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Interpolation contrainte dans H? sur des sous—ensembles
du cercle

Résumé : Nous étudions des questions d’interpolation de fonctions dans le disque unité D
du plan complexe du type Nevanlinna—Pick et Carathéodory—Fejér mais sur un arc de cercle,
dans les espaces de Hardy H? de D, 1 < p < 0. Nous montrons qu’elles sont reliées & une
famille de problémes extrémaux bornés au sujet desquels nous donnons quelques résultats.

Mots-clés : Problémes d’interpolation de Nevanlinna—Pick et Carathéodory—Fejér, pro-
blémes extrémaux bornés, approximation dans les espaces de Hardy



Constrained HP interpolation 3

1 Introduction

We here consider band-limited versions of Nevanlinna-Pick and Carathéodory—Fejér prob-
lems in Hardy spaces H? of the unit disk I of the complex plane, 1 < p < co. They are
classically handled in the uniform norm on the whole unit circle T where questions of approx-
imation by analytic and meromorphic functions are linked to the study of Hankel operators,
as is well known to follow from Adamjan-Arov-Krein theory, see [1, 18, 19, 25, 26, 28] among
others for further discussions of this. These interpolation issues can also be tackled on the
Hilbert space H? with the aid of the reproducing kernel [3, 15].

The subject has found many applications in approximation, interpolation, control the-
ory and signal processing. Nehari’s theorem, which can be regarded as a special case of the
AAK theory, together with associated interpolation theorems such as the Nevanlinna—Pick
results, has been a cornerstone of H* control, being linked with model matching problem
and similar issues, as described in the book of Francis [16] for instance. Recently further
applications have been found in system modelling, including questions of robust identifica-
tion and model validation, for which we refer to [23] and the bibliography therein.

Tt is therefore natural that solutions to a generalized version on an arbitrary (measurable)
subset of T of the classical (dual) extremal problem on H? [14, 17], which we shall refer to
as the bounded extremal problem, still provide answers to the band-limited extensions of
classical interpolation issues in D we are interested in.

After stating those problems in section 3, we explain in section 4 how the results of [6, §],
that are stated and whose proofs are briefly sketched in section 5, can be used both to ensure
existence and to compute band-limited interpolants. We discuss in section 6 some related
bounded completion problems in H? for p = 2, 00, see [9, 11].

2 Notations and preliminaries

In the following, p denotes the Lebesgue measure on T. When E C T, we write C(E) for
the space of continuous complex—valued functions on E while L?(E) designates the familiar
Lebesgue space for 1 < p < co. The norm on LP(E) will be the natural one, denoted by

| 2o ()

We let HP C LP(T) be the Hardy space with exponent p on D, consisting of functions
with vanishing Fourier coefficients of negative index, and the disc algebra A C C(T) is de-
fined analogously. When p = 2, we also introduce the conjugate Hardy space HZ which is
the orthogonal complement to H? in L?(T), that is to say the subspace of functions with
vanishing Fourier coeflicients of non-negative index.

RR n° 3763



4 L. Baratchart & J. Leblond & J.R. Partington

In a normed space, we write d(¢,S) for the distance of the element ¢ to the subset S;
we use the same notation regardless of which space we are working in, but the context will
keep the meaning clear. The subscript |g applied to a function or to a set of functions
indicates restriction to FE; for instance, H "; is the space of traces on E of HP functions.

Whenever f is defined on E and h is defined on its complement T\ E, then f V h stands for
the concatenated function which is defined on all of T.

3 Band-limited interpolation and approximation prob-
lems

Let K be a measurable subset of T, and let 1 < p < oo be fixed. We are interested in the
following version of the Nevanlinna—Pick problem:

Problem 3.1 Given M > 0, points z1,...,2, € D and ay,...,0a, € C, find F € HP such
that | F||po(m\x) < M, F(2p) = ay for k=1,2,...,n, and ||F||rr(x) is minimized.

We also consider a band-limited Carathéodory—Fejér problem:

Problem 3.2 Given M > 0 and coefficients aqg, - ..,a,_1 € C, find F € HP such that
F(z)=ay+ a2+ +an12" 1 +0(z"),

I Fllee(r\x)y < M, and ||F|| Lo (k) s minimized.

