision for the level movement

e According to the global decision and to the current calculated levels, the program
calculates the best quantity of water desirable (but not imperious) to be provided for
the following cycle.

The first solution is very simple (or even simplistic). However, this radical behaviour
implies too strong variations of level. Indeed, if the cumulated throughput of all the pumps
enables to fill up the interval [N1, No] in one cycle and if the maximum outcome of steam
at the exit of the boiler enables to empty the interval [N, N3] in one cycle, the program
risks to activate and deactivate in turn every pumps at each cycle without ever reaching an
optimal level.
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Then, whe decided to choose the second solution. The program has to calculate the
optimal quantity of water that might be provided. For that purpose, we consider the two
following cases:

e The global decision is DOWN. Such a decision is implied by the value of gcs. The pro-
gram would like to make this value go down to IV, for the next cycle. For this purpose,
it could stop all the pumps. Then, the steam outflow could possibly reduce the level
(possibly because some defective pumps could stay activated). Now, considering the
minimum outcome of steam, if the reached level remains lower than N», the program
does not need to deactivate each pump. On the contrary, the pumps should try to
provide the difference:

Nz — (QCQ — (’UClAt - %UzAtz)) (7)

As we want to reduce the level, this quantity is to be reached by lower values. Obvi-
ously, if this quantity is negative, the program will try not to provide some water. In
other words, each non defective pump will be deactivated.

e The global decision is UP. Such a decision is implied by the value of gc;. The program

will try to increase this value toward N; for the next cycle. In other words, it will try
to provide (N; — gcy) liters of water.
Moreover, we consider that the quantity of steam at the exit of the boiler will be maxi-
mum at the next cycle. This maximum quantity is calculated with the maximum steam
outflow and with the maximum gradient of increase of this outflow: (ve; At + LU At?).
Thus, the program knows the minimum quantity of water that it is desirable to provide
in order to reach Ni:

(N1 — qcl) + (’UCzAt -+ %UlAtz) (8)

As we want to increase the level, this quantity is to be reached by upper values. Indeed,
in this case, it is better that gc; passes beyond N; for the next cycle than it remains
under Nj.

Thus, with the global decision and the optimal quantity of water to be provided, the
program has to calculate the best combination of activated/deactivated pumps in order to
reach the aim. Even if this optimal combination is very far from this aim, the system is not
stopped because the global decision is (still) not STOP.

3.1.5 State of the system at start

At the initial moment, we decided to create the following constraints:

e All the pumps are in state OFF. This precision is required for the detection of the
possible failures of pumps and controllers as soon as the system starts.
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e Pumps and controllers must provide their state. The initial status and flows of each
pump will be calculated with these data.

e The valve is closed. As VALVE is a pure signal which puts the valve in the opposite
state of its current state, its initial state must be specified.

3.1.6 Operation modes

In this implementation, decisions concerned with increasing or decreasing the level of water
as well as stopping the system are only made according to the adjusted and calculated
values. Such a method enables to avoid the management of the physical state of the units
at the level of decision processing. Thus, operation modes normal, degraded and rescue can
be unified because they do not imply a particular processing. For instance, in normal mode,
all physical units, and namely the water level measurement device, work correctly. In this
case, adjusted values ga; and gas are the same. More precisely, ga; = gas = q with ¢: value
really provided by the level measurement device. In rescue mode, this device is defective.
Then, adjusted values ga; and gas form an interval of possible current levels. In those two
cases, pumps activation and deactivation decisions are made in the same way, independently
of the state of the water level measurement device.

Thus, specified constraints concerning the states of the steam measurement device, of
controllers and of pumps in rescue mode are useless. In case of failure of these units, the
interval formed by adjusted values widens out at each cycle. But as long as this interval
does not reach a critical zone, the program does not need to stop the system. Such a method
enables to retrieve critical situations as much as possible, without ever reaching a critical
state.

Although operation modes normal, degraded and rescue can be unified, we decided to
manage them separately. Indeed, if they do not imply particular actions at the level of
decision processing, they can imply particular behaviours of physical units.

3.2 Design and architecture of the SIGNAL implementation

The program is formed by four main processes (F1G. 2). The heart of this architecture is
the control process which is in charge of operating the pumps and initially the valve. The
three other processes form two kinds of filter which enable to provide to the control process
an environment in which it can disregard the management of failures. Notably, this process
does not consider possible failures of measurement devices when it decides to activate or
deactivate some pumps. Moreover, this process does not consider possible failures of pumps
and pump controllers when it decides to stop or not the system.

GESTION ECHANGES : This process forms the first filter. It is in charge of the detection of
transmission failures. For that purpose, it makes sure that the presence of all received
messages is not consistent and that all messages whose presence is indispensable at
a given cycle are actually received. Then, this process uses our H signal. Messages
coming from physical units are passed on only if no transmission failures are detected.
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Figure 2: Modular organization of the program

This process is the only user of the H signal. It is also in charge of counting the STOP

messages in order to report the manual stop of the system to the control process.

GESTION ERREURS : This process forms a part of the second filter. It is in charge of
the detection of failures of physical units. For that purpose, concerning pumps and
controllers, it compares each pump status with each corresponding provided pump and
controller states. Concerning measurement devices, it compares the current calculated

values with the provided values.

When this process detects a failure, it is also in

charge of managing the dialogue about failure detection, repairing and corresponding
acknowledgements with the concerned unit. Moreover, it provides a global vision of
the state of the physical system, reporting at each moment to the control process if
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each unit works correctly or not. The real flow of each pump is also defined by this
process.

DYNAMIQUE : This process forms the second filter, together with GESTION ERREURS. It
is in charge of providing at each cycle adjusted values of the current measurements
and calculated values of the measurements of the following cycle, regarding the state
of the measurement devices.

This second filter enables to provide reliable data to the control process on which it
will be able to make safe decisions disregarding failure management.

CONTROLE : This process manages operation modes, decides if the system can go on or
if it must stop, decides if the level must move up or down in the boiler, calculates
the best quantity of water to be provided, and gives commands to the pumps. Those
decisions are based on the filtered data coming from the previous processes. Moreover,
this process is in charge of the initialization of the system.

The program has a structure of hierarchy. Indeed, SIGNAL enables to create process models
which can include sub-models. We thus have an arborescent hierarchy of process models
which are included in our implementation (F1G. 3).

(7] STEAH_BOILER
GESTION_ERREURS
APPEL _GESTION_ERRELRS
ERREUR_MESLRE
ETAT_INITE
ERREUR_POMPE _CONTROLELR
I¥MAMIOUE
VALEURS _AJUSTEES
GESTION_ECHANGES
L% ] CONTROLE
MODE_OPERATOIRE
DECISION
DECISION_EXTREMUM
ACTIOW_POMPES
CALCUL_COMBIMAISOM
HIN

MIM_POSITIF

DEMARRAGE

Figure 3: Program’s hierarchy
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The SIGNAL graphical editor [8] enables to group signals into so called bundles'. These
bundles gather signals of a same kind. Each signal which is specified in the original text
has an internal version. A message is first received by the GESTION ECHANGES process.
After this filter, those messages are in their internal version. Messages to be sent are also
in an internal version. Those messages are actually sent to the physical environment by the
GESTION ECHANGES process. Thus, at the output of the program, those messages are
also in their external version, i.e. they are as presented in the original specification. In their
internal versions, signals are present only if the first process did not detect a transmission
failure. Thus, internal signals are always present when they are expected, and only present
in this case.

The following signals, gathered in bundles, are used in each level of the program’s hierarchy:

¢ Initialization messages (received):

— STEAM_BOILER _WAITING. Internal version: SB_ WAITING
— PHYSICAL _UNITS READY. Internal version: UNITS READY

¢ Pumps and controllers state:

— PUMP1_STATE,...,PUMP4 STATE. Internal versions: P1_ON,...,P4 ON
— PUMP_CONTROL1 STATE,....PUMP_CONTROL4 STATE. Internal versions:
PC1_ON,..,PC4 ON

e Measurement:

— LEVEL. Internal version: NIVEAU
— STEAM. Internal version: VAPEUR
e Failure detection:
— PUMP1_FAILURE DETECTION,...,PUMP4 FAILURE DETECTION

Internal versions: P1_ERR,...,P4 ERR

— PUMP_CONTROL1_ FAILURE DETECTION,...,
PUMP CONTROL4 FAILURE DETECTION
Internal versions: PC1_ERR,...,PC4_ERR

— LEVEL_FAILURE_DETECTION. Internal version: L _ERR
— STEAM_FAILURE_DETECTION. Internal version: S_ERR

e Failure acknowledgements:

— PUMP1_FAILURE_ACKNOWLEDGEMENT,...,
PUMP4_FAILURE_ACKNOWLEDGEMENT
Internal versions: P1_ERR_ACK,...,P4_ERR_ACK

1A bundle of signals is not a SIGNAL object. It is just a convention to explain interactions between
processes.
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— PUMP_CONTROL1_ FAILURE_ACKNOWLEDGEMENT.,...,
PUMP_CONTROL4_ FAILURE ACKNOWLEDGEMENT
Internal versions: PC1_ERR_ACK,...PC4 ERR_ACK

— LEVEL_FAILURE ACKNOWLEDGEMENT. Internal version: L _ERR__ACK

— STEAM _FAILURE _ACKNOWLEDGEMENT. Internal version: S _ERR ACK
¢ Repairing report:

— PUMP1_REPAIRED.,...,PUMP4 REPAIRED

Internal versions: P1_REP,...,P4 REP

— PUMP_CONTROL1 REPAIRED.,...,PUMP_CONTROL4 REPAIRED
Internal versions: PC1_REP,...,PC4 REP

