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Abstract: In the Black-Scholes option pricing paradigm it is assumed that the market-
maker designs a continuous-time hedge. This is not realistic from a practical point of view.
We introduce trading restrictions in the Black-Scholes model in the sense that hedging is
only allowed a given number of times-only the number is fixed, the market-maker is free
to choose the (stopping) times and hedge ratios. We identify the strategy which minimizes
the variance of the tracking error for a given initial value of the portfolio. The minimal
variance is shown to be the solution to a sequence of optimal stopping problems. Existence
and uniqueness is proved. We design a lattice algorithm with complexity N® (N being
the number of lattice points) to solve the corresponding discrete problem in the Cox-Ross-
Rubinstein setting. The convergence of the scheme relies on a viscosity solution argument.
Numerical results and dynamic simulations are provided.
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Couverture Optimale dans le modéle de Black-Scholes
pour un Nombre de Transactions donné.

Résumé : Dans ’approche traditionnelle du modéle de Black-Scholes, le market-maker doit
pour obtenir une couverture parfaite se couvrir de maniére continue. Ceci est évidemment
impossible en pratique. On introduit des restrictions de couverture dans le modéle de Black-
Scholes: on suppose que le market-maker ne peut se couvrir qu’un nombre fixé de fois, & des
instants aléatoires de son choix. On identifie la stratégie qui minimize la variance de ’erreur
de couverture. On montre que la variance minimale est solution d’une suite de problémes
d’arréts optimaux. On donne un algorithme de complexité N3 (oit N est le nombre de
points du maillage) pour résoudre le probléme correspondant discrét dans le modéle de Cox-
Ross-Rubinstein. On montre la convergence par des arguments de solution de viscosité. On
compare les résultats numeériques obtenus avec la stratégie de couverture & intervalles de
temps réguliers.

Mots-clé : Couverture discréte, Modéle de Black-Scholes, Evaluation d’options, Program-
mation dynamique, Arrét optimal, Intégrale stochastique, Solutions de viscosité.
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1 Introduction

1.1 Effective trading strategies

For obvious reasons, continuous trading is a mathematical abstraction from a practical
viewpoint. In the presence of transaction costs for example the investor would like to hedge
as little as possible. In fact even if there is no transaction costs nor liquidity restrictions,
an investor can and will obviously in practice follow a discrete trading strategy at stopping
times.

From standard theory on stochastic integrals, we know that the perfect continuous-time
hedge can be arbitrarily well approximated by such effective strategies, at least in a weak
(L2 or probability) sense-the most natural approximation being the Riemann approximation
of the stochastic integral which corresponds to deterministic hedging times. Let us cite
Henrotte ([7]), Zhang ([13]), among others, who have studied the variance of the replication
error in this context.

However it does not seem natural to hedge at deterministic times regardless of the changes
in the stock prices or hedging ratios. Well-known strategies from an empirical point of view
are hedging when the underlying stock moves from a prescribed amount (latent Brownian
motion in the terminology of Prigent-Renault-Scaillet [11]), or when the delta moves, and
S0 on..to our opinion these strategies, or more generally stopping times hedging strategies
have not been thoroughly investigated yet and many interesting questions remain open.

In this paper, we consider the problem of selecting the best hedging times and ratios
given a fixed number of trading times. As a criteria we take the variance of the replication
error. Although the criteria of variance is questionable, it displays nice features which lead
to easier mathematical treatment. Moreover we work under the martingale measure. This
should be seen as a first stage in the study of variance optimal strategies. Note that the
optimal price of the option for this criteria is obviously the Black-Scholes price, so that we
assume that the hedger of the option trades at this price.

In other terms: given a fixed number N of rebalancing, what is the smallest variance one
can reach? The problem will be to determine the optimal hedging dates and the optimal
portfolios at these dates. Let us now set the problem in a stochastic control framework. We
would also like to mention an alternative approach to the same question, using the theory
of vector-valued stopping times, by Trabelsi and Trad [12].

1.2 Minimal variance hedging given N rebalancing

We consider the hedge ratios and hedging times as a control parameter. Let (7", 75, ... ,7)

denote the rebalancing (stopping) times and (8,p,8,z,... ,0,») the corresponding (adapted)
hedging ratios chosen by the investor. In order to apply Dynamic Programming techniques,
we shall consider an investor who initiates his strategy at time ¢, the value of the underlying
being S; = x, with the selling of the option and an initial hedge of an amount «a of stocks.
Let Vr denote the value of the portfolio at time T, ¢(z) the payoff of the option, c(t, z)
the Black-Scholes price, F' = (F;)o<¢<7 the standard augmentation of the natural filtration
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4 C. MARTINI, C. PATRY

of the Brownian motion, 7; r the set of all stopping times of the filtration F' which satisfy
t < 7 < T with probability one, E; the conditional expectation with respect to F'. Let also
denote A; the quantity A; discounted at time 0 that is A;e™. The associated variance of
the tracking error is then:

I(t,0,Pn) = By [{Vr = $(S5%))’]

{e(t, SP°) + a(Sh = SP) + 3 6en(SE = 8EF) — (Sp)}

Tit1

Ey

i=1

where by convention 77, ; =T and P,, = (19", 78, ..., T2, 87, 07 oey Om )

In the expression above the process (S%%,s > t) is the solution of the equation

dSs; = rSsds + oS, dW, for s > t
S =z (and S, =z for u < t)

The problem at hand is to characterize the optimal cost function v, given the initial
hedge:

vp(t, T, 0) = iqglf I(t,z,a,Py) (1)

and to find, if some, P} minimizing I(t,z,a,P,) i.e

vn(t,z, ) = I(t,z,a,P})
and the optimal cost function
vy (t,z) = inf v, (t, 2, @)
a

At first glance this is a highly non-standard stochastic control problem since it involves
a vector of stopping times. Standard techniques encompass the case with a single stopping
time, and also (impulse control), the case where the number of stopping times is infinite.