Solutions to problems 3.1 and 3.2 will be deduced from that of the following bounded
extremal problem (BEP) where we are given an L? function on K which we want to approx-
imate by traces of H? functions that meet some gauge outside K:

Problem 3.3 For ¢ € LP(T\ K), M > 0, define
By :={g € H?, ||g—Yllrrir\x) < M} .
Given f € LP(K), we seek go € By such that
lf — gollze(x) = gé%{;w If = glleecxy := B(f, ¥, M). (1)

For simplicity, we will note 8 = B(f, %, M), the dependence being kept clear from the con-
text.

If K =T, then B,y = H? and the bounded extremal problem reduces to a standard
(dual) extremal approximation (see [14, chap. 8], [17, chap. IV], [21, chap. VII]); it always
admits a solution which is unique if 1 < p < oo or if f € H*® + C(T) (in the latter case, the
error is circular: |f — go| = ||f — goll (1) a.e. on T.

For K C T, BEP was solved for the case p = oo in [8]; for 1 < p < oo this problem was
discussed in [6], and an explicit solution given for p = 2. Special cases of the L? problem
(where either f or ¢ is identically zero) were solved in [4] and [22]. We describe in section
5 some of those results that essentially extend those that are available on the whole T.

INRIA



Constrained HP interpolation 5

4 Extension of some classical interpolation results

In this section we apply our results of [4, 6, 8] about problem 3.3 (see section 5) in order to
solve for problems 3.1 and 3.2.

Theorem 4.1 Both problems 3.1 and 3.2 can be reduced to the bounded extremal problem 3.3
and admit o solution (unique up to a multiplicative constant of modulus 1) which saturates
the constraint:

I FNlLe(r\x)y = M.

Moreover, when p = 0o, it satisfies

iy _ | B ae foret €K,
[F'(e )|_{M a.e. foret € T\ K,

where 3 is the minimum achievable value of || F|| 1 (k).

Proof: the set of all functions F' satisfying the conditions of problem 3.1 is easily seen to be
parametrized as
F=p+ Byg,

where p is any polynomial such that p(zp) = ay for each k, B is a finite Blaschke product
with zeroes at 21,...,2,, and g € HP.

Now to minimize ||p+Bg||»(x) under the constraint that ||p+Bg||.»(1\ k) < M is equiv-
alent to minimizing |[B~p + g|| = (k) under the constraint that ||[B~1p+ g[|L=(\x) < M.
This is just bounded extremal problem 3.3, with the conditions f = ¢ = —B~!p. Since
f V1 = —B7'p belongs to C(T) but does not belong to H? (and then not to any Bu,y),
the assertions now follow from theorems 5.1 and 5.4 below.

Concerning problem 3.2, the proof is the same if we note that the set of solutions to the
interpolation condition is F' = p+ 2z™g, where p(2) =ao+a1z2+---+a, 12" ' and g € H®
and then take f =1 = —z~"p in problem 3.3. ]

When p = 2,00, constructive solutions to problems 3.1 and 3.2 are thus provided by
theorems 5.5 and 5.3 since F' can be computed from the solution to some BEP. In both
cases, the relation of F' to the constraint outside K (saturation) will be implicitely given,
via a Lagrange-type parameter. Our resolution algorithm when p = 2 is based on iterative
computations of the resolvant of some Toeplitz operator while, for p = 0o, it goes through
a singular value decomposition of some Hankel operator, see more details in section 5.

More simple is the following solution to an extended form of Pick’s problem. For each
p > 0 let w, be the outer factor whose modulus is p on K and 1 on T\ K:

1 e + 2
w, (%) = exp {% logp/K —_— dt} . (2)

et — 2
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6 L. Baratchart & J. Leblond & J.R. Partington

Proposition 4.1 Given M > 0, points z1,...,z2n, € D and a1,...,a, € C, a necessary
and sufficient condition for the existence of a function F € H>® such that F(zx) = ay for
1<k <n, ||Fllpek) <1 and ||F||p~m\ k) < M is that the matriz

1 _ o) n
g = ( ﬁ_kﬁk)
L=Zj2k ) ey
be positive semi-definite, where 3; = ajwar(z;)/M.