— LEVEL _REPAIRED. Internal version: L _REP
— STEAM_REPAIRED. Internal version: S_REP

¢ Repairing acknowledgement:

— PUMP1_REPAIRED_ACKNOWLEDGEMENT,...,
PUMP4_REPAIRED _ACKNOWLEDGEMENT
Internal versions: P1_REP_ACK,...,P4_REP_ACK

— PUMP_CONTROL1 REPAIRED ACKNOWLEDGEMENT,...,
PUMP_CONTROL4 REPAIRED ACKNOWLEDGEMENT
Internal versions: PC1_REP _ACK,...,PC4_ REP_ACK

— LEVEL _REPAIRED ACKNOWLEDGEMENT. Internal version: L _REP__ACK
— STEAM _REPAIRED ACKNOWLEDGEMENT. Internal version: S _REP _ACK

¢ Pump activation and deactivation:
— OPEN_PUMP1,...,OPEN_PUMPA4. Internal versions: OPEN_P1,...,OPEN_P4
— CLOSE_PUMPL,...,CLOSE_PUMPA4. Internal versions: CLOSE P1,....CLOSE P4

Moreover, the following bundles gather strictly internal messages, i.e. messages which are
not intended to be sent to the physical environment:

e Pump status: STATUSL,..., STATUS4
e States of units and flows:

— POMPE1_OK,....POMPE4_OK
— CONT1_OK,....CONT4_OK

— UMDV_OK

— JAUGE_OK
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— FLOT1,...,FLOT4
e Calculated and adjusted values:
— VAPEUR _CAL_MAX, VAPEUR _CAL_MIN,
NIVEAU CAL MAX, NIVEAU CAL_ MIN

— VAPEUR _AJ MAX, VAPEUR AJ MIN, NIVEAU AJ_ MAX, NIVEAU _AJ MIN
Some messages like PROGRAM _READY, MODE and VALVE are not included in bundles.
Their internal version are PROG_READY, MODE _OP and ACTION _VALVE. Messages AR-
RET _MANUEL and ERR_ TRANS are not included in bundles either and are stricly internal.

Finally, messages STOP and H do not pass the first filter. Then, they do not have an internal
version.

3.2.1 Process of transmissions management

(N

STOP
H
ERR ) ARRET_MANUEL
MSG_ | MdG_INGONG 4
WSG| agsf ERREUR = MSG_INCONG RREUR
T default MSG_ABSENT
PROG_READY
[mdDE o
W4G_ABSE
Qe ol e ol
e el o]
e e o]
e e o]
e e o]
| ] S
e D
(
mopE| | | MODE_gp B
I -
: B
VALVEJ - ] ACTION_VALVE B
|
PROGRAM_READ) . | PROG_READY B

Figure 4: Transmissions management
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The GESTION ECHANGES process consists of five sub-processes (F1G. 4). The first one
is in charge of the detection of the absent messages with regard to the H signal. The pres-
ence of measurement messages is indispensable at each cycle. Messages that provide pumps
and controllers states are compulsory only after an open or a close command. Then, this
process manages a counter of expected messages regarding the given commands. Finally,
this process makes sure that messages which provide the state of a pump are present when,
and only when, messages which provide the state of the corresponding controller are present
too.

A second process is in charge of the detection of the incongruous messages. For this
purpose, it implements a small automaton which enables to manage the dialogues about
failure detection, repairing and corresponding acknowledgements with the concerned units.
In each state, it should receive only one kind of message. For example, it has to receive only
a failure acknowledgement when a failure was detected at a previous cycle.

This process also manages the dialogue of initialization of the system while being ensured
of the good scheduling of the messages constituting this dialogue, and by making sure that
they are present only in the initialization phase.

A third process generates a signal which indicates a transmission failure regarding the
signals provided by the two preceding processes.

Finaly, two processes are in charge of sending the messages, from inside towards outside
without restriction, and from outside towards inside if there are no transmission failure. This
last process is also in charge of the detection of the sequences of three consecutive STOP
messages with regard to the H signal and of announcing the manual stop of the system.

3.2.2 Process of failures management

The GESTION _ERREURS process (F1G. 5) oo o
calls the APPEL_GESTION _ERREURS pro- o
cess (F1G. 6) which calls itself sub-processes . G —
corresponding to each physical units. Signal- . T
s bundles, as they are defined before, gather T T W —
messages of a same kind. Then, they must NG o et [
be first divided in the GESTION _ERREURS T S =
process. T e
NT3 OK 1

The APPEL_GESTION _ERREURS process |
uses several instances of three process sub- = t
models. The ETAT _UNITE sub model is de-
fined at this level but is used deeper in the Figure 5: Failures management (1)
hierarchy by the two other models.
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The ERREUR_POMPE_ CONTROLEUR process model enables to manage dialogues about
failure detection, repairing and corresponding acknowledgements with a pump and its con-
troller. It also calculates the real flow of this pump and detects its failures and failures of
its controller. Thus, there is one instance of this model per pair of pump and controller.

The ERREUR _ MESURE process model en- e o — !
ables to manage the dialogue about failure de- s VM o
tection, repairing and corresponding acknowl- ] " b
edgements with a measurement device. There Sr—
is one instance of this model for the two mea- St b e}
surement devices. These processes use the cal- M
culated values for the current cycle. Now, cal- SRt E—

culated values coming from the DYNAMIQUE
process correspond to the nezt cycle. So, a
process is firstly in charge of delaying theses

STATUS FLOT >
signals. This process is also in charge of ad- ﬁ“ %
justing these delayed calculated values to the

physical limits of the system. For instance, Figure 6: Failures management (2)
when a level value is over the capacity of the

boiler, this value is adjusted to the capacity of the boiler. Thus, the program just has to
compare only once this value with the measurement provided in order to check that this
measurement is consistent with the dynamic of the system and also with the physical con-
straints of the system.

State of a physical unit The ETAT _UNITE model is formed of two processes (FI1G. 7).

The two models previously defined use the

same processing for managing dialogues about conp enat o

failure detection, repairing and corresponding g B
acknowledgements. So, the ETAT _UNITE mod- il

el enables to factorize this processing. [

UNITE OK

A first process implements a small automa- s
ton which enables to manage the dialogue about '
failure detection, repairing and corresponding
acknowledgements with the concerned unit.
This automaton is similar to the one which
is implemented in the GESTION ECHANGES
process, but conditions of state transition are Figure 7: State of a unit
different. At this stage, after the first filter, a
received message is actually the one which was expected. This process provides the state of
the automaton which corresponds to the stage of the dialogue: no failure, failure detected,

ERREUR
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failure detection acknowledged, repairing done.

A second process enables to provide the state (defective or not) of a physical unit in-
dependently of the stage of the dialogue with this unit. This process is also in charge of
sending the repairing acknowledgements and reporting failures to this unit.

Failures of a measurement device The ERREUR MESURE process is formed of two

processes (F1a. 8).

The first process enables to makes sure
that a provided measurement is consistent
with the interval of calculated values for the
current cycle. Thus, it settles a sufficient con-
dition to detect a failure. But this condition
is not necessary because a unit is still defec-
tive if its repairing is not finished yet, even if
it provides a correct value.

Then, using with this process an instance
of the ETAT UNITE model, the program set-
tles a necessary and sufficient condition to
tells the control process at each cycle if a unit
works correctly or not.

Failures of pumps an controllers
formed of three processes (F1G. 9).

A first process enables to settle the con-
sistency of the states provided by a pump
and its controller. For that purpose, it uses
the status of this pump provided by the con-
trol process. It directly implements the table
1. Then, like the ERREUR _MESURE pro-
cess, this process settles sufficient conditions
to detect failures of a pump and its controller.
Moreover, this process settles the real flow of
this pump regarding its failures and failures
of its controller. When these two units work
correctly, the flow is settled as presented in
table 1. In the other cases, the flow keeps its
previous value.

MESURE]

MESURE i}
VAL_OK := (MESURE<=MESURE_MAX) and (MESURE>=
MESURE maj,  MESURE_MIN)

VAL_OK,

COND_ETAT_ UNITE OK

REPAREL ETAT_UNITE() ERREUR

ERREUR_ACH REPARE ACK

Figure 8: Failures of a measurement device

The ERREUR_POMPE_CONTROLEUR process is

7T ppee—

FLoT

POMPE Of
CONT Of

VAL CONT O |FLOT :=... i OK_CONT
/AL_POMPE_OY | ZFLOT = ... it | ox_pompe

EPARE ACK

OND_ETAT_

ERREUR_ACK ETAT_UNITE() NITE_OK

REPARE] ERREUR

OND_ETAT Of REPARE ACK

ERREUR_ACH ETAT UNITE() UNITE_OK

REPARE] ERREUR

Figure 9: Failures of pumps an controllers
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The two other processes are instances of the ETAT UNITE model. As in ERREUR _ME-
SURE, they enable to manage the dialogue of failure detection and to settle at each moment
the state of their associated units regarding the dialogue stage and the conditions of validity

provided by the first process.

