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Abstract: In this paper, we study the convergence of a new class of fast and stable sequential optimization
methods for computing maximum likelihood estimates. These methods are based on a proxzimal point algo-
rithm implemented with a Kullback-type proximal function. When the proximal regularization parameter
is set to unity one obtains the classical expectation maximization (EM) algorithm. For other values of the
regularization parameter, relaxed versions of EM are obtained which can have much faster convergence.
In particular, if the regularization parameter vanishes at infinity, a superlinearly converging algorithm is
obtained. We present an implementation of the algorithm using the trust region update strategy. For
illustration the method is applied to a non-quadratic inverse problem with Poisson distributed data.
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Méthodes Kullback-proximales pour ’estimation au sens du
maximum de vraisemblance

Résumé : Dans cet article, nous étudions la convergence d’une nouvelle classe de méthodes rapides
et stables d’optimisation servant a obtenir des estimateurs au sens du maximum de vraisemblance. Ces
méthodes sont fondées sur ’algorithme du point proximal utilisant une régularisation du type divergence
de Kullback. Quand le parametre de relaxation est 'unité, on obtient I’algorithme EM classique comme
cas particulier. Pour d’autres valeurs du parametre, des versions relaxées de EM sont obtenues, pouvant
jouir d’une convergence beaucoup plus rapide. En particulier, si le parametre de relaxation converge vers
zéro, on obtient un algorithme & convergence superlinéaire. Nous présentons aussi une implémentation par
régions de confiance. Le comportement de ces méthodes est illustré sur un exemple, un probléme inverse
avec données poissoniénnes.

Mots-clé : accélération de 'algorithme EM, régularisation, divergence de Kullback, algorithme du point
proximal, convergence superlinéaire, régions de confiance.
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1 Introduction

Tterative solutions to the maximum likelihood (ML) estimation problem are of interest when direct closed
form solution is infeasible. Among the most stable iterative strategies to ML is the popular expectation
maximization (EM) algorithm [1]. This algorithm has the attractive property of monotonicity which
guarantees that the likelihood function increases with each iteration. The convergence properties of the
EM algorithm and its variants have been extensively studied in the literature; see [2] and [3] for instance. It
is well known that under strong concavity assumptions the EM algorithm converges linearly towards the ML
estimator 857, However, in practice the EM algorithm suffers from slow convergence in late iterations.
Efforts to improve the asymptotic convergence of the EM algorithm include: Aitken’s acceleration [4],
overrelaxation [5], conjugate gradient [6] [7], Newton methods [8] [9], quasi-Newton methods [10], ordered
subsets EM [11] and stochastic EM [12]. Unfortunately, these methods do not automatically guarantee the
monotone increasing likelihood property of standard EM, which frequently requires additional monitoring
for instability [13].

The main goal of this paper is to recast the EM algorithm into a more general framework of monotone al-
gorithms having the potential for accelerated convergence. For this purpose, the EM algorithm is identified
as a particular instance of a proximal point algorithm using Kullback regularization. The proximal point
algorithm, first introduced by Rockafellar [14] and Martinet [15], is a state of the art procedure in optimi-
zation. In particular, proximal approaches have led to many high performance numerical algorithms; e.g.
bundle methods for nonsmooth problems [16] and multiplier methods for constrained optimization [17]. A
key motivation for the proximal point algorithm is that an iteration-dependent penalty can be introduced
to obtain superlinear convergence rates in the case of quadratic regularization [14]. In this paper, this idea
is used to obtain relaxed versions of EM algorithm with superlinear asymptotic convergence rates.

The outline of the paper is the following. In Section 2 we provide a brief review of key elements of the
classical EM algorithm. In Section 3, we establish a relationship between the EM algorithm and the
proximal point algorithm. In section 4, we present the general Kullback proximal point algorithm and
we establish global and superlinear convergence to the maximum likelihood estimator. In section 5, we
study second order approximations of the Kullback proximal point iteration using trust region updating.
The trust region strategy is introduced in order to obtain global convergence and monotonic behavior of
the approximate scheme. Finally, in Section 6 we present numerical comparisons for a Poisson inverse
problem.

Our notations are standard for the most part. VioI(8,8) (resp. V3,1(6,8)) denotes the gradient (resp.
the hessian matrix) of I(6,0) in the first variable.

