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Abstract: We propose a two-stage approach for the design of a shared virtual memory.
The first stage is a high-level protocol description using the Structured Gamma formalism
which is amenable to formal verifications. The second is a translation of this abstraction
into an automaton which can be dynamically loaded in a runtime environment that provides
a concept of global directory. This translation is based on Aspect-Oriented Programming
which makes it possible to specify independently different aspects of the implementation.
The complete system can thus be easily ported on a new environment.

Key-words: Shared Virtual Memory (SVM), coherence protocol, specification, Gamma,
aspects.
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Conception de protocoles de cohérence de MVP par
traduction d’une spécification Gamma a ’aide d’aspects

Résumé : Nous proposons un cadre permettant de concevoir des mémoires virtuelles
partagées & l'aide d’une spécification de protocoles de cohérence. La conception s’effectue
en plusieurs phases. La premiére est une description de haut niveau dans une variante
du formalisme Gamma Structuré qui permet d’effectuer certaines vérifications. La seconde
consiste & traduire cette abstraction en automate chargeable au sein d’'un environnement
d’exécution supportant le concept de répertoire global. Cette traduction est réalisée par
une technique de programmation par « aspects » qui permet de spécifier indépendamment
certaines caractéristiques de la mise en ceuvre (controle et représentation des données).
L’ensemble du systéme peut ainsi étre facilement porté dans un nouvel environnement.

Mots-clé : Mémoire Virtuelle Partagée (MvP), protocole de cohérence, spécification,
Gamma, aspects.
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1 Introduction

Distributed systems made of autonomous machines having memory and processors linked
by a network are widely used. However, there programming is not a simple task as one must
explicitly deal with resource distribution. To ease this programming, the Shared Virtual
Memory (SVM) concept has been proposed by Li and Hudak [10]. This concept offers the
illusion of a global address space over a distributed address space. To improve performance
of such a system, several copies of a piece of data are made using caches. Therefore a cache
coherence protocol is needed to guarantee a coherent view of the system.

Since the first protocol, several ones have been proposed like the lazy release consistency
[7] or the scope consistency [6]. However a protocol aims at optimizing a limited range a
application sharing patterns. Therefore a general purpose SVM must integrate several pro-
tocols. However this static approach cannot take into account new technology like Remote
Memory Access [5]. Therefore protocols should be dynamically added in the SVM.

Moreover a SVM must be tighlty integrated with the operating system to achieve optimal
performance [9]. But as a system component, a faulty implementation of a SVM can have
disastrous effect. An approach to increase confidence level in a SVM component is the
use of a high-level formalism for the SVM design. This abstraction helps the designer
focus on the coherence protocol logic without dealing with low-level implementation details.
Moreover, two advantages are gained with a formal abstraction of the protocol. Firstly, with
an adequate system abstraction, some automatic verification can be done [11]. Secondly,
with a proper translation mechanism to low-level implementation, the same protocol can
be targeted to several interconnection technologies. And if the protocol environment is
sufficiently small and well defined, the whole SVM component can be easily ported on a new
system.

This paper presents the state of our current research on the design of programmable
SVM. We propose to define coherence protocols in two parts. The first is a high level-level
description free of any implementation detail. The second one defines a transformation into
an automaton following certain implementation choices. This automaton can be loaded
dynamically into a runtime.

We present in section 2 other programmable coherence protocol design environments and
their limitations. In section 3 we give a global overview of our approach. Then in section
4, we present the Li and Hudak coherence protocol which is used throughout this paper to
illustrate our approach. We then show in section 5 how a coherence protocol is formalized.
In section 6, we describe the translation process to produce an implementation from an
abstract protocol description. This implementation is loaded into a runtime environment
described in section 7. We finally conclude in section 8 by giving current state of our work
and perspectives.
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2 Programmable Shared Virtual Memories

The idea of programmable SVM is not new and we are aware of at least two efforts of such
environments, PCS and TeaPot. Each of them proposes a specific method differing from the
other one by the programming language used, the programming style and facilities offered
by the protocol programming environment.