3.2.3 Dynamic of the system

(| HP := ("FLOT1) default (*FLOT2) default
(*FLOT3) default ("FLOT4)

| F1 = F2 = F3 "= F4 "= D1 "= D2 "= D3
N=D4 =P "=HP

| F1:= FLOT1 cell HP

| F2 := FLOT2 cell HP

] | F3 := FLOT3 cell HP P

| F4 := FLOT4 cell HP

| D1 := (10.0 when F1) default 0.0

| D2 := (15.0 when F2) default 0.0

| D3 := (20.0 when F3) default 0.0

| D4 := (25.0 when F4) default 0.0

| P := D1+D2+D3+D4

)]

A

VAL_MIN
L NIV VALEUR]| VAL _MAX
(INIV
NIVE J_OKUNITE_OK | VALEUR]
AU
| VAP S_AJUS
.t TEES{}
‘VAPE | VALEUR_AJUSTEE| MIN
[VALEUR_AJUSTEE MAX
UR 4 s
| U_OK
UMDV | VALEUR_AJUSTEE_MIN
_OK [VALEUR_AJUSTEE_MAX
J_OK VAP VALEUR é
I:; 4 —PVALEUR
JAUG S_AJUS
] 7 TEES
E_OK d VAL_MIN
)] U_OKUNITE_OK VAL MAX

(I NCALMIN 7= VAPEUR]|
NCALMAX b——D CAL_MA

| NCALMIN := (( =
NAJIMIN-(

Pl VAIMAX*5.0))- VAPEUR ]|
(0.5%6.0+5.0% CAL_MIN
5.0))+(P*5.0) =
| NCALMAX := (

NAIMAX-( NIVEAU_|
VAIMIN*5.0))+ CAL_MA
(0.5*3.05.0% =
5.0)+(P*5.0)
| NMAX := NIVEAU_|
NMIN |  NCALMAXSL CAL_MIN
NMAX{ init 1000.0 =
Y INMIN =
NAJMIN | NCALMINS1 VAPEUR|
NAIJMAXK  init 0.0 AJ_MAX
vAamIN | D =
VAIMAX]
NAIMIN VAPBUR]
NAJMAXRAI_MIN
=
NIVEAU_|
l VAIMIN | AJ-MAX
11 VAIMAXR = |
VAIMIN | (| ... 7= .| NIVEAU_|
VAIMAXEVCALMIN := ... AJ_MIN
wMIN | VCALMAX = .| =
VMAXY] VMAX = .| b—D)
LVYMIN = 1)

(I

Figure 10: Dynamic

The DYNAMIQUE process is formed of seven sub-processes (F1G. 10). The VALEURS _A-
JUSTEES sub-model provides the adjusted values of a measurement regarding calculated
values concerning the current cycle, current measurements, and the state of the associated
unit. In order to use the two instances of this model, a processus is at first in charge of the
extraction of signals that carry the states of the physical units and signals that carry the

measurements from the bundles.
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Two processes provide the calculated values of the outcome of steam and of the water
level. For that purpose, they use the current adjusted values and the cumulated throughput
of the pumps which is provided by the process placed on the higher left corner. Those
processes directly implement the equations given in the original specification. Meanwhile,
the term of these equations that concerns the cumulated throughput of the pumps is here
simplified because this throughput is settled by the GESTION ERREURS process.

Those two processes also provide the delayed calculated values that are used to settle ad-
justed values.

Finally, at the output, a process is in charge of the constitution of the bundle that gathers
adjusted and calculated values.

3.2.4 Control process

DECISION DECISION DECISION_POMPE _DECISION
DECISION
0 QTT_EAU QTT_EAU QTT QTT_EAU [ ACTION_POMPE}p
NIV_CR TIQUE_4
] DEMARRA
GE{}
JAUGE OK| PROG_READY
DEMARRAGE_O,
ACTION_VALVE
ERREUR_DEMARRAGE
ERR_DEMARH
DEMARRAGE_O
NIVEAU_CRITIQUE
MODE_OP
MODE_OPERA
IRE{}
| ARRET_MANUEL
| ERR_TRANS

Figure 11: Control process
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The DECISION process uses values coming from the DYNAMIQUE process, and only
these values, to assess if the system is likely to reach a critical level, in which case it must
be stopped. If it is not the case, it decides if the level might move up, down or not move at
all. If necessary, it also provides the optimal quantity of water to be provided.

The ACTION _POMPES process settles which pumps must be activated or deactivated,
regarding the states of each pump/controller pair, the optimal quantity of water to be pro-
vided, and the direction (up or down) of the expected move of the level.

The DEMARRAGE process is in charge of the initialization of the system. Notably, it
detects fatal errors during the first step of the initialization mode. It is also in charge of the
initial dialogue between the program and the physical units. This process short-circuits the
relation between DECISION and ACTION POMPES. Thus, during the initialization mode,
when DECISION asks for a going down of the water level, it operates the valve and it tells
ACTION_ _POMPES to close the pumps. When DECISION asks for a going up of the water
level, it actually passes on this decision to ACTION POMPES. But in this case, the optimal
quantity of water is calculated with regard to the middle of the interval [Ny, Ns].

As soon as the level is correct, this process sends a DEMARRAGE _OK message which indi-
cates that the initialization is correctly finished. Then the operation mode changes and the
DEMARRAGE process stops to interfere between DECISION and ACTION _POMPES.

Finally, the MODE_ OPERATOIRE process provides at each cycle the current operation
mode with regard to the states of the physical units and the critical messages that make the

program enter the emergency stop mode.

Decision process The DECISION process is formed of five sub-processes (F1G. 12).

The DECISION _EXTREMUM process sub-
model directly implements the principle of
relative decision to an extremum of level sug-

QTT EAU

(I NIVEAU_CRITIQUE := when
| EC X:= ot

gested in section 3.1.4 (p. 17). The process

|
|or
QT
)

which is placed on the left of the two in- || | = eeso
stances of this model enables to extract the

pairs (gc1, gar) and (gez, gas) from the signals o Qou—

bundle that contains the adjusted and calcu- | :: s segons | |
lated values coming from the DYNAMIQUE E N

process.

Using these relative decisions, a process
calculates the global decision according to the Figure 12: Decision
table 2 (p. 20).
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Finally, a process provides a critical signal when the global decision is STOP and also
provides the optimal quantity of water according to the equations 7 (p. 21) and 8 (p. 21).

Pumps operation The ACTION POMPES process uses one instance of a process sub-
model and two sub-processes (F1G. 13).

A first process enables to make received
data uniform. Indeed, the pumps and their
controllers do not have to provide their states
necessarily at each cycle. Now, the program . A
need to know simultaneously the state of each Lgrs enl 21510
pump, of each controller and the real flow of
each pump in order to decide which pump
will be activated or deactivated at the nex-
t cycle. More precisely, the process has to i
make such decisions when the DECISION pro- :
cess provides a value concerning the quantity
of water. For that purpose, using the cell
command, it creates signals which are syn- Figure 13: Pumps operation
cronous with the QTT EAU signal. These
signals carry the real flow of each pump and the state of each pair of pumps and controllers
(according to the principle exposed in the section 3.1.3, p. 17, only the pumps which work
correctly and whose controller is not defective are operationable). Since the process knows
the operationability of each pump, it can settle the minimum cumulated throughput for
the next cycle. Then, it adjusts the quantity of water to be provided which was sent by
the DECISION process. The program has now to reach this new quantity only with the
operationable pumps.

com

The CALCUL_ COMBINAISON model calculates the optimal combination of activated/de-
activated pumps regarding the global decision and the information coming from the preced-
ing process.

Finally, a third process sends the commands of activation or deactivation of pumps,
regarding the combination provided by the instance of the preceding model. It takes in-
to account the operationability of the pumps? and the current state of each pump. Thus
a pump which is not operationable does not receive commands. An operationable pump
receive a command only when it is in the opposite state of its expected state in the combi-
nation. As this process gives commands to the pumps, it also manages their status.

2The provided combination itself is calculated taking into account the operationability of the pumps. For
example, if the first pump is not operationable and open, the combination is necessary a combination whose
first pump is activated.
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Computation of the optimal combination The CALCUL COMBINAISON process us-
es one instance of a process sub-model and two sub-processes (F1a. 14).

A first process calculates the quantity of
water that could be provided with each possi-
ble combination of pumps. For that purpose, :
it manages a set of signals which correspond -
to each combination. At each cycle, these EEE
signals are present only if the current combi- I i i
nation of pumps states is able to become the i i i i
corresponding combination at the next cycle. seson cout rucre_coun cxscr OB SOSE

TE when ( COMB_CHOISIE
COMB_EXAC

The name of these signals syntactically de- e
notes the associated combination. Thus, O

represents an open pump and F a closed one.
For instance, the O10203F4 signal is associ-

ated with the combination in which all pumps  Figure 14: Computation of the combination
are open except the last one.

i

In order to illustrate the use of these signals, we now consider the following example:
O1F203F4 has a value which is: (P; + Ps)At— gtt with gtt: quantity of water to be provided.
This value is the difference of quantity of water between what the pumps could provide in
such a configuration and what the program wants to provide. But this signal is present,
with this value, only when the following conditions hold:

e The pump 1 is operationable or it has not a zero flow.
e The pump 2 is operationable or it has a zero flow.
e The pump 3 is operationable or it has not a zero flow.
e The pump 4 is operationable or it has a zero flow.

Thus, signals which are associated with combinations in which some non-operationable
pumps are in the opposite state of their current state are not defined. Thereby, these
combinations are forbiden.
Remark: Among the sixteen possible combinations, at least one of them is not forbiden.
Indeed, in the worst case, all pumps are not operationable but the signal that corresponds
to the current configuration is actually defined.
Among these sixteen values, the program looks for a possible zero value. Such a value means
that the corresponding combination provides exactly the expected quantity of water. The
COMB_ EXACTE signal carries the number of this combination when it exists. In the other
cases, this signal provides the value NO.

At this stage, the process looks for the best combination but it knows that it cannot
provide exactly what is expected. Then, the process compares the different values of the
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combinations signals. Now these signals are not synchronous. So it over-samples them with
the value 0 which is not significant yet because no exact combinations were found. Thus,
sixteen new synchronous signals are created. They either have the value 0 or they have
the value of their associated signals of kind x1x2x3x4 when they are defined and when the
decision is UP (in this case the program looks for the smallest strictly positive value because
the expected quantity of water is to be reached by upper values). In the other cases, i.e.
when their associated signals of kind x1x2x3x4 are defined and when the decision is DOWN,
they have the opposite values to their associated signals. Indeed, in this case, the program
looks for the greatest strictly negative value because the expected quantity of water is to
be reached by lower values. Thus, providing the opposite of the combinations values, the
processing is the same as in the first case. This signals are then provided to the MIN process
which calculates actually the optimal combination.