The natural idea is to use Dynamic Programming to reduce our problem to a sequence of
standard optimal stopping problems. Indeed since we work under the risk-neutral probability
and with the square function, I(t,z, «, P,) splits naturally in the first local replication error
until the next hedging time and the error starting afresh at that date:

Set

n+1
L= (ust) v (805 - ) ¢ S (305 - 35) -5 68
=1

INRIA



Variance Optimal Hedging 5

Then
E; [L2] = E; [{é (ta Sf’z) + a(gi’nzﬂ - Nf’z) - C( et Stnz+1)}2 + {C< ptt Stnz+1)

n+1
+0,. ot (Stnw+1 - Stnw+1 )+ Z‘S nt ( Stf+1 - Stnw+1) - @(S;lw)}zl

1
=2 it

So it is natural to conjecture the following Dynamic Programming relation:

vpir(t,z,0) = inf By [{a (t,85%) + a(Sh® — §8%) — & (7, SE) ¥ + vi(r, s:’z)] (DP)

T€T:,T

or yet

Un+1(taw7a) = _{é (t’ Sf’w) - agf,w}Z + ér,%-f E I:{é (T’ S‘?’f_,ﬂﬂ) - as"f”w}z + U;(T, Sf"w)]

Observe now that v} being given, we face a standard optimal stopping problem. The
solution to such a stopping time problem is well known (cf [9]).

We will show in section 4 that the value function v, is given by the solution of the
following sequence of variational inequalities on [0,7] x Rt* x K :

%n (t, 3, @) + Avn(t, 7, 0) + 02 (ze )2 (A(t,2) —a)? >0
vp(t, 2, @) < infsv,_1(t,z,0)
(v (t, x, ) — infy vn,l(t,x,é))(‘%" (t,z,a) + Av, (t,z,0) + o (ze )2 (A(t,z) — a)?) =0
Un(T z,a) =0

where A is the differential operator associated to S; given by Av(t,z) = ra 32 (t,z) +
7:1:2 gz” (t,z), A(t,z) = 2(t,z) (i.e. the Black-Scholes delta) and K is a compact set
where A takes its values (this is not a restriction as we shall see below). Notice than once
v1, V2, ...., Uy have been found, 7{*, 73, ...., 7,7 can be constructed in the same way as done for

optimal stopping problems.

1.3 Some properties of the solution
1.3.1 Optimal hedge ratios
If we know the dates of trading, it is easy to find the optimal deltas:

5 [{V(T) _ @(ST)}Q] = E {é/ﬂ:fﬂ(A (t,S) — drz)dS‘t}z-

SE {/ (t,st)—af,.*)ds*t}

i=0

T;
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6 C. MARTINI, C. PATRY

=
Tit1

(
*

ZE/ A(t,St)—érf)QUQS‘fdt]
1=0 75

M E
i=0

7o 2 &2
—26,+ F,s / At S) 0> 32 dt)

Tit1 ~
B, / A2 (¢, S,) 0> 82dt)

2 Ti*+1 2 o2
162, By ( / 252 dt)

This entails
E. [ [T A (4, Sy) 0252 dt]

i = B [J7 0257 dt]

i

which shows by the mean value theorem that d,» = A (u;, S,) for some random u; between
7i and 77, 4.

Now if we assume that ¢ is a k—Lipschitz function, then |A (u;, Sy;)| < k, so that we
can restrict ourselves to [—k, k], or better yet to the range of the function A. In the case of
a Call, the interval [0, 1] is chosen, and [—1, 0] for a Put.

1.3.2 Limit as N —

Obviously, the hedging error goes to zero as the number of hedges goes to infinity since it is

true for the deterministic case h = It | t; = (i — 1)h. Moreover in this case we know the
convergence rate. Therefore

on(0,z,0) < Rv =E {5 (0,S0) + A(0,80)(Se, — So) + D Alti, St;) (Stiyy — St) — @(ST)}

=2

with

6727"1" T 620
Jdim NRy = B | [ erstet (o s @

where g—;g is the gamma of the option. This result was shown by Zhang ([13]).

2 Time-dependent optimal stopping

In this section, we recall known results on the optimal stopping problem when the value
function is time-dependent. The main objective is to establish the required properties of the

INRIA



Variance Optimal Hedging 7

value function in order to well-define the function v,, by the recursive Dynamic Programming
equation (DP). We study the following optimal stopping problem:

u(tax7a) = Teir,%_fTEt [Q('B Sf—iwaa)] (2)

where @ : [0,T] x RT x K — R where K is a compact set of (say) R.
We introduce the following hypotheses:

(H1) @ is continuous, non negative on [0,T] x Rt x K
(H2) @ (t,z,0) < (1+ L) (22 +a®) on [0,T] x R* x K

2.1 Existence and uniqueness
The first result is a theorem of existence and uniqueness for the optimal stopping problem.
Theorem 1 ([9]) Suppose (H1) and that for every (t,z, ) the family of random variables
{<I>(7', Ste a), T € 'E,T}
is uniformly integrable. Set
D= {(t,z) € [0,T] x RY Ju(t,z,a) < ®(t,z,a)}

and 7p = inf{t <u < T/ (u,S5%) £D}. Then (existence)

u(t,z,a) = E; [®(1p, S, a)] (3)

and Tp 1is an optimal stopping time. Moreover (uniqueness) if a stopping time T satisfies
(3) then Tp < T almost surely.

Under (H2), the property of uniform integrability is satisfied.

2.2 Properties of the value function

In order to connect the function u and the optimal hedging problem of section (1.2) we shall
need the following property:

Proposition 1 Under (H1), let:
V(t) = GSSinfTEﬂ,TE [¢(7—7 S‘r:a) | ft]

then V() = u(t, S, a) a.s.