2 Background
The problem of maximum likelihood (ML) estimation consists of finding a solution to
Omr = argmaxpegs ly(9), (1)

where y is an observed sample of a random variable Y defined on a sample space YV and [,(6) is the
log-likelihood function defined by

1,(8) =logg(y;0), (2)

where g(y; 8) denotes the density of Y at y parametrized by a deterministic vector § in R?. One of the most
popular methods for solving ML estimation problems is the Expectation Maximization (EM) algorithm
described in Dempster, Laird, and Rubin [1] which we describe as follows.

A more informative data space X is introduced. A random variable X is defined on X that with density
f(z;0) parametrized by . The data X is more informative than the actual data Y in the sense that ¥
is a compression of X, i.e. there exists a non-invertible transformation h such that ¥ = h(X). It would
therefore be advantageous to replace the ML estimation problem (1) by

O = maxls(9), (3)

RR n’3756



4 Stéphane Chrétien, Alfred O. Hero

with 1;(6) = log f(=x;0). Since y = h(z) the density g of Y is related to the density f of X through
owi6)= [ f@i8)du (1)
R=1({y})

for an appropriate measure g on X. Under condition (4) and for a given observed sample y, for any z in
h=1({y}) the solutions of (3) are solutions of the original ML estimation problem (1). In this setting, the
data y are called incomplete data whereas the data x are called complete data.

It remains to deal with the fact that the complete data = corresponding to a given observed sample y
are unknown. Therefore, the complete data likelihood function [,(#) can only be estimated. Given the
observed data y and a previous estimate of § denoted @, the following minimum mean square error estimator
(MMSE) of the quantity {,(6) is natural

Q(6,0) = Ellog f(x;0)|y; 6],
where, for any integrable function F'(z) on X, we have defined the conditional expectation

EF@0) = [ F@kel i)

and k(z|y;8) is the conditional density function given y
f(z;6)

9 (5)
9(y;0)

The EM algorithm generates a sequence of approximations to the solution (3) starting from an initial guess
6° of 8xrr, and defined by

Compute Q(8,6"%) = E[log f(z;8)|y; 6¥] E Step

k(zly;6) =

651 = argmaxcp,Q (6, 6") M Step

The key to understanding the convergence of the EM algorithm is the following decomposition of the
log-likelihood function

where
H(8,0) = —E[k(z|y; 0)|y; 0]
Tt follows from elementary application of Jensen’s inequality to the log function that
H(,0) > H(6,6) >0, V0,0 cRP. (7

Observe from (6) and (7) that the 6 function {Q(8,60%)} is a lower bound on the log likelihood function
1, (#). This fact is necessary to ensure monotonicity of the algorithm. Specifically, using the M-step defining
relation

Q1,6 = Q(6*,6"), ®

one obtains
L(0"H) — 1, (6%) >Q(6"11,6%) — (6", 6%) (9)
+ H(6% 1, 6%) — H(0%,6%). (10)

Hence, using (8) and (7)

1,(051) > 1,(6%).
This is the well known monotonicity property of the EM algorithm. B
Note that if the function H(#,0) in (6) were scaled by an arbitrary positive factor 8 the function Q(6,6)
would remain a lower bound on [,(#) and monotonicity of the algorithm would be preserved. As will

be shown below, if 3 is allowed to vary with iteration in a suitable manner one obtains a monotone,
superlinearly convergent generalization of the EM algorithm.

INRIA
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3 Proximal methods and the EM algorithm

In this section, we present the proximal point algorithm of Rockafellar and Martinet. We then demonstrate
that EM is a particular instance of a proximal point method implemented with a Kullback-type penalty.

3.1 The proximal point algorithm

Counsider the general problem of maximizing a concave function ®(8). The proximal point algorithm is an
iterative procedure which can be written

6F 1 = argmax,cps {@(0) - %HG - 0k||2} . (11)
The quadratic penalty ||§—6*]|? is relaxed using a sequence of positive parameters {3 }. In [14], Rockafellar
showed that superlinear convergence of this method is obtained when the sequence {8} converges towards

zero. In numerical implementations of proximal point the function ®(6) is generally replaced by a piecewise
linear model [16].