Proof: this reduces to the classical Pick problem (i.e. the version with M = 1) for the
function G(z) = F(z)wpn(z)/M. The solution to this problem [23, 26] gives a solution to
the original problem. ]

Finally the following result is also a straightforward extension of a known result.

Proposition 4.2 Given M > 0 and coefficients ao, - . .,an—1 € C, there is a function F €
H* such that

F(z)=ao+az+ - +a,_12""" + O0(z"),
with ||F|lpexy < 1 and ||F||p~m\x) < M, if and only if I — B*B > 0, where B is the
matrizc

wo 0 . 0 ap 0 .. 0
1 w1 wo ... 0 aq ap ... 0
B=— :
M
Wp—1 Wp—9 ... Wo Anp—1 QAp—2 ... Qo
and wo, . .., Wn—1 are the first n Taylor coefficients of wy (2).

The proof goes as the one of proposition 4.1.

Concerning the problems of this section, criteria and constraints of the more general
form || F'— x|l » (k) and || F — @ Lo (1\x) < M for x € LP(K), ¢ € LP(T \ K) can be handled
as well. The details are similar.

5 Bounded extremal problems

Let us now review the solutions to problem 3.3. Although we provide here almost no
details about the proofs, let us mention that they involved arguments that are based on
weak-* compactness of balls in H? and on convexity properties of the considered classes of
approximants By, |, - As usual, they different according to the value of p. For 1 < p < o0,
the uniform convexity of L? plays the role of the duality mapping between extremal problems
on the whole T [17, ch. IV] since it provides, even when K C T, a best approximation
projection onto By, |, [13, 3.IL1].

INRIA



Constrained HP interpolation 7

5.1 When p=o0

We begin with the L*° case and summarize some results. The first one answers existence
and uniqueness issues about BEP.

Theorem 5.1 ([8, thm 2]) Suppose that (T \ K) > 0 and that f is not the trace of a
function in By (so that 8 = B(f,¢¥,M) > 0). Then:

(1) A solution go exists, provided that By, # 0.

(it) Unless B = d(f, H{), then any solution go satisfies || — gol|r~(m\x) = M.

(iii) The solution gy is unique at least when fV ¢ lies in H> + C(T), and in this case the
functions f —go and 1 — g have constant modulus 8 and M a.e. on K and T\ K respectively.

Observe that the set B,y of approximants could indeed be empty; this is the case for ex-
ample if 9 is taken to be the inverse of some H* function whose zeros accumulate at some
interior point of T \ K and if M is large enough, see [8, lem. 1].

However, the following density result — which is of importance by itself — provides suffi-
cient conditions in order to ensure B 4 # 0:

Theorem 5.2 ([8, thm 1]) Let K be a subset of T such that u(K) > 0. Then:

(i) Hf is not dense in L>(K).

(i) If K is open, the closure of H in L*°(K) is contained in Hy + C(K)).

(iii) If K is a proper closed subset of T, then Ak is dense in C(K), and the closure of H%
in L= (K) contains (H* + C(T)) k-

Thus, for continuous 9 and arbitrary M > 0, B4 # 0.

Moreover, for continuous f (although not in general), we may then find analytic func-
tions g, approximating f arbitrarily closely on K, although in this case ||gn|| o) — oo if
f is not already the trace of an analytic function. In this case, this amounts to the fact that
B — 0 when M — oo and shows that problem 3.3 is ill-posed without a constraint on T\ K,
since the infimum (equal to zero) is not achieved in H -

Observe that this provides a partial answer to the issue, unsolved to our knowledge,
of characterizing the closure of HF in L*(K): it follows from points (i), (477) of theorem

5.2 that its restriction to every compact subset of K is equal to the restriction of H> 4+ C(T).

A constructive way of solving for problem 3.3 for p = co is given by the following result
which also serves in establishing uniqueness and error circularity properties (i4¢) in theorem
5.1. Recall that w, is defined by (2) for p > 0.