RR n~°3767



8 C. MARTINI, C. PATRY

Proof We adapt the proof given in [8] in the case where ® depends only on x. We define
the filtration (3, ,)i<s<7 Where F; s is generated by the increments W, — Wy, t < u < s and
Ti,7 the set of all stopping times of this filtration. Recall that the two o-algebras JF; and
Fi,s are independent and F; = F;y V Fy s for s € [¢,T]. We note ’f;,T the set of all stopping
time 7 of T; 7 such that 7 =} I4, 7, where (4,) are F;-measurable and form a partition
of  and 7, a sequence of stopping time of 7_;,T. Note that ’7_2,T C ’fE,T C T¢,r and that if
T € Ti, 7 then there exists a sequence (7,,) of ’fE,T such that 7,, =& 7 a.s. Then we can deduce
the following equalities:

V(t) = essinf 4. E[#(1,Sr, ) | Fi]
and

u(t,z,0) = inf E[¢(r,50" )]
T€T:, T

If 7 € Tir with 7 = > n I, ™ where (A,)are Fi-measurable and form a partition of (2
and 7, a sequence of stopping time of 7; 1, we have:

E[p(r,Sr,0) | Fi] = E|> I4,6(70,5r.,2) | Fi (4)
= ZIAHE[d)(Tn,S-,—",OZ) | ‘7:75] (5)
Z i%fE[¢(THJSTn7a) | '7:75] (6)

We already know that:
V(t) <essinf.c7, ,E[#(T,Sr, ) | Fi]
then we obtain:
V(t) = essinf.c7, , E[(1,Sr, @) | Fi]

On an another hand

E [¢(r, S5, a)] E

z IA,. ¢(Tn7 S;t-,::a a)]
= Y E[l4,6(mn, 55", 0)]

> P(An)E [¢(7n, 857, )]

> infE [¢(Tn7 S-I;;Lwa 0‘)]

INRIA



Variance Optimal Hedging 9

where we used the independence of 7, and F;. It follows that

u(t,z,a) = eu’lrf E [¢(r, 84", )]
T t, T

The optimal stopping time depends on t and x, and is independent of F;.
For all stopping time 7 € 7T; 7, we can write :

E [¢(Tu S,—,Ot) | ft] =FE |:¢(T: Sqt—’Stﬂa) | ff]
7 is independent of F; so we have:

E[¢(r,5%,a) | Fi] = I

where J(tf) = E[¢(r,S5%, a)] and then V (t) = essin Teﬁ’TJ(t;‘)gt.

We note that for ¢ fixed, the family of functions z — JE"S (indexed by 7) is equicontinuous
because:

TS = TS < B | sup_ |6(s, S47,0) = (s, S4, )|
t<s<T

We can use the following lemma and the essential inf can be written as an inf on a countable
family.

Lemma 1 (/8]) Let (vj)jcs be an equicontinuous set of functions from R to R such that:

sup,cy¥j(z) < oo for all x. Then, ¥ defined by: ¥(zx) = sup,c;;(x) is continuous.

Moreover, there exists a countable subset Jo of J such that: ¥(zx) = sup;¢ ;, ¥(z), for all .
Under the above hypotheses we also have:

Proposition 2 Under (H1) and (H2), u is continuous on [0,T] x Rt* x K.

Proof Let (tl,ml,ﬂ) and (tz,.’L‘Q,Oé) € [O,T] x RT* x K, with t; < t5 then:

u(t27 Z2, a) - u(t17 mlwg) = T€i¥f E |:¢(T7 35_2,-’/02 ’ a)] - Teigf E |:¢(T7 S‘f'l,ml ’ ﬂ)]
+ Tei%E,T E [¢(T7 Sil’zl,ﬁ)] — Tei%E’T E [¢(T, Sf_l,m,ﬂ)]

First we note that

inf E [¢(r,527"2,a)] — inf E [¢(r, Sf-l’m;ﬂ)]‘

T€Tiy, T T€Ta,
< E [ sup |¢(s, SI>"2, a) — ¢(8,S§1’w17ﬁ)|]
ta<s<T

RR n~°3767



10 C. MARTINI, C. PATRY

Let Y; = ¢(t, S!*, 8). Then

inf E[Y;]= inf E[Y;1(r<t)+ Y, 1(1T >ts)]

TETty, T TETey,T

and }/,52 = }ftzl (T < tg) +th2]. (T > t2),
we obtain

inf E[Y, + Y] inf E[Yrne, + Yovi]

TE€T,, T TE€Te,, T
> inf FE[Y, inf FE[Y,
2 Tel%l’T [ T/\t2]+T€17rlt1,T [ TVtz]
> inf E[Y:]+ inf E[Y;]
TETty 1o T€Tty, T
therefore we get (for the second part)
< inf FE[Y;|— inf FE[Y,
0 - TGI%Q,T [T] Tel%l,T [‘r]
= iof E[Y;]— inf E[Y,]
TE€ETiy, T TET:,, T

TE[Yy,] - E[Ys)]

i Y, ElY,
dnf BY]+E[Y,]

— inf E[Y;]- inf E(Y;)
TE Ty to TETty, T
= B~ _nf E[Y]

ty1,tg

E[ sup |¢(875§1,w15/3) _¢(t275€21’w1718)|j|

t1<s<to

IA

IA

So we conclude

|U(t2,$2,a) - u(tlamlaﬂ)l < E |: sup |¢(SJS§2’Z27a) - ¢(SJS§1@1’/@)|:|

ta<s<T

; E[ sup |¢(s,S§1’“,ﬂ)—¢(t2,Sf;”“,ﬂ)l]

t1<s<t2

By dominated convergence using (H2), the uniform continuity on compact sets of ¢, and
the fact that the applications

(s,ti,25) — Sﬁ"’“ (w)

are continuous for w fixed, we get the result as soon as

2
E sup (Sh7)7| < o0
0<t<s<T.weK

INRIA



Variance Optimal Hedging 11

where K is a compact of Rt , which is clear.

In the sequel, more precisely in order to deal with the Dynamic Programming equation
(DP), we will need to look at the infimum of u with respect to a, (¢,z) being fixed. The
following easy lemma gives us all what we need:

Lemma 2 [6] Let v be a continuous function on R™ x A where A is a compact, then v*
defined by

v*(x) = ;relgv(x,a)

is continuous on R™. Moreover, there exists a measurable function x — «o*(x) such that
v*(z) = v(z, a*(x)).

3 Reduction to a sequence of optimal stopping problems

Now we have at our disposal all the required machinery. We can proceed to the proof of the
Dynamic Programming equation (DP). Before that, we apply the preceeding result to show
that the equation (DP) well-defines the corresponding sequence of functions.