PCS [12] is a runtime environment for distributed filesystems. This a not strictly speaking
a SVM programming environment but issues are identical. Protocols are described in a Tcl
like language and executed in an interpreter loaded as a Mach 3 external memory manager.
Several facilities are offered to ease protocol programming: messages are kept in order
and temporary states due to Mach 3 kernel and message waiting between two states are
eliminated. As protocols are interpreted, the environment is very slow. Moreover no protocol
verification is proposed.

TeaPot [3] is a SVM programming environment. Protocols are described as automata in
a dedicated language. Each state describes messages that can be received and actions to be
done. The environment offers some facilities: undesired message wait queue, a continuation
mechanism to factorize intermediate states and messages are kept in order. A protocol can
be verified with state enumeration (Mur® verifier). Due to combinatory explosion, only
protocol involving two nodes can be verified.

Those environments have limits. Firstly, formalism used to describe protocols is the low-
level implementation automata. Therefore the logic behind a protocol is hard to understand
and protocol writing and debugging is painful. Secondly, verification is either not available
(PCS) or limited (TeaPot). Thirdly, those environments are bound to a network technology
(message-passing for TeaPot) and thus protocols cannot be adapted to a new technology.
To answer those limits we propose a new approach.

3 Global Overview

We consider a parallel system with distributed memory. Our objective is to design a pro-
grammable SVM using the underlying paging mechanism. Detection and data management
granularity is thus a page. Our goal is to propose a method to design SVM from high-
level protocol specifications. This approach enforces a clean separation between coherence
choices related to a protocol and implementation choices related to a network technology.
Protocol design and checking is thus made easier. Qur work is based on an elaboration of
the Structured Gamma formalism [4] that we use as a specification language. Its main ad-
vantage is that it allows automatic invariant checking on high-level descriptions. Moreover
this checking does not depend on the number of nodes involved in the distributed system,
thus avoiding the combinatory explosion of state enumeration. Furthermore communica-
tions are not specified at this level. As a consequence, many implementations can be built
from the same abstract protocol. Finally, the explicit definition of invariants improves the
understanding of the protocol.

INRIA
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High-level description

Abstract protocol
definition

L' Checking J

Translation

\—> = Runtime Environment

Figure 1: Programming environment

Implementation
choices

Figure 1 summarizes our approach. First of all, the programmer introduces a high-level
description of the protocol. This description is made up of an abstract protocol definition
describing state changes and invariants. These two parts allow protocol checking. Then a
translation stage transforms the abstract protocol definition into an automaton. This transla-
tion is based on implementation choices (available as Aspects [8]) made by the programmer.
Finally the resulting automaton can be loaded within a runtime environment and interacts
with it. We now describe the protocol used as an example throughout this article.

4 The Li and Hudak Coherence Protocol

We use the Li and Hudak single-writer/multiple-readers coherence protocol [10] as an exam-
ple to illustrate our approach. This protocol is simple and concise and thus can be described
in this paper. However our approach is suitable to formalize any type of coherence protocol
like eager release consistency [2]. The Li and Hudak protocol handle each memory page
of the shared address space independently. A page is either written by a unique node or
read by one or more nodes. Each reading node makes a local copy of the page. When a
page in read state is written, all copies of the page must be deleted (invalidation phase).
Figure 2 shows the state graph of a page. State change is triggered either by a local or a
remote access. For each page, a manager stores the page state and copies knowledge. Access
requests are sent to it and it triggers needed invalidations.
We now show how a protocol can be described in our high-level formalism.
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Local state

Read
Invalid or Read

Allowed remote states

— Local event
-~~~ Remote event

Local read

~,~" Remote write
Local write
Invalid e Read/Write
Inv or Read or R/IW Remote write Invalid

Figure 2: Page state graph of Li and Hudak coherence protocol

5 Protocol description

Our protocol specification language is an elaboration of the Structured Gamma formalism
[4]. We detail this formalism and then apply it to the Li and Hudak protocol.