The MIN process is a monochronous process. It finds the smallest strictly positive value
among its sixteen input signals. If no input value is positive, it finds the greatest negative
value. Then it provides the number of the combination which corresponds to the chosen
value. If all values are zero, it provides the value NO.

Finally, a process is in charge of providing the chosen combination. This combination is
the exact one if such a combination is detected. In the other cases, the chosen combination
is the one which is provided by the preceding process. Thus, the program takes indeed
into account the combination provided by MIN only when no exact combination is detected.
Then, in the MIN process, the value 0 which is used for over-sampling the input signals is
actually not significant.

Computation of the minimum The MIN process is formed of five sub-processes (F1a. 15).

This process uses two instances of a sub-
model which enables to calculate the strictly
positive minimum value among sixteen values.
It provides 0 if no input value is strictly pos-
itive.

(] MINIMUM ~= MIN
| MINIMUM = (MIN_POS when
(MIN_POS/=0.0)) default
R win_poS
MIN_POSIT| - MAX_NEG
170 | cHol [
=R0)

hen
MINIMUM=RL) default (2
when (MINIMUM=R2))

The MIN process provides its input val-
ues to the first instance of this model. It
provides the opposite of its input values to

R [nr = [NR MAx neq
win_posiTp PR
IF)

=R15))
IMIN := (CHOIX w

(

the second instance. Considering the oppo- | 0 o
site of the provided result in this case, we
thus have the strictly negative maximum val-
ue or 0. Figure 15: Minimum
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Then, a third process settles the chosen value. For that purpose, it first considers the
positive minimum value if this value is not 0. Otherwise, it considers the negative maximum
value. Then, it settles the number of the corresponding combination if the chosen value is
not 0. Otherwise, it provides the NO value.

Start process The behaviour of the start process (DEMARRAGE process) is divided into
three stages. The first stage begins at the initialization and ends when all the physical units
have sent the STEAM _BOILER _WAITING message.

The second stage begins at this moment and ends when the level in the boiler reaches
an expected value. In this stage, the process operates the valve and intercepts the messages
coming from DECISION and provides possible changed orders to the ACTION POMPES
process.

The third stage begins when the second one is finished and ends when all the physical
units have sent the PHYSICAL UNITS READY message. At the first moment of this stage,
the process sends the PROGRAM _READY message.

When the third stage is finished, a message is sent in order to report that the initial-
ization of the system is correctly done. Then, the process stops to intercept the messages
coming from DECISION and only passes them up to the ACTION POMPES process. The
program operates the valve only during this stage. The valve remains closed after. While
the third stage is not finished, a ERREUR _DEMARRAGE message is sent as soon as the
failure of a measurement device is detected. This message implies that the program enters
the emergency stop mode.

Operation mode management The MODE OPERATOIRE process provides the current
operation mode, regarding critical messages and the states of the physical units. The mode
changes from initialization to normal or degraded as soon as this process receives from
DEMARRAGE the message which indicates that the initialization of the system is correctly
finished.

3.3 Verification

At first, we state in this section a global safety property which is divided into several sub-
properties. Then, we present proofs in CoqQ .

3.3.1 Global safety property

Regarding the specification, a global safety property can be informally stated about the
behaviour of the steam boiler:

“At the moment when a stop condition holds, the system actually stops.”
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This property can be more precisely stated in the following way:

“At the moment when a stop condition holds, the program enters the emergency
stop mode.”

Indeed, according to the specification, in this mode, the physical environment is responsible
for taking appropriate actions to stop, and the program also stops.

The first part of this statement deals with the stop conditions of the system. According
to our detailed specification, we counted four conditions of this kind:

1. The program consecutively received nb_stop STOP messages from the user.

2. The safety condition about M; and M, is likely not to be observed anymore.

3. The program detected a transmission failure.

4. The water level measurement device is defective during the initialization of the system.

In our SIGNAL implementation, these conditions are associated with the following critical
messages: ARRET _MANUEL, NIVEAU _CRITIQUE, ERR_TRANS and ERREUR _DEMAR-
RAGE. When one of these signals carries a value, the corresponding condition holds and so,
the program must stop. This is what we absolutely have to check. Thus, the global safety
property can be more formally stated in the following way?®:

Vt € N,
ARRET _MANUEL(¢) = true V NIVEAU _CRITIQUE(¢) = true ©)
VERR_TRANS(t) = true V ERREUR _DEMARRAGE(t) = true

= MODE_OP(t) = stop

Then, the four following properties must be verified:

Vt € N,ARRET _MANUEL(¢) = true = MODE_ OP(t) = stop (10)
vVt € N,NIVEAU _CRITIQUE(t) = true = MODE_ OP(¢) = stop (11)
Vt € N,ERR_TRANS(t) = true = MODE_ OP(t) = stop (12)
Vt € N,ERREUR _DEMARRAGE(t) = true = MODE_ OP(t) = stop (13)

The MODE _OP signal carries the current operation mode at each cycle. It is provided by
the MODE _OPERATOIRE sub-process of the CONTROLE process. The operation mode in
this process is managed by a little automaton which notably uses the four critical messages.
Thus, the four preceding properties can easily be checked.

Now, we have to verify that each critical message is actually present when the condition to
which it corresponds holds. For that purpose, we divide properties into two main classes:

3In order to state properties that involve signals more legibly, we use the SiGNAL semantic of traces.
Thus, a signal of type U is here a function of type N — (U U {L})
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1. A first class gathers properties that specify the correct behaviour of critical messages,
regarding the critical situations to which they correspond.

2. The second class gathers properties that justfy some simplifications or specify the use
of some internal signals in the processing.

3.3.2 CoqQ provable properties

In this section, we only consider properties that cannot be directly verified by a model
checker. Indeed, our aim is to show the interest of using a theorem prover like CoqQ for
the verification of reactive systems. Obviously, this approach is uninteresting when all the
safety properties can be checked automaticaly and without human interaction. So in the
rest of this document, we consider that properties which can be checked by a model checker
are actually verified.

Thus, for each process of our SIGNAL implementation, we consider the following prop-
erties. They belong to one of the classes defined before and they all involve parameters or
non linear numerical values:

1. GESTION ECHANGES
When the program receives nb_stop STOP messages from the user, it actually stops.
The CPT signal in this process provides the number of consecutive synchronous mo-
ments between the signals STOP and H, the main clock. So when this signal provides
the value nb_stop, a critical ARRET MANUEL message must be sent:

Vt € N,CPT(t) = nb_stop = ARRET_MANUEL(t) = true

Reciprocally, the system manually stops only when the program receives nb_stop
STOP messages from the user:

Vt € N,ARRET _MANUEL(¢) = true = CPT(t) = nb_stop

Moreover, the behaviour of the CPT signal is actually the expected behaviour. In
order to state this property, we informally define a predicate called C'_sc such that
C_sc(n,X,Y,C) is true if, and only if, the numerical signal C' is a counter of the
consecutive synchronous moments between the signals X and Y with n, its initial
value. Thus, we have the following property:

C_s¢(0,STOP,H,CPT)
Those properties correspond to the first part of the global safety property.

2. GESTION ERREURS
When the water level measurement device is not defective, it provides a value which
is consistent with the dynamic of the system, i.e. this value belongs to the interval of
calculated levels for the current cycle. The JAUGE OK signal provides at each cycle
the state of this measurement device:
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Vt € N*, JAUGE_OK(t) = true
= NIVEAU(t) € [NIVEAU CAL_MIN(t — 1), NIVEAU _CAL_MAX(t — 1)]

When the steam measurement device is not defective, it provides a value which is
consistent with the dynamic of the system, i.e. this value belongs to the interval of
calculated steam outcomes for the current cycle. The UMDV _OK signal provides at
each cycle the state of this measurement device:

vVt € N*,UMDV _OK(t) = true
= VAPEUR(%) € [VAPEUR _CAL_MIN(t — 1), VAPEUR _CAL_MAX(t — 1)]

When the water level measurement device is not defective, it provides a value which
is consistent with the physical features of the boiler, i.e. this value is positive and is
lower than the capacity:

Vt € N, JAUGE_OK(#) = true = NIVEAU(t) € [0, C]

When the steam measurement device is not defective, it provides a value which is
congsistent with the physical features of the boiler, i.e. this value is positive and is
lower than the maximal outcome of steam at the exit of the boiler:

Vt € N,UMDV_ OK(t) = true = VAPEUR(t) € [0, W]

Those properties enable to justify the use of the signals JAUGE OK and UMDV _OK
in the processing, notably in the DECISION process.

. DYNAMIQUE

The adjusted values of the steam outcome and the level of water form intervals. When
the corresponding measurement devices work correctly, those intervals are reduced to s-
ingle points. The signals VAPEUR _AJ MIN, VAPEUR AJ MAX, NIVEAU _AJ MIN
and NIVEAU _AJ _MAX correspond to the values vap, vas, ga; and gas of the specifi-
cation:

Vvt € N,VAPEUR_AJ_MIN(t) < VAPEUR_AJ_MAX(#)
Vvt € N,NIVEAU_AJ_MIN(t) < NIVEAU_AJ_MAX(%)

The calculated values of the steam outcome and the level of water form strict interval-
s. The signals VAPEUR CAL _MIN, VAPEUR _CAL MAX, NIVEAU CAL_MIN and
NIVEAU CAL _MAX correspond to the values vei, vea, var and vag of the specifica-
tion. These values involve non linear numerical terms:

Vvt € N,VAPEUR_CAL_MIN(t) < VAPEUR _CAL_MAX(t)

Vvt € N,NIVEAU_CAL_MIN(#) < NIVEAU CAL_MAX(t)
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Those properties enable to justify the table 2 (p. 20) which lists the relative decisions.
Indeed, this table does not list all the possible combinations of decisions. We thus

have

to prove that the combinations which are missing in the table are not possible

according to the definitions of calculated and adjusted values.
Moreover, those properties enable to simplify proofs that involve calculated and ad-
justed values.