3.1 The Dynamic Programming Equation

We define by recurrence the following quantities:

wo(tz,0) = FEo [{E(t, o) +a (85 = 507) = 5 (S7) }2]
wi (o) = infuo(t,z,0)
and for n > 0
Upt1 (T, 0) =
inf E, [{E(t, ) +a (St - S;?) —(r, 847) }2 +u (1, sjﬂ)]

TET:, T

u:+1 (tv IL') = inf Un+1 (t7 Zz, Oé) (7)
a

We will show:

Proposition 3 (i) The function (t,z,a) — u, (t,2, ) is continuous.
(77) Let for all 0 < k < n, o (t,x) a measurable function given by lemma 2 such that
uy (t,x) = up (t,z,05 (t,x)) . Then there exists some measurable functions

0,T] xR, xQ — [0,T]
tzw) = 7 (tz,w)

RR n~°3767



12 C. MARTINI, C. PATRY

such that: .
(a) For all (t,z), T (t,x,w) is a stopping time of Tyr and

t<(tr,w) <...<1}(tz,w) <T
(b) For all (t,x),
uy, (t,2) = ©)
n 2
B (et + oo (:55) (85, - 1) -5 (55)
k=0
with the convention 7§ (t,x,w) =t, 7, (t,z,w) =T.

Proof
(7) and (4i) are checked for n = 0. Suppose (i) and (i¢) are true for n. By lemma 2, the
function u? (¢, ) is continuous and moreover

0 <upy (t,2) <upy (t2) <ug () < L(1+27)

indeed un, (t,2,a) < u}h_; (t,z) taking 7 = ¢ in (7). Moreover, u§ (t,z) < L(1+2?) is
obvious. Taking into account that |¢(¢,z)| < L' (1 + ) the family

{{E(t, z)+a (ggw - 5*;@) — 3 (r, 87V} 4w () S&w)}

TET:, T

is uniformly integrable and by proposition 2 the function w41 (t,z,0a) defined by (7) is
continuous. Let o, ,; (t,) a measurable function given by lemma, 2 such that u; , (t,z) =
Unt1 (t, 2,00, (t,)) . We have by definition

UZ+1 (t,z) =

inf B [{&(t,2) + apy (t,2) (S67 = 7)) =& (r sm)}2 +ur, (r,84%)
reTor ) n+1 \" T t s M n »MT

By theorem 1 there exists a stopping time 7* of T 7 such that
Ui (t,x) =
E [{E(t, 2) + oy (t,0) (SE7 = 5p7) =& (v, SeF) }2 +ul (7, Sﬁ’f)]
Moreover
™ =inf {u >t /u} | (u,S5%) >uk (u,S5%)} AT

with the convention inf ) = oco.

INRIA



Variance Optimal Hedging 13

Let us show now (i7) . We set
! (tz,w) = inf {u >t /ul,y (u,S5%) > uk (u, SE*)} AT
Then the function
(t,z,w) = " (t, 2, w)
is measurable: indeed (3.1) writes
(2, w) =inf{u >t/ F(t,z,u,w) >0} AT
where F (t,z,u,w) is a measurable function and continuous in the last 2 arguments. Then

{ n+l (t,z,w) > T} = MNg<r,q rationnel {F (t,2,q,w) < 0}

is a measurable set.
We set forn+1>k > 2

ot (tz,w) = T (G z,w) + T (7—1”4‘1 (t,z,w) ’S:l"z“’@n"“ (w))
(where O is the usual shift operator) and we check that T"+1 are stopping times which verify

(1%) (a).

Then we have
n+1
E { t .Z' + E an+1 k( n+1 St:‘+1) (Stnm+1 _St:'+1>
Tht+1 Tk
~ (at,
-5 (7)Y

B n+1
fetos S o (it (s, - 55

= F

The+1

-¢ (Sg:z)} |FT1n+1”

= E -{E(t,a:) +a), (t,2) <§j’1f+1 _ ~:z) C( ntl Stf+1)}2
{erm szn) + S (a7 557 (S - 557
B (S | P

by orthogonality of S’T;rll — S'T:+1 under the risk-neutral probability.
Now

+E

ot (b z,w) = 1 (tw,0) + T (TI‘“ (t, z,w) ,Sj;f+1,0T;+lw)

RR n~°3767



14 C. MARTINI, C. PATRY

whence

s B 52
Tht+1 k
—5(s¥)} | FT;H]
= U (T1n+1 Si’lﬂ’ﬁl)
by the strong Markov property by noticing that

to _ ote
S n+1( ) = S rittirp 00 n+1(w) ()

ST;?—1 o @Tln+1 ( )

where
n+1 2
s [{ 0+ Y s (0 >sizl)X(S:;f—é:;f_l)—msf)}]
k=1

= up(t,2)

according to (8). The result follows.

3.2 Proof of the Dynamic Programming equation

It remains to show that wu, is the desired function, that is to prove the equality between u,,
and the function v, which is defined in (1).
We introduce the family {Ug(p)}, of random variables indexed by p € To,r, defined by:

Us(p) = B [{¢(p,5,) + a(S1 = 8,) = &(S1)}* | 7|

and for n > 1

essinfrer, o B [{2(p,S,) + (S = §,) = (1, S,)F +up (7. 8,) | ]

~ 12 ~
—{e(0.8,) —a8,} +essinfrer, . E[{e(r,5,) - a8, 1 +uy_s(,5,) | F,)]

Uy (p)

(10)

We define by [7',?() the largest RCLL sub-martingale which is less than { (¢, S;) —a.S; }2+
u;k’b—l (t7 St)
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Variance Optimal Hedging 15

Since the path of {¢(.,S.) —aS.}2+u? (., S.) are continuous, it is known that for every
stopping time p of 7o, T,

02(0) = {¢(p5,) — a8, )} +US(p) as

Moreover, by Proposition 1, we have: U2 (t) = uy, (t, S, @) .
We also introduce another family {V;*(p)}, of random variables indexed by p € Tjo,17,
defined by:

Ve o) = B [{2(p,S,) + alSr = 5,) - $(S0))* /7,

and for n > 1
{(p,Sp) + (S, = 8) + Y 67 (Sriss = Sn) = B(ST)} | Fp

V.2 (p) = essinf Tty € Tyt E
’ i=1

57‘1; "';57'

n

We will show the following theorem:
Theorem 2 UZ2(t) = V() a.s

Proof

The equality is true for n=0. We suppose U2 (t) = V,%(t) a.s.
First we show V& (t) > U, (t) a.s.