5.1 The Structured Gamma Formalism

The Structured Gamma formalism [4] is based on the chemical reaction metaphor. The
unique data structure in Gamma [1] is the multiset (a set than can contain several occur-
rences of the same element) which can be seen as a “chemical solution”. A simple program
is a pair (Reaction condition, Action). Execution proceeds, without an explicit order, by
replacing elements in the multiset satisfying the reaction condition by the products of the
action (“chemical reaction”). The result is obtained when a stable state is reached, that is to
say when no more reactions can take place. Locality and lack of ordering allow a description
of algorithms without unnecessary sequentiality. An example of a Gamma program is facto-
rial: [z,y — = x y]. Applied to multiset {1,2,3,4} it could produce the following execution
sequence:

[1,3 — 3] simultaneously with [2,4 — 8] then [3,8 — 24]

The Structured Gamma formalism [4] introduces the notion of typed multiset. Types are
based on relations between the elements of a multiset. More precisely, a type imposes
restrictions on the number of occurrences of values satisfying specific relations. A checking
algorithm allows to demonstrate that a set of Gamma rules satisfy a specific type. It is
wise to notice that the addition of such a type does not invalidate the locality property of
Gamma rules. In our context, Gamma rules are used to specify a coherence protocol and
a Structured Gamma type defines invariants of this protocol. A type checking algorithm
allows us to verify that a protocol satisfy a type (that is to say an invariant).

INRIA
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Protocol Gamma, Rules :

Ry

R,

Rs

R4

Rs

Rg

Ry

: ReadDetect p n; , Read p no , PageFrame pfs p no

— Read p n; , Read p ny, , PageFrame pfs p ny , PageFrame pfs p no

: ReadDetect p n; , ReadWrite p no , PageFrame pf; p no

— Read p n; , Read p ny , PageFrame pfs p n; , PageFrame pf; p ns

: WriteDetect p n; , ReadWrite p ny , PageFrame pfs p no

— ReadWrite p n; , PageFrame pfs p ny

: WriteDetect p n; , Read p ny, , PageFrame pf; pns , Ok p

— InvalidationPhase pfs p ny

: InvalidationPhase pf; p n, , Read p ny , PageFrame pf; p ns

— InvalidationPhase pf; p ng

: InvalidationPhase pf; p ny , “Read p ny

— ReadWrite p n; , PageFrame pf; pn, , Ok p

: WriteDetect p n; , Read p n; , PageFrame pf; n, , Ok p

— InvalidationPhase pf; p n;

Invariants :

L
I,
I3
1,
Iy
Is
I
Ig

: ReadWrite p x <1

: Read p * > 1 = ReadWrite p x =0

: ReadWritepx=1= Read px =0

: PageFrame *x pn = Read p n + ReadWrite p n

: ReadDetect p n + WriteDetect pn <1

: InvalidationPhase *x pn > (0= ReadWrite pn =0

: PageFrame pf p x > 0 = PageFrame pf p x = PageFrame x p x
: Read p ¥+ ReadWrite p x > 1

Figure 3: Structured Gamma version of single-writer/multiple-readers Li and Hudak proto-

col

5.2 Formalization of the Li and Hudak Protocol

Figure 3 gives the complete Structured Gamma specification of the Li and Hudak protocol.
Rules defining the protocol are numbered R; to R;. Constraints defining the invariant are
labeled I; to Is. A Gamma rule defines a protocol state change. Those rules use relations
which map to physical objects (page table, page content), exceptions or messages. More
precisely, ReadWrite p n relation states that page p on node n is in read/write mode
(page table rights); Read p n relation states a read right; ReadDetect p n (respectively
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WriteDetect p n) relation states that a read (respectively write) exception has occured
for page p on node n; PageFrame pf p n relation states that a page frame pf (a physical
page) corresponding to virtual page p exists on node n; InvalidationPhase pf p n relation
states that page p is in invalidation phase in order that page frame pf will be accessible in
read/write mode on node n; Ok p relation states that page p is not in invalidation phase.
Implementation (in arrays, booleans, signals, ...) of those relations is defined by the aspects.