3.2 Proximal interpretation of the EM algorithm

We now turn to the relation between the EM algorithm and the proximal point framework. For this
purpose, we will need to consider a particular Kullback information measure. Assume that the family
{k(x|y;0)}oere is regular in the sense of Ibragimov and Khasminskii [18], in particular k(z|y;0)u(z) and

k(z|y; 0)u(z) are mutually absolutely continuous for any § and 6 in RP. Then the Radon-Nikodym deriva-

tive ’;Eﬁz’gg exists for all #,8 and we can define the following Kullback measure.
5 k(z|y, )
1(0,0|y) =E|lo ;0|. 12
(6.01) = Ellog 10 10:] (12)

Proposition 1 The EM algorithm is a prozimal point algorithm with Kullback-type penalty (12) of the
form

0k+1 = a,rgmaxgeuep {ly(a) - I(070_|y)} (13)

Proof 1 The key to making the connection with the proximal point algorithm is the following representation
of the M step:

9F*+! = argmax,cg.{log g(y;0) + E[log 1(@:6) ly; 0% }.
9(y;0)
This equation is equivalent to
0%+ = argmaxy p,{lo ;0) + Eflo 1@ : gk
gmaxycg»{log g(y;6) + E[log o0 Y ]
f(fﬂ;é’k) k
—Ello ;0
log 9w 6m) I
since the additional term does not modify the mazimization problem. Recalling that k(x|y;0) = g g;g)),

0"+ = argmaxycg,{log g(y; 0) + E[k(xy; 6)|y; "]
— E[k(zly; 6*)|y; 0*].
We finally obtain
gh+1 k(z|y; 6)

= argmaxycp, {log g(y; 0) + E [W |y; gk] }

which concludes the proof.

RR n“ 3756



6 Stéphane Chrétien, Alfred O. Hero

4 Kullback Generalization of Proximal Point Algorithm

The proximal point interpretation of EM in the previous section suggests that EM can be generalized by
replacing the quadratic penalty in the standard proximal point recursion (11) with the Kullback penalty
(12). Other non-quadratic generalizations of proximal point have been proposed by Teboulle and others
(see [19] and references therein). Moreover, the parallel with the proximal point method also suggests
that our approach applies to a large class of (twice differentiable) objective functions, including penalized
Likelihood functions. In this section we introduce the Kullback generalization of proximal point, called
the Kullback proximal point (KPP) algorithm, and establish its convergence properties.

4.1 Algorithm Definition

Let {k(z;6)}pcrr be any family of densities supported on a set S C X, parametrized by 8 and regular in
the sense of Ibragimov and Khasminskii [18]. Define the Kullback information measure

16,8) = /S log :Ezfgk(m;o‘)du(x). (14)

Notice that for the choice k(x;0) = k(z|y;0) and for S = h=*({y}), we obtain I(6,8) = I(6,8|y) as defined
by (12) in the context of the EM algorithm. We make the following assumptions, where As denotes the
greatest eigenvalue of the matrix M and Ap; denotes the smallest.

Assumptions 1 We assume the following:

(i) 1,(0) is twice continuously differentiable on RP and I(6,0) is twice continuously differentiable in (6,6)
in RP x RP.

(4) lim )| o0 1y(0) = —00.
(i1i) 1,(0) < 00 and Av2y,(p) < Avzi,(9) < 0 on every bounded 6-set
w) for any 0 in R?, 1(6,0) < 0o and 0 < Av2 1005 < Av2 1095 0n every bounded 6-set.
v10 (979) v10 (076)

These assumptions ensure smoothness of I,,(9) and I(0,6) and their first two derivatives in . Assumption
L.iii also implies strong concavity of I,,(6). Assumption 1.iv implies that I(,0) is strictly convex and that
the parameter 6 is strongly identifiable in the family of densities k(x;0) (see proof of Lemma 1 below).
Note that the above assumptions are not the minimum set possible, e.g. that ,(#) and I(6,6) are upper
bounded follows from continuity, Assumption 1.ii and the property I(,8) > I(8,8) = 0, respectively.
With the above assumptions we are now prepared to introduce the general algorithm.

Definition 1 Let g(y;0) and k(x;0) be such that 1,(0) and I(6,0) satisfy Assumptions 1. Let {81} be
a sequence of positive relaxation parameters. Then, the following recurrence will be called the Kullback
prozimal point (KPP) algorithm

6F ! = argmaxy g, {1,(0) — B I(6,6%)}. (15)

The KPP algorithm is well defined since the maximum in (15) is always achieved in a bounded set.
Monotonicity is guaranteed by this procedure as proved in the following proposition.