Let Ppi1 = (71,72, o Tnt1,0r15 07y, v, 67,y ) & control, then:

n+1 2
E {E(t, 80+ aSr = 80+ 3 brups (Srugs = S ) - a(sT)} | Fi

k=1

n+1

2
= E|E {5(t>St) +a(‘§‘r1 - S’t) + Z‘S‘m (ng+1 - g"'k) - QZ(ST)} /-7:T1 | Fi
k=1

[ - - 2
= B |{at5)+al8n - 8) -¢(n,8.)}

+E | Fe

n+1 2
{E(Tlasn)'i'zdﬂe (STk+1_§Tk) _9,5(511)} /‘7:T1
k=1

v

E [{’c“(t, S¢) + a(Sy, — i) — &(m, Sn)}2

| 7

n+1 2
+ess’£nf 725 -+ Tn+1 € 7;'1,T y !{5(7—17 STl) * Z 6Tk <STk+1 B STk) a Q)J(ST)} | fn

67'27 Tty 6Tn+1
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16 C. MARTINI, C. PATRY

~ ~ 2
2 FE [{5(75,515)4‘04(5,—1 —St) _E(Tl,Sfl)} +u; (T1,Sq-1) | ft
> Upa(t)

and then

1 (1) > Upiy o (t) aus.

To show the other inequality, we use the last proposition. For every (t,x), there exists
stopping times Tk+1 (t,z,w) (1 < k < n+1)of Tor, with t < 77 (t,z,w) < ... <
! (t,,w) < T such that

n+1 2
Uny1 (tz,a) = E { (t, x)+a(Stf+1 S +25 nt1 (Sjgﬁ sj;:H) —@(S;lw)}
k=1

n+1 2
_F {5(t,) o800 = §1) +Z5"+1(~"+1—5r"+1)‘*5(5”} |5

k+1 k+1 k

This yields U, (t) = tnt1 (¢, S, ) > V& (1) as.
Finally we have proved

Upgr (t,T,0) = Tér71_f E [{6 (t,z) +a (SL2-S;7) -¢ (1, SL°) }2 +uZ(T,StT’w)]

n+1 2
= inf E {E(t, @)+ (S = 517 + 3 b, (S52, - 857) - & (S;w)}

Pn+1 =1

such reducing the N stopping times problem to a sequence of optimal stopping problems.
4 Variational inequality
In this section we derive the infinitesimal form of (DP).

4.1 Formal Derivation
4.1.1 First method

We give a first method to get formally the variational inequality using the definition of v.
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Variance Optimal Hedging 17

o If we trade immediately, the cost of such a decision is:

vp 1 (t,2)

n—1
hence we can state the condition

v (t,x) < irdlf v2 (t,x)

o If we decide not to trade during a small interval of time [t,t+J] and then act optimally
in the future, the resulting cost is:

E I:{ét + Ot(gt_H; — St) — 5,5.,.5}2 | Fi| + E [Ug(t + 4, St+5) | ft]

By definition of v&, we have:
’Ug(t, S) <FE I:{ét + Oé(gH_g — St) — Et+5}2 | ft:| + FE [Ug(t + 4, St+5) | .7:,5]

Using Ito, we get

~ ~ 9 t+0 v
FE [{5,5 + Ot(St_H; — St) — 6t+5} | .7:,5] + E / ( n (U, Su) + Avg(u, Su)) du/ft Z 0
t

ot

where A is the characteristic operator of S, Av (t,z) = ra 2% (t,z) + "2—2552% (t, ).
We divide by 6, and we let § — 0.
By noticing

B B t+3d B
E [{at + a(Sias — 8p) — Gas) | ]—"t] E l{ /t (@ — Ay, Sy)) dS, )2 /ft]

t+6 B
= E l/ (@ — A(u, Sy))?0%S2 du | ft]
¢

we get

OV 1,50 + Avs (t,5) + 0" SHA(, S) — 0)? > 0

We finally notice that one or the other of inequalities must be an equality, since either
we trade immediately or not. Therefore we have:

a
n

(vn (¢, 2) — inf v (t, w))(%(ta z) + Avy (t, ) + 0 (ze")} (At 2) — 2)?) =0
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18 C. MARTINI, C. PATRY

Then, we have to solve the following system:

0% (8, 2) + Av3 (1, ) + 02(ze ™) (A(t,2) — a)? 2 0
v (t,z) < infsod_, (t,2)
(v5 (8, 2) — infs of,_ (8, 2)) (% (1) + Av(t,2) + 0° (e ™™V (At 2) — @)?) = 0
Ug(Ta .’L') =0

4.1.2 Second method

Since v{ is the value function of an optimal stopping problem, it is known that vZ is the
solution of variational inequalities.

4.1.3 Comments

The knowledge of the function v$ makes it possible to determine the optimal policy in the
following way: the domain [0,T] xR* is divided into two regions:

e The continuation region D = {(t,z) € [0,T] x R /v&(t,z) < infsv°_, (¢, z)}

e Its complement, the exercice region & = D¢ = {(t,z) € [0,T] x R /v(t,z) =
inf5 ’U;Sl—l(t7 .CE)}

If the region £ is reached, the best policy is to make a transaction, the trader chooses
the § which minimizes the cost v ;. The boundary between the two regions is the optimal
stopping boundary. PR

If we define 73 = inf{u > t/(u,S,) ¢ D} and 6; = 6(71, S7) the optimal § in the problem
infsv_,, then 7 is the first optimal time of trading and 51 the associated transaction .
By iterating this procedure, we can construct step by step the optimal politicy.

4.2 Viscosity solutions

The notion of viscosity solutions was first introduced by Crandall and Lions [5] to solve
problems related to first-order Hamilton-Jacobi equations. For a general overview of the
theory, we refer to the “user’s guide" by Crandall-Ishii-Lions [4].