4. CONTROLE
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ACTION _POMPES

The best quantity of water to be reached which is adjusted regarding the states of
the pumps and the controllers is at most equal to the quantity of water initially
required:

Vt e N,QTT_A_ATTEINDRE(¢) < QTT_EAU(t)

DECISION

The properties of this process correspond to the different critical level cases which
are listed in the table 2 (p. 20).

If the calculated levels are over the physical limits of the boiler, the system stops:

vVt € N,NIVEAU _CAL_MIN(t) < 0 = NIVEAU _CRITIQUE(t) = true
Vt € N,NIVEAU CAL_MAX(t) > C = NIVEAU _CRITIQUE(t) = true

If the calculated and adjusted levels are at the same time in a critical zone, the
system stops:

VteN,
NIVEAU CAL_MIN(#) € [0, M] ANIVEAU_AJ_MIN(t) < M,
= NIVEAU_CRITIQUE(t) = true

vVt € N,
NIVEAU CAL_MAX(t) € [Ma,C] ANIVEAU AJ_MAX(t) > M,
= NIVEAU_CRITIQUE(t) = true

When the calculated levels are at the same time in different critical zones, the
system stops:

vVt € N,

NIVEAU CAL_ MIN(t) € [0, M1] ANIVEAU CAL MAX(t) € [M>,C]

= NIVEAU_CRITIQUE(t) = true
If the interval of the calculated levels does not have a common intersection with
the critical zones, the program does not stop because of a critical level:

Vt € N,
NIVEAU CAL_MIN(t) > M; ANIVEAU CAL MAX(t) < M,
= NIVEAU_CRITIQUE(t) = L

When only the calculated minimum level is in a critical zone, the situation is not
critical and then it does not imply the stop of the system:
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vVt € N,
NIVEAU CAL_ MIN(t) € [0, M;] ANIVEAU AJ MIN(t) > M,
ANIVEAU CAL MAX(t) < Mz = NIVEAU CRITIQUE(¢) = L
When only the calculated maximum level is in a critical zone, the situation is not
critical and then it does not imply the stop of the system:
vVt € N,
NIVEAU CAL MAX(¢) € [M2,C] ANIVEAU AJ MAX(t) < M2
ANIVEAU CAL_ MIN(t) > M; = NIVEAU_CRITIQUE(t) = L
Those properties correspond to the second part of the global safety property.

e Processus DEMARRAGE
When the system actually starts, the level is correct (at this moment, the water
level measurement device is not defective and then, adjuted levels are equal to
the provided measurement):

Vt € N,PROG_READY(t) = true = NIVEAU_AJ_MIN(t) € [Ny, Ny]

3.3.3 Proofs in CoQ

Several of the preceding properties have been proved in CoQ . As we used the co-inductive
axiomatization of SIGNAL in COQ , we could not express these properties using temporal
index. Then, we used predicates of temporal logic for that purpose. The C0Q specifications
of those predicates are in appendix A. The CoQ statements of proved properties are in
appendix B.

Using the SIGNAL implementation of the steam boiler, some features of proofs in CoqQ
are now presented in the rest of this section.

Generalization of properties for (co-)recursive proofs A property that involves
particular values cannot be directly (co-)recursively proved. Indeed, a more general property
must be stated at first with non instanciated parameters. Additional hypotheses about these
formal parameters can also be stated. In order to illustrate this, we define the following
function:

fli N —- N

o 1 ifn=0
n nfi(n —1) otherwise

We now consider the following function:

fo: N2 =5 N
(n ’I“) s r ifn=0
’ fa(n —1,n7r)  otherwise

It seems to be obvious that:

Vn €N, fi(n) = fa(n,1)
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But such a proof is made by induction on n. The proof is impossible because of the pa-
rameter 1. It is too limitative for the recurrence hypothesis, which thus cannot be applied.
Then, we have to prove at first:

Y(n,r) € N2, rfi(n) = fa(n,r)

Then, the expected property corresponds to the case where r is instanciated with 1.

We have the same problem with the properties that involve the pre operator. Indeed,
this operator need a value for initialization. So, we open a section, which in CoQ enables to
define local variables and local hypotheses. In this section, we state a general property where
the pre operators only contain formal parameters. If necessary, we state in this section new
hypotheses about these formal parameters. Then, we prove the property in this extended
environment. When we close this section, the proved theorems remain. So we apply these
theorems to the initial property. Then, we only have to prove that the particular values in
pre are consistent with the required constraints.

Specification of co-inductive predicates and co-recursive proofs We sometimes
have to create co-inductive predicates to state some properties. But the co-recursive proof
of such properties can be difficult. For example, we consider the C'_sc predicate which
was previously informally presented: C'_sc(n, X,Y, C) is true if, and only if, the numerical
signal C is a counter of the consecutive synchronous moments between the signals X and Y
with n, its initial value. This predicate enables to state a property concerning the correct
behaviour of our CPT signal: C'_sc(0,STOP,H,CPT).

The following axioms co-inductively define C _sc:

1. ¢_sc_aa:VX € f(UU{J_}),VY € f(VU{L}),VC € ]:(]Nu{J_}),vn €N,
C_sc(n,X,Y,C) = C_sc(n,Cons(L,X),Cons(L,Y),Cons(Ln,C))

2. ¢c_sc_ap:VX € f(UU{J_}),VY € f(VU{J_}),VC € ]:(]Nu{J_}),Vn e€N,Vv eV,
C sc(n,X,Y,C) = C_sc(0,Cons(L, X),Cons(v,Y),Cons(0,C))

3. ¢ _sc_pa:VX € f(UU{J_}),VY € f(VU{J_}),VC € f(]NU{L}),VTL € N,Vu € U,
C sc(n,X,Y,C) = C_sc(0,Cons(u, X),Cons(L,Y),Cons(0,C))

4. c_sc_pp:VX € Fyu(y),VY € Frvuqiy),VC € Finugiy),Vn € N,Vu € U,Vo €V
C_sc(n,X,Y,C) = C_sc(n+1,Cons(u, X),Cons(v,Y),Cons(n + 1,C))

Informally, these four axioms correspond to each possible combination of possible values at
each moment for two signals:

o When both signals are absent, the counter has no value and its last value remains the
same.

e If one of the two signals is absent when the other is present, the counter’s value
becomes 0.
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e When both signals are present, the counter is incremented.

Then, if C'_sc(n, X,Y,C) is true, the C signal is present when X or Y is present. When
X and Y are absent, C' is absent too. When C is present, it provides the number of the
consecutive synchronous moments between the signals X and Y with n, its initial value.
Such a predicate is naturally defined in CoqQ in the following way:

CoInductive C_sc [U,V:Set]
nat->(Signal U)->(Signal V)->(Signal nat)->Prop :=
c_sc_aa : (X:(Signal U))(Y:(Signal V)) (C:(Signal nat)) (n:nat)
(C.scnXYO
-> (C_sc n (Cons (absent U) X) (Cons (absent V) Y)
(Cons (absent nat) C))
c_sc_ap : (X:(Signal U))(Y:(Signal V))(C:(Signal nat)) (n:nat) (v:V)
(C_scnXYC)
-> (C_sc 0 (Cons (absent U) X) (Cons (present v) Y)
(Cons (present 0) C))
c_sc_pa : (X:(Signal U))(Y:(Signal V))(C:(Signal nat)) (n:nat) (u:U)
(CcscnXYOC)
-> (C_sc 0 (Cons (present u) X) (Cons (absent V) Y)
(Cons (present 0) C))
c_sc_pp : (X:(Signal U))(Y:(Signal V)) (C:(Signal nat)) (n:nat) (u:U) (v:V)
(C.scnXYO
-> (C_sc (S n) (Cons (present u) X) (Cons (present v) Y)
(Cons (present (S n)) C)).

The use of such a predicate can be difficult in proofs. Intuitively, these axioms enable
to infer an expected property at a given moment, regarding an hypothesis about future
moments. Then, the use of such a predicate implies a progression from future moments
toward past moments. Now, in a co-inductive proof, we suppose that the expected property
is verified at t. We prove that axioms can be applied at this moment, and then, we apply the
co-recurrence hypothesis in order to prove that the property is also verified in the following
moments. In other words, the progression of the proof goes from the present moment toward
future moments.