Theorem 5.3 ([8, thm 4]) Under the hypotheses of theorem 5.1, let vg € H™ solve the
Nehari problem

(f vV Y)wnys — vollL(r) = min I(f vV Y)wnys — vllLe(r) 3)

RR n° 3763



8 L. Baratchart & J. Leblond & J.R. Partington

Then go = vowg/y s a solution to problem 3.3. Conversely any solution to problem 3.3
gives rise to a solution vg = gowyy /g to (3).

Whenever f V¢ € C(T), this provides us with an implicit scheme (recall that 3 is equal
to the error in BEP); however, the right value for 3 is the one that makes the value of (3)
equal to 1. Now, the error in this Nehari problem is well-known to coincide with the largest
singular value of the Hankel operator H with symbol (f V ¢) w3 € H* + C(T):
H:H> — H;
h = Pp((fVY)wnsh),

where ng is the usual orthogonal projection, and this permits us to compute 3 by di-
chotomy. The solution vy is then given by the associated Schmidt pair. Precise convergence
properties of these approximation schemes are established in [9] for more general problems.

5.2 For1l<p<oo

In the L? case for 1 < p < oo, the following results about problem 3.3 are available.

Theorem 5.4 ([6, thm 2], [8, prop. 1]) Let p be fized with 1 < p < oo, and let K be
a subset of T such that u(T \ K) > 0. Then H"}( is dense in LP(K). Hence Bar,y # 0 if

w(K) > 0. Thus, BEP admits a unique solution go which satisfies

1Y — gollLr(r\ec)y = M,
provided that f is not the trace of a function in Bu,y (so that § = p(f,¢¥, M) > 0).

The above density result is a consequence of the F. and M. Riesz theorem [20, ch. 4] and
of the injective property on H? of the restriction map on subsets of T of positive measure.
Observe the contrast with the non-density result stated in theorem 5.2.

For p = 2 it is possible to provide an “explicit” solution to problem 3.3, of which special
cases were treated in [4, 22] and that we now describe. Let T' denote the Toeplitz operator
with symbol x1\ g, that is

T:H?> — H?
h +— Pg(xr\xh), (4)

where Py is the usual orthogonal projection. Note that the spectrum of T is contained in
[0,1].

Theorem 5.5 ([6, thm 4, cor. 1]) For p =2 and f not the trace of a function in By,
the solution to BEP is given by the implicit equation

go=(1+AT)" Ppa(fV(A+1)9), ()

INRIA
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where X € (—1,4+00) is the unique real number such that

llgo — Yllz2(r\rey = M . (6)

It can also be expressed as

w) =5 [ (29) Gvwo L. e

T 2mi w,(2) E—z

where w, is the “quenching” function defined in (2) and real valued parameters p >0, o € R
linked by p?* =1/(A+1).

The last Carleman-type integral is closely related to the recovery formula of Patil [24] for
H? functions, see also [2].

A consequence of theorems 5.4 and 5.5 is that the error 3 smoothly decreases to 0 as
A — —1 while M grows to oco; we are then able to solve for BEP using a procedure that
iterates computations of the resolvent (1+\7)~! until we get the value of ) that ensures (6).

Finally, when 2 < p < 00, an algorithm for solving extremal problems on H? is proposed
in [12, 27] and may be used to compute solutions to BEP in these cases. Indeed, it easily
turns out that they can always be equivalently formulated as problems on the whole T for
functions that involve f, ¢ and M (this is asserted by theorem 5.3 for p = 00).

6 Bounded completion problems

Companion to problem 3.3 is the bounded completion problem (BCP) 6.1 that was studied
in [9, 11], for p = 0o and, with ¢ = 0, for p = 2.

Problem 6.1 For ¢ € LP(T\ K) and L > 0, let D, be the ball of radius L centred at :
Dry:={h € LP(T\K), [[h—|lLr(r\x) < L}.
Given f € LP(K), we seek hg € Dy 4 such that

d(f Vho,H?) = min d(fV h,H?) :=~(f,,L).
h€Dr 4

The bounded completion problem 6.1 is close in spirit to the bounded extremal problem

3.3: in words, we are given an LP function on a subset K of the circle and we seek an

extended definition to the whole circle that meets some gauge outside K, and makes the

global function as close to an analytic function as possible. A solution to problem 6.1 can

be used as a suitable behaviour when solving for problem 3.3.