In this section, we will show that given v,,_1, the value function v is the unique viscosity
solution of the variational inequalities:

85’5 (t,z) + Ave(t,z) + 0% (ze ") 2 (A(t,z) — a)? > 0

’l)g (t7 'Z') <inf, Uﬁ,l(t, 33')
(U%(ta SL') - infd 'Ug_l(t, JU)(aaLt"(t, SL') + A’Ug(t, .'L') + Uz(g;e_Tt)Q(A(t’ .CE) _ 01)2) =0
v (1, 2) = 0

(11)
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Variance Optimal Hedging 19

4.2.1 Existence

We now give the definition of viscosity solution in our problem.

Definition 1 Let W a continuous function on [0,T] x R* such that W(T,z) = 0.
W is a viscosity solution of the system if and only if

i) Vo € CL2([0,T] x RY), and (to,s0) € [0,T] x Rt such that ¢ > W and ¢(to,s0) =
W (to, s0) we have:

min((g—f(to, 50) + Ad(to, so) + 0> (soe™")?(A(to, s0) — @), —d(to, S0) + vi_y (to,50)) > 0

i) V¢ € CL2([0,T] x RT), and (to,s0) € [0,T] x Rt such that ¢ < W and ¢(to,s0) =
W (to, s0) we have:

min((g—f(to, 50) + Ad(to, s0) + 0> (soe™")?(A(to, s0) — @), —d(to, S0) + vk 1 (t0,50)) <0

Theorem 3 The value function v3 is a viscosity solution of the system.

Proof We already proved that v2 is continuous and v%(T,z) = 0.

We divide our proof in two steps.

1) We first show that v is a viscosity supersolution:

Let ¢ € C2([0,T] x RT), and (to, s0) € [0,T] x R* such that ¢ > v and ¢(t,s0) =
v%(to, S0), we want to show that:

mm(g—‘f(to, 50) + Ad(to, 50) + 0* (s0e™""*)* (A(to, 50) — @)*, = $(to, 50) + v5_1 (to, 50)) > 0

We set
D = {(t,z) € [to, T] x R" Ju2(t,z) <wvi_;(t,z)}
and
Top = inf{u 2 to/(u,Su) ¢ D}
We know that 7o, is the smallest optimal stopping time.

V7 stopping time > tg, we have:

v (to, s0) + {¢, — asoe_”o}z <FE [vg(r, Sr) + {é — ozS'T}2 | Sto = So
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20 C. MARTINI, C. PATRY

IN
q
92)

B(to, s0) = vy (to, S0) —{&, —aspe Y + E [”3( ,S7) + (& — aS:)? | Sy = 80]

IN
\]
wn

_{éto - asoeirto }2 +E [¢( ’ 'r) + (é'r - O‘S’T)Z | Sto = 80]

{1, —aspe TP+ B [olto,50) + [ (G2 + A0) . 5.)

+{é-,— - agT}2 | Sto = S0
We get

0 < —{&, —asge "}’ + E [{ET —aS;}?| 8, = so] +E [/ (g—f + Ad)(u, Sy) du | Sy, = so]
to

We set 7 =7 A (to + ¢€).
Dividing by E [T A (to + €) | St, = so] and let € — 0, and noticing

E [{aT — a8} — {&, — asee )2 | S, = so] - E [{aT — &, — a8, — soe )2 | S, = 30]

B ([ (45, =0)d5.17 | 5, = ]
- B [/t:(A(u,Su) — )20 du | S, = so]

yields

0< %(to, s0) + Ad(to, s0) + 0> (soe™"°)?(A(to, s0) — )’

and then v7 is a viscosity supersolution.
2) We turn now to the subsolution case.

Let ¢ € CL2([0,T] x RY), and (tg,s0) € [0,T] x Rt such that v® > ¢ et v%(tg,s0) =
@(to, 50). We want to show that

min(%(t(b s0) + Ad(to, s0) + a” (s0e™")?(A(t, 50) — @), —(to, 50) + vii_1 (to, S0)) <0

If (th 80) ¢ D then /Ug(to, 80) = U:,—l (t05 80)7 and then ¢(t0>80) = U:L—l(t())SO)’ and the
inequality hold.
If (to,s0) € D then v%(to,s0) < v)i_;(to,50). Let 7 a stopping time < 7,p,, we have:
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#(to, s0) = v2(to,50) = —{&, —asee "}’ +FE [vg(T, S:) + {é - 045}}2 | St = so]
> —{&, —aspe ™}’ +FE [(;5(7', S:)+ {é; — ozS’T}2 | S¢ = so]
~ —rto\2 ! a¢

= —{é, —aspe "} + E |¢(to,50) + (E + Ad)(u, Sy) du

to

+{é- —aS,}2 | S, = so]
We obtain
~ —7rto12 ~ o 12 4 6¢
0> —{é, —aspe ™}’ +E [{CT —aS;}* | Sy = so] +F (E + Ag)(u, Sy) du | St, = so
to

We set 7 =7 A (to + €).
We divide by E[7 A (to + €) | St, = s0] and we let € go to 0, we obtain:

09 (10,50) + Ablto, 30) + (506~ (Ao, 30) ~ )" < 0

This shows that v, is a viscosity subsolution.

4.2.2 TUniqueness

We have to show now that v,, is the unique viscosity solution of the variational inequality.
It is known ([4]) that if the domain is bounded then the system has a unique solution.
We recall:

v2(t,x) = —{¢ —aze "} + in>ftE [{éTl —aS. Y24 1(1,8,) | Si = x}

—{& —awe™™}* + inf B[}(ri,S5,) | S = a]

where ®2(t,z) = {¢; — aze "} +vi_, (¢, ).

v, is a continuous function and the family {v%(r, S:), T stopping time } is uniformly
integrable.

We first show the following result:

Proposition 4 Let U a domain in [0,T] x R"

v =inf{u>1t/(u,S.) ¢ U}
(by convention infd =T)
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a) We define w(t,x)=-{¢ — are™"}2 + E[®(1y, S, ) | S¢ = 7]
We suppose w continuous on [0,T] x RT.
Then w is a viscosity solution of the equation

Bu(t,z) + Aw(t,z) + o*(ze ™) (At,z) —a)? =0 in U (12)
w(T,z) =0
Moreover, w satisfies the condition: the family
{w(r,87), 7 <1} (13)

is uniformly integrable.
b)If u is a viscosity solution of 12 with the boundary values uw = v}_, on dU, and satisfies
13, then u=w.