In order to avoid this chaotic iteration in the proof and in order to give a specification of
the behaviour of CPT in COQ nearer to its SIGNAL definition, we prefer to use the following
function:

F: (N xFougy x Fyopy = Fao{ip)
— (N x Fuqiy X Fvoiy = Favuiiy)

(n,Cons(L,X),Cons(L,Y)) — Cons(L,f(n,X,Y))
(n,Cons(z,X),Cons(L,Y)) + Cons(0,f(0,X,Y))

F=19 (n.cons(L,X),Cons(y.Y)) > Cons(0, (0, X,Y))
(n,Cons(z, X),Cons(y,Y)) + Cons(n+1,f(n+1,X,Y))
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This function enables to define the cis function, its largest fixpoint. This new function
provides a signal of type IN which corresponds to a counter of the successive synchronous
moments of its parameters, with n, its initial value. Proving CPT = ¢is(0,STOP, H), we
prove that CPT has actually the expected behaviour. Such a function is naturally defined
in CoQ in the following way:

CoFixpoint cpt_inst_synch :
(U,V:Set)nat->(Signal U)->(Signal V)->(Signal nat) :=
[U,V:Set] [n:nat] [X: (Signal U)][Y:(Signal V)]Cases X Y of
(Cons absent X?) (Cons absent Y?)
=> (Cons (absent nat) (cpt_inst_synch n X’ Y’))
| (Cons (present _) X’) (Cons absent Y’)
=> (Cons (present 0) (cpt_inst_synch 0 X’ Y?))
| (Cons absent X?) (Cons (present _) Y?)
=> (Cons (present 0) (cpt_inst_synch 0 X’ Y?))
| (Cons (present _) X’) (Cons (present _) Y’)
=> (Cons (present (S n)) (cpt_inst_synch (S n) X’ Y’))
end.

Intuitively, the applying of this function on signals and the co-inductive proof of the expected
property have the same progression: from the present moment towards the future moments.
Moreover, this CoQ specification of CPT gives its functional behaviour and is thus more
intuitive.

Syntactical simplifications Co0Q enables to modify the way it parses and prints objects.
Using advanced command, we can thus change the syntax of concrete representations of
terms and commands. For instance, the ZArith library provides an axiomatization of Z, and
also several lemmas and theorems that enable to solve equations and inequations on Z. We
now consider the following statement:

Vz,y e Z)(0<z)=> (0<y)=>(0<z+vy)
Using the ZArith library, the CoQ definition of this statement is the following:
(x,y:2) (Z1e ZERD x)->(Z1t ZERO y) -> (Z1t ZERO (Zplus x y))

Meanwhile, the ZArith library also provides syntactical facilities. Thus, we have an equivalent
way to define this statement:

(x,y:Z2)¢0 <= x¢->¢0 < y*->¢0 < x+y°¢

Such a syntax is more intuitive and so, proving equations or inequations on Z in C0Q are
much easier.

Thus, it is probably possible to extend the syntax of CoQ to the syntax of SIGNAL . We
could then naturally define in CoQ the SIGNAL equations of a program, without translation.
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4 Conclusion

We showed in this article that the SIGNAL-Co0Q formal approach is well suited for specify-
ing and verifying properties of a reactive system. We applied this design formalism on the
steam boiler controller problem. As the original specification of [3] was sometimes informal,
we made some description of the physical environment more precise. This problem is well
adapted to the evaluation of our formal approach because of its strong safety property which
implies the handling of parameters and non linear numerical values.

In spite of the strong implication of the user during the process of proof, it appears that
the use of a proof assistant like CoQ has many advantages. In addition to the fact that it is
not limited to some kinds of properties, it makes it possible to acquire a strong confidence
in the program. Moreover, COQ gains with being often used on SIGNAL programs because
the encountered problems are often similar. By developing the CoqQ libraries concerning
SIGNAL, we improve the effeciency of the later proofs. Lastly, let us note that it is possible
to improve the legibility of properties and proofs by extending the syntax of CoQ to the
syntax of SIGNAL .

However, this approach is interesting only with properties that cannot be directly proved
by a model checker. It is thus advisable to use a proof assistant in complement for these
particular properties. So, the unification within a same development framework of model-
checking and theorem-proving seems to be a promising prospect.
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A Temporal logic in CoOQ

The Temporal library gathers inductive and co-inductive predicates that define G, F and
their derivative operators.

Require Streams.
Implicit Arguments On.
Section Temporal_Section.

Inductive Futurel [U:Set; P:(Stream U)->Prop] : (Stream U)->Prop :=
herel: (X:(Stream U))(P X) ->(Futurel P X)
| furtherl: (X:(Stream U))(Futurel P (tl X))->(Futurel P X).

Inductive Future2 [U,V:Set; P:(Stream U)->(Stream V)->Prop]
(Stream U)->(Stream V)->Prop :=
here2: (X:(Stream U))(Y:(Stream V))(P X Y) ->(Future2 P X Y)
| further2: (X:(Stream U))(Y:(Stream V))
(Future2 P (t1 X) (t1 Y))->(Future2 P X Y).

CoInductive Globallyl [U:Set; P:(Stream U)->Prop]l : (Stream U)->Prop :=
globallyl : (X:(Stream U))(P X)->(Globallyl P (tl X))->(Globallyl P X).

CoInductive Globally2 [U,V:Set;P:(Stream U)->(Stream V)->Prop]
(Stream U)->(Stream V)->Prop :=
globally2 : (X:(Stream U))(Y:(Stream V))(P X Y)
->(Globally2 P (tl X) (t1l Y))->(Globally2 P X Y).

CoInductive Globally3 [U,V,W:Set;P:(Stream U)->(Stream V)->(Stream W)->Prop]
(Stream U)->(Stream V)->(Stream W)->Prop :=
globally3 : (X:(Stream U))(Y:(Stream V))(Z:(Stream W))(P X Y Z)
->(Globally3 P (t1 X) (t1 Y) (t1 Z))->(Globally3 P X Y Z).

Lemma G2_andG1 :

(U,V:Set) (P1:(Stream U)->Prop)(P2:(Stream V)->Prop) (X1:(Stream U))(X2:(Stream V))
(Globally2 [X:(Stream U)][Y:(Stream V)](P1 X)/\(P2 Y) X1 X2)

->

(Globallyl P1i X1)/\(Globallyl P2 X2).

Lemma andG1_G2 :

(U,V:Set) (P1:(Stream U)->Prop)(P2:(Stream V)->Prop)(X1:(Stream U))(X2:(Stream V))
(Globallyl P1 X1)/\(Globallyl P2 X2)

N

(Globally2 [X:(Stream U)][Y:(Stream V)I(P1 X)/\(P2 Y) X1 X2).

Definition GloballyFuturel :=
[U:Set] [P: (Stream U)->Prop] [X:(Stream U)]
(Globallyl [Y:(Stream U)](Futurel P Y) X).

Definition FutureGloballyl :=

[U:Set] [P:(Stream U)->Prop] [X:(Stream U)]
(Futurel [Y:(Stream U)](Globallyl P Y) X).
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Inductive Untill [U:Set; P,Q:(Stream U)->Prop] : (Stream U)->Prop :

q_herel:

Definition WeakUntill

(Stream U)->Prop:=
[U:Set][P,Q: (Stream U)->Prop]l[X:(Stream U)]
(Untill P Q X) \/ (Globallyl P X).

End Temporal_Section.

(X:(Stream U))(Q X)->(Untill P Q X)
| g_furtherl: (X:(Stream U))(P X)->(Untill P Q (t1 X))->(Untill P Q X).

: (U:Set) ((Stream U)->Prop)->((Stream U)->Prop)->

B CoqQ libraries for the steam boiler

Definitions, theorems and proofs are gathered in three libraries. They use the CoQ standard
libraries and the libraries that provide the co-inductive axiomatization of SIGNAL [17].

B.1

Ext ZArith

The ZArith library provides several definitions, lemmas and theorems in order to resolve
equations on Z. Qur Ext ZArith library is an extent of it. It provides additional lemmas
which are used in the solution of equations involved in the properties of the DYNAMIQUE
process.

Require Classical.
Require Export ZArith.

Implicit Arguments On.

Section Ext_ZArith.

(mm e e e e e e e e e e *)
(* Conversion bool/Prop *)
(K e e e e e o *)

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Zlebool_Zle_true :

Zlebool_Zle_false

Zle_Zlebool_true :

Zle_Zlebool_false

Z1tbool_Zlt_true :

Z1ltbool_Zlt_false

Z1t_Zltbool_true :

Z1t_Zltbool_false

(n,m:Z)(Zle_bool n m)=true -> (Zle n m).

(n,m:Z)(Zle_bool n m)=false -> “(Zle n m).

(n,m:Z)(Zle n m) -> (Zle_bool n m)=true.

(n,m:Z2)~(Zle n m) -> (Zle_bool n m)=false.

(n,m:Z) (Z1t_bool n m)=true -> (Z1lt n m).

(n,m:Z) (Z1t_bool n m)=false -> ~(Z1lt n m).

(n,m:Z)(Z1t n m) -> (Zlt_bool n m)=true.

(n,m:Z)~(Z1t n m) -> (Zlt_bool n m)=false.
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Lemma Zmult_pos_pos : (x,y:Z)(Z1lt “0°¢ x)->(Z1t‘0¢ y) -> (Z1t ‘0¢ (Zmult x y)).
Lemma Zmult_pos_neg : (x,y:Z)(Z1lt €0°¢ x)->(Zgt‘0¢ y) -> (Zgt ‘0¢ (Zmult x y)).

Lemma Zplus_pos_pos : (x,y:Z)(Z1lt 0°¢ x)->(Z1t‘0¢ y) -> (Z1t ‘0°¢ (Zplus x y)).

Lemma Zplus_zpos_pos : (x,y:Z)(Zle ‘0°¢ x)->(Z1t‘0¢ y) -> (Z1t ‘0° (Zplus x y)).

Lemma Zgt0_Z1t0 : (x:2)(Zgt x ‘0¢)->(Z1lt (Zinv x) ‘0°¢).
Lemma ZgeO_Zle0 : (x:Z)(Zge x ‘0°¢)->(Zle (Zinv x) ‘0¢).
Lemma Z1t0_Zgt0 : (x:Z2)(Z1t x ‘0¢)->(Zgt (Zinv x) ‘0°¢).
Lemma ZleO_ZgeO : (x:Z)(Zle x ‘0°)->(Zge (Zinv x) ‘0¢).
Lemma Z1lt_Zle : (x,y:Z)(Z1lt x y)->(Zle x y).
Lemma Zgt_Zge : (x,y:Z)(Zgt x y)->(Zge x y).