To delete or to add a relation in a rule details how is made the corresponding state
change. For example, ReadWrite p n relation in left hand side but not in right hand side
of a rule states that the read/write right has been lost for page p on node n. Rules Ry and
R, state case where node n; requests read access for a page and this page is currently used
in read (Ry) or write (Rz) mode by another node ny. Rules R3, R4 and Ry state case where
node n; makes a write on a page and this page is (a) either accessed with write (R3) or read
(R4) by another node n2 or (b) accessed by itself (node n;) in read mode (R7). Finally, rules
R5 and Rg state respectively the invalidation loop of page copies and the grant of read /write
access when all invalidations are made. One should notice that rule Rg contains a negation.
This change to the pure Gamma formalism (which is without global condition) ease protocol
description. Moreover this extension does not impact verification and translation.

In invariant definition, an overligned relation like ReadWrite p % expresses the occur-
rence number of n-uplets satisfying relation with given arguments (* can be bound to any
value). Constraint ReadWrite p * < 1 states that for a page p, there is at most one node
n such that ReadWrite p n exists. Within the protocol, it is equivalent to say that at any
time, at most one node (node n) can write on page p. Constraint I; states that at most one
node can have read/write access on a page. I states that if a node has a read access on a
page, no other one have write access to it. I3 states the reverse case. I; (combined with Iy
and I3) states that for each page in read or read/write mode, a node must have a copy of
it (a page frame). I5 checks that a read and a write page faults cannot be simultaneously
detected on a page. I states that in invalidation phase, the node having triggered invali-
dation should not have read/write access to this page. Ir states that if there is more than
one copy of a page, they are the same. Finally Ig checks that at least a copy of each page
exists in the system.

Invariant checking is done by considering the effect of each rule over the occurence number
of each relation. For example, consider I;. The sole rule that impacts Read Write p * are
rules R, and Rg (because they have a different occurence number of ReadWrite in left
and right hande side). Rule R, decreases ReadWrite p * by a unit while Rg increments
it. Therefore I; is trivially satisfied by all rules except Rg. But Rg satisfies a I premise
(InvalidationPhase * p n > 0). Thus, before Rg application, ReadWrite p n = 0 and
ReadWrite p n = 1 after; [; is thus verified in any case.

6 Protocol translation

We now show an overview of the translation process and its application to rule R; of the
protocol.

INRIA
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6.1 Translation with aspects

Translation of Gamma rules into an automaton is performed using a technique inspired by
Aspect-Oriented Programming [8]. It makes it possible to separately define “aspects” that
are usually spread throughout the program (like synchronization, communication or memory
management). Usual programming does not offer any mean to group them in autonomous
entities (function, module or object). Using Aspect-Oriented programming, a program is
made of a base program and one or more aspects that set cross-program properties. A
weaver merges properties described in those aspects within the base program. To transform
a high-level protocol into an automaton we use two aspects describing respectively control
and data representation. They produce elementary actions which use functionalities of the
runtime environment. A compilation step transforms them into an eutomaton which can be
loaded into the system.

6.2 Translation of rule R,

We now show how rule R; of the Gamma formalization of the Li and Hudak protocol is
translated into its low-level counter part. The first aspect, control, gives a hint about how
the rule can be inserted in the runtime environment. For R; it is written “triggers:
ReadDetect”. It states that ReadDetect is the triggering relation in that rules, that is to
say that introduction of this element in the multiset will start other rule relations’ evaluation.

The second aspect, data representation, states how relations are implemented within
the runtime environment. An excerpt of this aspect needed to translate R; is given in
figure 4. Each translation rule follows the pattern “Pattern ==> Actions to introduce”. For
each pattern, the aspect states actions to do. Actions use primitives from the runtime
environment. A “?(Relation a b)” pattern states actions to execute in order to check
the existence of this relation. A “Relation a b -> not(Relation a b)” pattern states
actions to execute if a relation exists in left hande side but not right hand side of a rule.
The reverse for “not (Relation a b) -> Relation a b”. For each pattern, there is a set
of actions which are of two kinds; test (written “( code )”) and state change (written “{
code ). A test makes actions following it under its condition. Actions code is written in a
classic language (in our example C++).