Proof a)We first show that w is a viscosity solution of 12.

First, we have w(T,z) = 0 and w is continuous.

We want to prove that w is a viscosity supersolution:

Let ¢ € CY2(U) and (to,s0) € U such that ¢ > w on U and ¢(to,s0) = w(to, 80), We
want to show that

g—f(to, So) + A¢(to, So) + 0'2(3067”0)2(A(t0, 80) - 05)2 >0

Let 7 a stopping time < 7y, by the Markov property we have:

(to, s0) = w(to, s0) = E[w(r,S;) | Sty = s0] — {&, — asoe "}’ + E [{ET - a8} |8, = 30]
< E[¢(7,8;) | Sty = s0] = {&, — asoe "} + E [{ET — a8} [ S;, = so}
= B [sts0) + [ (57 +40)w,5.)du| S, = 0] = {61, — asoe "

to O

+E [{eT —a8,)?| S, = so]
hence:

0¢ _
E(to,so) + Ag(to, s0) + 0% (soe "*)*(A(to, 50) — a)® > 0

and then w is a viscosity supersolution.

Let’s turn now to the subsolution case.

Let ¢ € CY2(U) et (to,50) € U such that ¢ < w on U and ¢(tg,s0) = w(to, so), we have
to show that

%_f(t% o) + Ad(to, s0) + 07 (soe ")* (A(to, s0) — a)* < 0
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Let 7 a stopping time < 7y, by the Markov property we have:

Blto, 50) = wlto,50) = Blw(r,5) | So = s0] — ety — asoe ™Y + B [{&r — a8} | Siy = 0]
> E[$(1,5:) | Sty = s0] — {&, — asoe "0} + E [ (& — b} | S = SO]
= E [¢(t0,80) + /t:(% + A)(u, Sy) du | Sy, = 30]
~ {1 — asoe TP + B[{er - a8;)? | Siy = 50
hence:
(% + Ad)(to, 50) + 02 (s0e )% (A(to, 50) — )®> < 0

and then w is a viscosity subsolution .
(2) is clear.

b) By theorem 8.2 in [4], we know that if U is bounded there is a unique viscosity solution.
To prove the result in the general case , we consider :

U(N)={seU;ls| <N}

Let v a viscosity solution of (1) and (3), and define vn(.) = v(.)|y vy -

Then obviously , vy is a viscosity solution of 2% (¢, z) + Au(t, z) + 025*(A(t,z) —a)? =0
in U(N) and u(T,.)=0 and u(.)=vyn(.) on QU(N).
Since U(N) is bounded, by uniqueness and a), we have:

on(t,z) = E I:UN(TU(N)’STU(N)) + {6TU(N) - agTU(N)}Q - {675 - awe—rt}2 | Si==x

Since vn(.) = v(.) on U(N), and v(.) = v* ,(.) on AU and Ty(n)y — Tu < 00 when
N — 00, we have:

’U(t,.’lf) = A}gnoo 'UN(tax)

= lim [B [on (ru(n) Srowy) | St = ] + B [{rygn, = a8y } | St = ]
—{& — aze )2
= E[®(1y,Sr) | St = 2] — {¢ — are™"}?

= w(t,z)
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Lemma 3 Let v a viscosity supersolution of:

min(% + Av + o2 (ze ") (A(t,z) — )2, —v+v;_;) =0
v(T,z) =0

then for every (t,z) v(t,z) <v’_,(t,z).

Proof Let (t,x), V a neighbourhood of (t,x), then (£, 5) maximum of v in V. We can
find ¢ € C12([0,T] x R*) such that ¢ > v et ¢(f,5) = v({, 5) then

v(t,8) < vy (£,5)
Since V can be arbitrary small, we conclude by continuity that

v(t,7) < vy ()

If v is a viscosity solution we set
A=A, ={(t,2) €[0,T] x R /Ju(t,z) < v’ _,(t,z)}
Theorem 4 (Uniqueness) Let v a viscosity solution of:

min(%L + Av + o (ze )2 (A(t,z) — @), —v +v;_))(t,2) =0
o(T,2) =0

with the property that {v(r,S;), T stopping time } is uniformly integrable.
Then v = vg.

Proof We first observe that v is a viscosity solution of
8 + Av + 0% (we )2 (A(t,2) —a)? =0in A
v(T,z) =0
v(t,z) = vy _;(t,x) on OA
then with the last proposition
v(t,x) = —(& — aze™™)? + E[®(14, Sr,) | St = 2]

so that v&(t,z) < v(t,z)
To get the opposite inequality, we set:

S(N)={seR"/|s| < N}

and

un(t,.) = v(t,.)|S(V)
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then vy is a viscosity solution of

min(%X + Aoy + o? (ze )2 (A(t, ) — )2, —vn +v_;) = 0in[0, T[x S(N)
on (T, = 0in S(N)
un(t,.) = v(t,.)|0S(N)

By a comparison theorem (th 8.2),
un(t,z) < un(t,z)in[0,T] x S(N)

where uyy is the unique viscosity of the system with uy(¢,.) = v}_;(t,.) on dS(N). Then
(by theorem 2),

on(t,z) < inf E[®(1,S,)| S = 2] — (& — are ™)?

T<Ts(N)

We let N go to infinity and we get:

v(t,z) < v3(t, @)

5 The discretized problem

We give numerical results obtained in the Cox-Ross-Rubinstein model. We solve in this
setting the corresponding Dynamic Programming equation.
5.1 Formulation of the problem in the binomial model

Among the N possible dates of trading, the hedger will decide to hedge only n (< N) times.
So he can not any longer duplicate the payoff by constructing a self-financing strategy. His
goal is to minimize the variance of the tracking error under the risk neutral probability.