End Ext_ZArith.

B.2 Gestion_ech

The Gestion _ech library gathers definitions and predicates that enable to express properties

of the GESTION ECHANGES process, as also proofs of these properties.

Require Arith.
Require EgNat.
Require Temporal.
Require OrderClock.
Require Flot.

Implicit Arguments On.

(Fmmm oo GESTION_ECHANGES PROCESS --------------------oo--
(* parameter nb_stop : number of msg. STOP required for the stop.
(*

| CPT ~= H

| CPT := ((ZCPT+1) when STOP) default (O when H)
| ZCPT := CPT$1 init O
| ARRET_MANUEL := when (CPT=nb_stop)

Equations:

0 | STOP "< H
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1| CPT ~= H

2 | Cst0 := 0

3| Cst0 ~=H

4 | CPT := ((ZCPT+1) when STOP) default (CstO when H)
5 | ZCPT := CPT$1 init ni (parametre effectif : 0)
6 | Arret := (CPT=nb_stop)

7 | Csttrue := true

8 | Csttrue ~= Arret

9 | ARRET_MANUEL := Csttrue when Arret

*)

Section gestion_echanges.

( )
(* Definitions of predicates *)
(

Variable nb_stop : nat.

Definition cond_arret := [C:(Signal nat)][A:Clock]
((hd C) = (present nb_stop)) -> ((hd A) = (present tt)).

Definition cond_continue := [C:(Signal nat)][A:Clock]
((hd A) = (present tt)) -> ((hd C) = (present nb_stop)).

(* Counter of the consecutive synchronous moments between two signals *)
CoFixpoint cpt_inst_synch :

(U,V:Set)nat->(Signal U)->(Signal V)->(Signal nat) :=
[U,V:Set] [n:nat] [X:(Signal U)][Y:(Signal V)]Cases X Y of

(Cons absent X’) (Cons absent Y?) => (Cons (absent nat) (cpt_inst_synch n X’ Y’))
| (Cons (present _) X’) (Cons absent Y?’) => (Cons (present 0) (cpt_inst_synch 0 X’ Y?))
| (Cons absent X’) (Cons (present _) Y’) => (Cons (present 0) (cpt_inst_synch 0 X’ Y’))

| (Cons (present _) X’) (Cons (present _) Y’) => (Cons (present (S n))
(cpt_inst_synch (S n) X’ Y?))

end.
(* Definitions of hypotheses and variables *)
( )

Variables CPT,ZCPT,CstO : (Signal nat).
Variables H,STOP,ARRET_MANUEL,Csttrue : Clock.
Variable Arret : (Signal bool).

Hypothesis Hnb_stop : (gt nb_stop 0).

Hypothesis H_H : (OnlyFiniteAbsent H).
Hypothesis Equation0 : (OrderClock STOP H).
Hypothesis Equationl : (Synchro CPT H).
Hypothesis Equation2 : (Constant 0 CstO).
Hypothesis Equation3 : (Synchro CstO H).
Hypothesis Equation4 : CPT = (SignalAA_to_SignalA
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(default (when (fonctionl [n:nat]l(plus n (S 0)) ZCPT)
(Clock_to_Signal_bool STOP))
(when CstO

(Clock_to_Signal_bool H))) ).
Hypothesis Equation6 : Arret = (fonctionl [n:nat](beq_nat n nb_stop) CPT).
Hypothesis Equation7 : (Constant tt Csttrue).
Hypothesis Equation8 : (Synchro Csttrue Arret).
Hypothesis Equation9 : ARRET_MANUEL = (when Csttrue Arret).

(* Hypotheses for preliminary lemmas : Parameter of initialization *)

Section Lemmes_gestion_echanges.

Variable ni : nat.
Hypothesis Equation5 : ZCPT = (pre ni CPT).

[ R e e e e e P PP *)
(* Lemma 1 a stop order is sent as soon as the counter’s value is nb_stop *)
€ R et T s *)

Lemma gest_errsl : (Globally2 cond_arret CPT ARRET_MANUEL).

(m mm e e e e e e e e e e e m e *)
(* Lemma 1b : when a stop order is sent, the counter’s value is nb_stop *)
(K e m e e e e e o *)
Lemma eq_beq_nat : (n,m:nat)n=m->(beq_nat n m)=true.

Lemma beq_nat_eq : (n,m:nat)(beq_nat n m)=true->n=m.

Lemma gest_errsib : (Globally2 cond_continue CPT ARRET_MANUEL).

[ N N *)
(* Lemma 2 : CPT is a counter of the consecutive synchronous moments between H and STOP  *)
[ N N *)

Lemma gest_errs2 : CPT = (cpt_inst_synch ni H STOP).

(K e e m e e e e o *)
(* Lemma 3 : We have a counter of the consecutive synchronous moments between H and STOP, *)
(* and when the value of this counters nb_stop, a stop order is sent. *)
(* A stop order is sent only when this value is nbstop. *)
(K o o m e e e e e e *)

Lemma gest_errs3 :
(CPT = (cpt_inst_synch ni H STOP)) /\
(Globally2 cond_arret CPT ARRET_MANUEL) /\ (Globally2 cond_continue CPT ARRET_MANUEL).

End Lemmes_gestion_echanges.

( )
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(*  Theorems : instanciation of the parameters of initialization *)

( )

Hypothesis Equation5 : ZCPT = (pre 0 CPT).

Theorem gest_errs

(CPT = (cpt_inst_synch 0 H STOP)) /\

(Globally2 cond_arret CPT ARRET_MANUEL) /\ (Globally2 cond_continue CPT ARRET_MANUEL).

End gestion_echanges.

B.3 Dynamique
The Dynamique library contains proofs of the properties of the DYNAMIQUE process.

Require Ext_ZArith.
Require Classical.
Require Temporal.
Require OrderClock.
Require Flot.

Implicit Arguments On.

NIVEAU_CAL_MIN ~= NIVEAU_CAL_MAX

NIVEAU_CAL_MIN

NIVEAU_CAL_MAX

:= ((NIVEAU_AJ_MIN-(VAPEUR_AJ_MAX*Delta_t))
- (0.5%U1*Delta_t*Delta_t))+(P*Delta_t)
:= (NIVEAU_AJ_MAX-(VAPEUR_AJ_MIN#*Delta_t))

+ (0.5%U2+Delta_t*Delta_t)+(P*Delta_t)
NIVEAU_CAL_MAX$1 init C
NIVEAU_CAL_MIN$1 init 0.0

| NMAX :
| NMIN :

VAPEUR_CAL_MIN ~= VAPEUR_CAL_MAX
VAPEUR_CAL_MIN := VAPEUR_AJ_MIN-(U2*Delta_t)
VAPEUR_CAL_MAX := VAPEUR_AJ_MAX+(Ul*Delta_t)
VMAX := VAPEUR_CAL_MAX$1 init 0.0
VMIN := VAPEUR_CAL_MIN$1 init 0.0

NIVEAU_AJ_MIN :
NIVEAU_AJ_MAX :=

(NIVEAU when JAUGE_OK) default NMIN
(NIVEAU when JAUGE_OK) default NMAX

VAPEUR_AJ_MIN
VAPEUR_AJ_MAX :

(VAPEUR when UMDV_0K) default VMIN
(VAPEUR when UMDV_OK) default VMAX

Equations

POO| VAPEUR ~= NIVEAU

PO1| JAUGE_OK ~= NIVEAU

PO2| UMDV_OK ~= NIVEAU

PO3| P ~= NIVEAU

PO4| NIVEAU_AJ_MIN ~= NIVEAU

INRIA



The Steam Boiler Controller Problem in Signal-Coq 53

PO5| VAPEUR_AJ_MIN ~= NIVEAU

P06| NIVEAU_AJ_MAX ~= NIVEAU

PO7| VAPEUR_AJ_MAX ~= NIVEAU

PO8| NIVEAU_CAL_MIN ~= NIVEAU

P09| VAPEUR_CAL_MIN ~= NIVEAU

P10| NIVEAU_CAL_MAX ~= NIVEAU

P11| VAPEUR_CAL_MAX ~= NIVEAU

P12| AUX1 ~= NIVEAU

P13| AUX2 ~= NIVEAU

P14| AUX3 ~= NIVEAU

P15| AUX4 ~= NIVEAU

20 | AUX1 := NIVEAU_AJ_MIN-(VAPEUR_AJ_MAX*Delta_t)

21 | AUX2 := AUX1+(P#Delta_t)

22 | 2*NIVEAU_CAL_MIN := 2%AUX2-(UlxDelta_t+*Delta_t)

23 | AUX3 := NIVEAU_AJ_MAX-(VAPEUR_AJ_MIN*Delta_t)

24 | AUX4 := AUX3+(P#Delta_t)

25 | 2*NIVEAU_CAL_MAX := 2%AUX4+(U2xDelta_t*Delta_t)

28 | NMAX := NIVEAU_CAL_MAX$1 init NMi (parametre effectif : C)

29 | NMIN := NIVEAU_CAL_MIN$1 init Nmi (parametre effectif : 0)

30 | VAPEUR_CAL_MIN := VAPEUR_AJ_MIN-(U2*Delta_t)

31 | VAPEUR_CAL_MAX := VAPEUR_AJ_MAX+(Ul*Delta_t)

34 | VMAX := VAPEUR_CAL_MAX$1 init VMi (parametre effectif : 0)

35 | VMIN := VAPEUR_CAL_MIN$1 init Vmi (parametre effectif : 0)

40 | NIVEAU_AJ_MIN := (NIVEAU when JAUGE_0K) default NMIN

41 | NIVEAU_AJ_MAX := (NIVEAU when JAUGE_OK) default NMAX

50 | VAPEUR_AJ_MIN := (VAPEUR when UMDV_OK) default VMIN

51 | VAPEUR_AJ_MAX := (VAPEUR when UMDV_0K) default VMAX

*)

Section Dynamique.
)

(* Definitions of the predicates applied to Globally *)
)

Definition inf_strict := [X:(Signal Z)][Y:(Signal Z)]

(x,y:Z) (hd X)=(present x)->(hd Y)=(present y)->(Z1lt x y).