Again, we simplify the notation into v(f,v, L) = v(L) and we begin with the L™ case.

RR n° 3763



10 L. Baratchart & J. Leblond & J.R. Partington

Theorem 6.1 ([9, thm 3]) Let f € L>°(K), v € L>(T\ K), and L > 0. Set
M =L+~(f,¢,L).

Then Bu,y # 0 and (M) < ~(L). If f & Br,y (so that v(L) > 0 and M > 0) and if go is
a solution to problem 3.3, then

ho= g0+ (1= 47 ) ¥ @

is a solution to problem 6.1, and

lfV ho — goll LTy = ¥(f, %, L).

Thus the bounded completion problem 6.1 in L*° reduces to the bounded extremal problem
3.3, which in turn reduces to the Nehari problem 3.

Moreover, if K has an interior point, and f Vi € H* +C(T), then the solution is unique,
and, if f is not the trace of a function in Br, y, then [y — h| = L a.e. on T\ K.

An L2 version of this problem was solved in [11], for the case ¢ = 0, but a similar proof
extends to general ¢ and we establish the more general result now. We use the notation of
problem 6.1.

Theorem 6.2 Let f € L?(K) and ¢ € L*(T\ K). Then for every L > 0 there is a unique
function hy € Dr .y such that

d(f Vv ho,H?) = min d(fVh,H).

€DrL g

Moreover ||ho — || L2r\ k) = L, unless f is already the trace on K of an H? function h such
that ||h — || 2(1\ k) %5 less than L. One can characterize hg by

ho = (1 + X)) — XTI + AT) Py (f Vv (1 + \)2), (8)

where T is the Toeplitz operator defined in (4), and A > —1 a constant such that ||ho —
Yllz2er\xy = L.

Proof: the key observation is that, writing kg = hy — ¥, we have
Re (Pﬁg(f V (ko +4)),u)r2(r\x) = 0
for all w in the tangent space to the sphere

St ={k € L*(T\ K) : ||kl .2(r\x) = L}

INRIA
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As in [11], this leads us to conclude that there exists u € R such that
Pﬁg(f\/(k(] + 1)) = pko a.e.on T\ K.
Equivalently, writing p = 1 — u, we have
Py (f V (ko + 1) =9+ pko a.e.on T\ K,

that is, ¥ + pkg is the restriction of an H? function g with

P2 (fxx +p "gxmx + (1 — p"Doxm\x) = 9,

or (I —pT)g = Py2(f V(1 = p 1)9). Finally we write A = —1/p > —1, and solve for
ho =¢+(9—v)/p. u

In view of (5) and (8), we also get that

hO:(1+)‘)¢_)‘90(f7w71’/|)‘|)7 (9)

for the solution go(f, %, L/|A|) to problem 3.3 associated to f and such that
llgo — ¥ll2(r\x) = L/|A|. This is to be compared to (7).

For p = 2,00, it follows from equations (7), (9) that hy € H";\K as soon as ¢ € H";\K,
which is somewhat unexpected; this can be put in regard to the density / non-density
properties of theorems 5.2 and 5.4. We do not know if this still holds for other values of p

and what kind of relation should then remain, if any, between BEP and BCP.

7 Conclusion

We used here solutions to bounded extremal and completion problems 3.3 and 6.1 in order
to solve for band-limited discrete interpolation issues in HP.

When p = oo, it is possible to formulate and solve more general extremal problems than
problems 3.3 and 6.1, where we replace the set H*> by the set H* + Ry of functions that
are meromorphic in the disc with at most N poles and are bounded in {2z : 7 < |z| < 1} for
some r < 1, and where the constraints M and L are no longer constant. We refer to [9] for
details.

When p = 2, the asymptotic behaviour of the constraints M and L as the parameter \
approaches -1 has been recently investigated in [5] where sharp estimates are established.

Some applications of these problems to the identification of linear time-invariant systems

can be found in [4, 10, 23]. A further application to the study of Dirichlet—Neumann problems
is given in [7].
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