In the first part of the paper, we have shown that the value function v,, is solution of an
optimal stopping problem:

On(t, 7, @) = —(& — aze™™)? +inf, e7, , E[{& (1, S5) — aSL*}? + vk (1, S17))]
where T; 7 is the set of all stopping time which satisfy ¢ < 7 < T'. Recall that the optimal
stopping time which realizes the minimum is given by
7 =min(u € {t,...,T}/v}_|(u,SH%) < v,(u, SH%, a))

If n is fixed, an application of the Bellman principle reduces the optimal stopping problem
to a recursive procedure to find the value function v,,. Then, we have the following corollary:
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Corollary 1 Let V"%t < T be the nonnegative adapted process defined recursively by
Vir®* =0 and fort <T —1

Vo = min(B [V | R+ B [{6(t+1,50%) — aSES | R - @ - a8)% V)
then the variance of the tracking error v, is given at time t by:
vn(t, St,a) = V"
Moreover, the first optimal date of trading (after t) is given by:
7} = min(u € {t,...,T}/V""1* < V™)

The above result gives the following algorithm: using V;°* = 0, we can compute the
variance of the tracking error at every node at time 7'. Using the Dynamic Programming
equation, we can compute the error at time 7'— 1 by simply compare at every node, the value
of the error if traded, with the value if not traded and set the error value at that node equal
to the smaller of the two. If the minimal of the two values is V'~ "* it is optimal to trade.
We can then apply this procedure at every node at every time step, working backwards
throughout the tree.

The scheme at hand is of complexity n* N3: we solve for each resolution of (DP) a family
of optimal stopping problem (complexity N?) for every level a (which is discretized with N
levels). There are n such steps.

5.2 Convergence to the continuous limit

We will now prove the convergence of our numerical scheme to the continuous time limit
studied above. We follow the viscosity solutions approach of Barles and Souganidis ([1]).
5.2.1 The convergence result

We can rewrite the equation in the general form

du
7at7

We will consider numerical approximations of the form

G(z,t,u Du,D*u) =0 (14)
(At, Az, n, j,uj, i) =0 (15)

We assume that the scheme satisfies the following assumptions:

Stability For all (A¢, Az), there exits a solution @ of 15 with a bounded independent of
(At, Azx).
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Consistency For any smooth function ¢ and for any (z,t) € Q x [0,T] we have

9¢

. S(At,Az,n,j,¢+&,¢ +€)
lim inf e

At,Az — 0 p(At, Ax)
(nAt,jAzZ) — (z,1)
E—=0

(z,t), Dg(,t), D> P(x,1))

> G(z,t, ¢(, 1)

and

S(At, Az, n,j, ¢+ & ¢+ )
p(At, Az)

< Gla 1, 9(a 1), 2@, 1), DY( 1), D9z, 1)

lim sup
At,Ax = 0
(nAt, jAz) — (z,t)
E—0

for some function p(At, Az) > 0.
Monotonicity
S(At, Az, n, j,u},a) < S(At, Az,n, j,v}, )
if @ > 0 and if u} = o} for all At,Az >0,n,j, and @ and ¢ € R".
Strong uniqueness If the locally bounded upper semi continuous (resp. lower semi
continuous) function is a subsolution (resp. supersolution) of 14 then
u<wvin Q.

The result is the following:

Theorem 5 Under the above assumptions, the solution @ of the scheme converges as At, Ax —
0 uniformly on each compact subset of ) to the unique viscosity solution of the equation 14.

5.2.2 Convergence of the binomial scheme

We argue by induction on n. We suppose that v,_; converges uniformly on each compact to
the unique viscosity solution of the corresponding equation. The binomial scheme satisfies
clearly the properties required for the convergence: the scheme is obviously monotone, stable
and we have the strong uniqueness property. For the consistency we note, slightly changing
notations:

min( —f(t,z,a) + E; [f(t + At, Sffét, a)] +
E, [{a (t+6t,Sb%,) — aS;ffdt}ﬂ — (6 — a8y)%, 05| (t, 7, 0,0t) — f(t,z,0) ) =0

Since by the recurrence hypothesis for every (¢,z, ), v} _; (¢, z,a,dt) = v} _; (¢, z,a), it
is easily seen that the limiting equation is 11.
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5.3 Numerical results
5.3.1 Tracking error in the binomial scheme

The following figure plots the variance of the tracking error as a function of the number of
rebalancing. This figure illustrates the rapid decrease of the tracking error as the number
of trading increases.

The chosen parameters are the following;:

So = 100, K = 100,r = 0,0 = 0.2,T = 0.333,¢(S7) = (S7 — K)*

The variance of the tracking error as a function of the number of trading n (N=200)
1.4 | | | | | | | | |

1.2

0.8 -

0.6 -

0 10 20 30 40 50 60 70 80 90 100
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In the next plot, we fix the number of hedging, and we draw the error as a function of
the number of time steps.

The variance of the tracking error as a function of the number of time steps N (n=20)
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5.3.2 Comparison with deterministic strategies

In the following table, we compare the variance of the tracking error in our model with the
error obtained in the deterministic case.

Error for Error for
Number of . o
. . optimal deterministic
hedging times . . .
stopping times times
) 1.015422 3.325936
10 0.500272 1.662968
15 0.324128 1.108645
20 0.236881 0.831484
25 0.183150 0.665187
30 0.149072 0.554323
35 0.125143 0.475134
40 0.105763 0.415742
45 0.091259 0.369548
50 0.078915 0.332594
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Error for Error for
Number of . c .
. . optimal deterministic
hedging times . . .
stopping times times
55 0.068568 0.302358
60 0.061146 0.277161
65 0.055649 0.255841
70 0.051079 0.237567
75 0.047032 0.221729
80 0.043331 0.207871
85 0.039877 0.195643
90 0.036608 0.184774
95 0.033471 0.175049
100 0.031035 0.166297

6 Conclusion

In the Black-Scholes model, we consider the problem of L? hedging of a standard European
contingent claim when the number of trading dates is fixed. We show that the optimal
variance is the solution to a sequence of optimal stopping problems and we have identified
the optimal strategy. We design a lattice algorithm to solve the corresponding problem in the
Cox-Ross-Rubinstein setting. Using viscosity solutions methods we prove the convergence
of the algorithm. Numerical results are given, and the table shows the interesting result
that to get the same error as in the standard equally sampled deterministic case we need to
hedge about 3 times less.
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