Definition inf_egal := [X:(Signal Z)][Y:(Signal Z)]

(x,y:Z) (hd X)=(present x)->(hd Y)=(present y)->(Zle x y).

( )

(* Definitions of hypotheses and variables *)

(
Variables C,W,U1,U2,Delta_t,deux : Z.

Variables VAPEUR,NIVEAU,P,AUX1,AUX2,AUX3,AUX4 : (Signal Z).
Variables NIVEAU_CAL_MIN,NIVEAU_CAL_MAX,NMIN,NMAX : (Signal Z).
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Variables VAPEUR_CAL_MIN,VAPEUR_CAL_MAX,VMIN,VMAX : (Signal Z).
Variables NIVEAU_AJ_MIN,NIVEAU_AJ_MAX,VAPEUR_AJ_MIN,VAPEUR_AJ_MAX : (Signal Z).
Variables UMDV_OK,JAUGE_OK : (Signal bool).

Hypothesis Hdeux : deux = ‘2¢. (* to disable implicit simplifications *)
Hypothesis HC : (Z1t ‘0¢ C).

Hypothesis HW : (Z1t ‘0¢ W).

Hypothesis HU1 : (Z1t ¢0¢ U1).

Hypothesis HU2 : (Z1t ‘0¢ U2).

Hypothesis HDt : (Z1t ‘0¢ Delta_t).

Hypothesis P00 : (Synchro VAPEUR NIVEAU).
Hypothesis PO1 : (Synchro JAUGE_OK NIVEAU).
Hypothesis P02 : (Synchro UMDV_OK NIVEAU).
Hypothesis P03 : (Synchro P NIVEAU).

Hypothesis P04 : (Synchro NIVEAU_AJ_MIN NIVEAU).
Hypothesis P05 : (Synchro VAPEUR_AJ_MIN NIVEAU).
Hypothesis P06 : (Synchro NIVEAU_AJ_MAX NIVEAU).
Hypothesis PO7 : (Synchro VAPEUR_AJ_MAX NIVEAU).
Hypothesis P08 : (Synchro NIVEAU_CAL_MIN NIVEAU).
Hypothesis P09 : (Synchro VAPEUR_CAL_MIN NIVEAU).
Hypothesis P10 : (Synchro NIVEAU_CAL_MAX NIVEAU).
Hypothesis P11 : (Synchro VAPEUR_CAL_MAX NIVEAU).
Hypothesis P12 : (Synchro AUX1 NIVEAU).
Hypothesis P13 : (Synchro AUX2 NIVEAU).
Hypothesis P14 : (Synchro AUX3 NIVEAU).
Hypothesis P15 : (Synchro AUX4 NIVEAU).

Hypothesis Eq20 : (Op Zminus
NIVEAU_AJ_MIN
(fonctionl [n:Z](Zmult Delta_t n) VAPEUR_AJ_MAX)

AUX1).
Hypothesis Eq21 : (Op Zplus
AUX1
(fonctionl [n:Z](Zmult Delta_t n) P)
AUX2).

Hypothesis Eq22 : (fonctionl [n:Z](Zmult deux n) NIVEAU_CAL_MIN) =
(fonctionl [n:Z](Zminus n (Zmult Ul (Zmult Delta_t Delta_t)))
(fonctionl [n:Z](Zmult deux n) AUX2)).
Hypothesis Eq23 : (Op Zminus
NIVEAU_AJ_MAX
(fonctionl [n:Z](Zmult Delta_t n) VAPEUR_AJ_MIN)

AUX3) .
Hypothesis Eq24 : (Op Zplus
AUX3
(fonctionl [n:Z](Zmult Delta_t n) P)

AUX4).
Hypothesis Eq25 : (fonctionl [n:Z](Zmult deux n) NIVEAU_CAL_MAX) =
(fonctionl [n:Z](Zplus n (Zmult U2 (Zmult Delta_t Delta_t)))
(fonctionl [n:Z](Zmult deux n) AUX4)).

Hypothesis Eq30 : VAPEUR_CAL_MIN=(fonctionl [n:Z](Zminus n (Zmult U2 Delta_t)) VAPEUR_AJ_MIN).
Hypothesis Eq31 : VAPEUR_CAL_MAX=(fonctionl [n:Z](Zplus n (Zmult Ul Delta_t)) VAPEUR_AJ_MAX).
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Hypothesis Eq40 : NIVEAU_AJ_MIN=(SignalAA_to_SignalA (default (when NIVEAU JAUGE_OK) NMIN)).

Hypothesis Eq41 : NIVEAU_AJ_MAX=(SignalAA_to_SignalA (default (when NIVEAU JAUGE_OK) NMAX)).

Hypothesis Eq50 : VAPEUR_AJ_MIN=(SignalAA_to_SignalA (default (when VAPEUR UMDV_0K) VMIN)).

Hypothesis Eq51 : VAPEUR_AJ_MAX=(SignalAA_to_SignalA (default (when VAPEUR UMDV_0K) VMAX)).

( )

(* Lemmas for solutions of inequations *)

( )

Section Lemmes_Inequations.

Lemma Ineq_Vapeur : (a,b:Z) ‘a <= b‘ -> ‘a-U2*Delta_t < b+UlxDelta_t°¢.

Lemma Ineq_Niveau : (a,b,c,d,e:Z) ‘a <= b‘ -> ‘c <= 4¢ ->

‘0 < deux*(b-Delta_t*c+Delta_t*e)+U2x(Delta_t*Delta_t) +

(-(deux*(a-Delta_t*d+Delta_t*e)-Ul*(Delta_t*Delta_t)))“.

End Lemmes_Inequations.

( )

(* Hypotheses for preliminary lemmas : Parameter of initialization *)
)

Section Lemmes_Dynamique.

Variables VMi,Vmi,NMi,Nmi: Z.

Hypothesis HVmVM (Zle Vmi VMi).

Hypothesis HNmNM (Zle Nmi NMi).

Hypothesis Eq28 : NMAX = (pre NMi NIVEAU_CAL_MAX).

Hypothesis Eq29 : NMIN = (pre Nmi NIVEAU_CAL_MIN).

Hypothesis Eq34 : VMAX = (pre VMi VAPEUR_CAL_MAX).

Hypothesis Eq35 : VMIN = (pre Vmi VAPEUR_CAL_MIN).

(Fmmm e e e e e e e e e e e m e m e *)

(* Relation between VAPEUR_CAL_MIN and VAPEUR_CAL_MAX *)

(K e m e e e o *)

Lemma Vcl_inf_Ve2 : (Globally2 inf_strict VAPEUR_CAL_MIN VAPEUR_CAL_MAX).

(K e m e e e e e o *)

(* Relation between VAPEUR_AJ_MIN and VAPEUR_AJ_MAX *)

€ R et e T *)

Lemma Val_infegal Va2 : (Globally2 inf_egal VAPEUR_AJ_MIN VAPEUR_AJ_MAX).

€ R et T s *)

(* Relation between NIVEAU_CAL_MIN and NIVEAU_CAL_MAX *)

(Ko m o o m oo oo *)
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Lemma Nci_inf_Nc2 : (Globally2 inf_strict NIVEAU_CAL_MIN NIVEAU_CAL_MAX).

(m mm e e e e e e e e e e e —m e m e *)
(* Relation between NIVEAU_AJ_MIN and NIVEAU_AJ_MAX *)
[ T T T *)

Lemma Nal_infegal Na2 : (Globally2 inf_egal NIVEAU_AJ_MIN NIVEAU_AJ_MAX).

End Lemmes_Dynamique.

( )
(* Theorems : instanciation of the parameters of initialization *)
( )

Hypothesis Eq28 : NMAX = (pre C NIVEAU_CAL_MAX).
Hypothesis Eq29 : NMIN = (pre ‘O¢ NIVEAU_CAL_MIN).

Hypothesis Eq34 : VMAX = (pre ‘0¢ VAPEUR_CAL_MAX).
Hypothesis Eq35 : VMIN = (pre ‘O¢ VAPEUR_CAL_MIN).

(mmm e e e e e e e e e e e e m e m e *)
(* Relation between VAPEUR_CAL_MIN and VAPEUR_CAL_MAX *)
€ R et T s *)

(Ko m oo m oo o e *)
(* Relation between VAPEUR_AJ_MIN and VAPEUR_AJ_MAX *)
€ R et e T *)

Theorem Vamin_infegal_Vamax : (Globally2 inf_egal VAPEUR_AJ_MIN VAPEUR_AJ_MAX).

(mmm e e e e e e e e e e e m e *)
€ Relation between NIVEAU_CAL_MIN and NIVEAU_CAL_MAX *)
(K e m e e e e e o *)

Theorem Ncmin_inf_Ncmax : (Globally2 inf_strict NIVEAU_CAL_MIN NIVEAU_CAL_MAX).

(Ko m o o m oo o e *)
(* Relation between NIVEAU_AJ_MIN and NIVEAU_AJ_MAX *)
€ R e T *)

Theorem Namin_infegal_Namax : (Globally2 inf_egal NIVEAU_AJ_MIN NIVEAU_AJ_MAX).

End Dynamique.
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