The translation process tests successively the pattern of each transformation as they ap-
pear in the aspect. If a match occurs, transformation actions are added to the resulting code
with variables substituted. Thus the order of transformations within the aspect determines
the sequential order of actions in the resulting code. The list of actions from R; translation
is given in figure 5.

7 Runtime Environment
The runtime environment is composed of two parts: an automaton engine (cf. figure 6, [a])

and a global directory [b]. The automaton engine is actived when an event is received, it
determines actions to execute with internal states and then executes those actions.

RR n~° 3765
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7 (ReadDetect p n)
==>
( event_match(read_page_fault, &p, &n) ) ;

7(Read p n)
==>
( copy_set->seek(&p, &n, read) ) ;

not (PageFrame pf p n) ,

not(InvalidationPhase pf p n)
--> PageFrame pf p n

==>

{ memory->page_alloc(n, p); } ;

not(Read p n) --> Read p n

==>

{ memory->access(n, p, read); }
{ copy_set->set(p, n, read); } ;

PageFrame pf2 p n2 --> PageFrame pf2 p nl

==>
{ memory->page_copy(n2, p, nl, p); } ;

Figure 4: Data representation aspect excerpt needed for R;

INRIA
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R; : ReadDetect p n; , Read p ny , PageFrame pfs p no
— Read p n; , Read p ny, , PageFrame pfs p ny , PageFrame pfs p no

Result code Meaning

( event_match(read_page_fault, &p, | Read page fault received for page p on

&nl) ) node n,

( copy_set->seek(&p, &n2, read) ) In table copy_set, look for another node
ny where page p is in read mode (read
state)

(n1l !'=n2) Check that n; and ns are different

{ memory->page_alloc(nl, p); } Page-frame allocation on node n; for page
p

{ memory->access(nl, p, read); } Page p on node n; gains read access right

{ copy_set->set(p, nl, read); } Store in copy_set table access right mod-
ification

{ memory->page_copy(n2, p, ni, Physical copy from page p on na to page

p);} ponm,

Figure 5: Rule R; and translated code

Actions use a global directory to modify system states [c] (address spaces, page access
rights, etc.) and to store protocol information [d]. This global directory is seen identically
by each node. It triggers communication and data exchanges between nodes. This global
directory can be implemented in various ways depending on the available network technology.

8 Conclusion and Perspectives

We have introduced a framework for the description of SVM protocols and their implemen-
tation. It is based upon the Structured Gamma formalism for abstract protocol description
and upon the Aspect-oriented inspired technique to translate this abstraction into a con-
crete implementation. Two aspects, control and data representation, are used to achieve
this translation.

The implementation of this framework is currently in progress using a cluster of SMP
x86 workstations running the Linux operating system and interconnected using the Scalable
Coherent Interface (SCI). On the verification side, the checking algorithm sketched in section
5.2 should be described formaly and proved.

In the future, this programmable SVM system will be used to compare protocols on
the same architecture. This would allow us to extract protocol profiles in order to make a
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[b]

Global Directory

[a] 3 | Change . R N
Automaton Engine | /
Events  ______________ T ____ ! E | :
\—l—)> Test | : \VN N
‘ "fe] ' Copy Triggering
| Action 1 \[ ] ! | S
| Action 2 | ! |
I | e T
! ! N S Node 1
! Test i | Address Space !
| Action ‘ | R
fffffffffffffffffffff [d]N ! ‘
| | 7
T :
! |
| I
| I
! |
. Protocol Data i ,,,,,,,,,,,,,,,,,,,,,
””””””””” Node 2

Figure 6: Protocol execution environment

more systematic (or even automatic) choice of protocol for a given data sharing pattern of
a parallel application.
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