Proposition 2 The log-likelihood sequence {1,(6%)} is monotone non-decreasing and satisfies
L (0%Fh) — 1,(6%) > BeI(9%F1,6F), (16)
Proof 2 From iteration (15), we have
Ly(0"FY) — 1,(8%) > BpI(6%F,6%) — B,I(6",6%).
Since I(6%,6%) = 0 and I(6*1,60%) > 0, we deduce (16) and that {I,,(6*)} is non-decreasing.

We next turn to convergence of the KPP iterates {6%}.

INRIA
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4.2 Convergence
First we characterize the fixed points of the KPP algorithm.

Proposition 3 Given B8y, =8 >0, k =1,2,..., the fized points of the iteration (15) are mazimizers of
the log-likelihood function 1,(9).

Proof 3 Consider a fixed point 6* of iteration (15) for B, = B = constant. Then,
6" = argmacgr {1,(6) — BI(6,67)}
As 1,(0) and I1(6,6*) are both smooth in 8, 6 must be a stationary point
0= VI, (6%) — BV1oI(6%,6%).
Purthermore, as 1(6,0) has a minimum (zero) at 0 = 0, V1oI(6*,6*) =0,
0=V1i,(9). (17)
Since 1,(0) is strictly concave, we deduce that 0% is a mazimizer of 1,,(0).

Remark 1 For nonconvex log-likelihood, equation (17) asserts that fized points of iteration (15) for
constant By, are stationary points of 1,(6). Stationary points can be minimizers, mazimizers or saddle
points.

The following will be useful.

Lemma 1 Let k(x;0) be such that Assumptions 1 are satisfied for I1(6,0). Then, given two bounded
sequences {05} and {65}, limy_, o 1(6%,05) = 0 implies that limy_, ||0F — 65| = 0.

Proof 4 Let B be any bounded set containing both sequences {6%} and {05}. Let A denote the minimum

A = min Ag2 7 18
i Avs,1(0.0) (18)

Assumption 1.iv implies that X > 0. Furthermore, invoking Taylor’s theorem with remainder, 1(8,0) is
strictly conver in the sense that for any k

I1(61,65) > I(61,61)+VI(01,07)T (67 — 65)
1 1 .
N
As I(0%,6%) =0 and V1oI(6%,0F) = 0 we obtain
A
16%,68) > 2 1k o5
The desired result comes from passing to the limit k — oo.

Using these results, we easily obtain the following.

Lemma 2 Let {g(y;0)}ocrr and {k(z;0)}scrr be such that Assumptions 1 are satisfied. Then {0F}1en is
bounded.

Proof 5 Due to Proposition 2, the sequence {ly(Gk)} is monotone increasing. Therefore, assumption 1.
implies that {0*} is bounded.

In the following lemma, we prove a result which is often called asymptotic regularity [20].

Lemma 3 Let the densities {g(y;0)}ocrr and {k(z;0)}ocrr be such that 1,(0) and I(0,0) satisfy Assump-
tions 1. Assume in addition that {81 }ren converges to B* > 0 for some B3*. Then,

Jim |6F 1 — 6% = 0. (19)

RR n°3756



8 Stéphane Chrétien, Alfred O. Hero

Proof 6 By Assumption 1.iii and by Proposition 2 {1,(6%)}ren is bounded and monotone. Since, by
Lemma 2, {6*}ren is a bounded sequence {1,(6*)}ren converges. Therefore, limy_, o0 {I,(0¥F1) — 1,(6%)} =
0 which, from (16), implies

> B I(%H,6%) = 0. (20)
keEN

As the summand is nonnegative, we deduce that BrI(0FT1,0%) vanishes when k tends to infinity. Since
{Br}ren is bounded below by B* > 0,

lim I(9¥+1,0%) =o0. (21)

k— oo
Therefore, Lemma 1 establishes the desired result.
We can now give a global convergence theorem.

Theorem 1 For any positive convergent sequence of relaxation parameters { By }ren, the sequence {0%} pen
converges to the solution of the ML estimation problem (1).

Proof 7 Since {#*}ren is bounded, one can extract a convergent subsequence {67%) Yoy with limit 6*.
The defining iteration (15) implies that

V1, (078F) = By V1o I(8°FH, 7)) = 0.

We now prove that 6* is a stationary point of 1,(6). Assume first that {0y }ren converges to zero, i.e.
B* = 0. Due to Assumptions 1.i, VI, (0) is continuous in §. Hence, since Vi9I(6,6) is bounded on
bounded subsets, (7) implies

VI,(0%) =0

Next, assume that 8* > 0. In this case, Lemma 3 proves that
Jim l6F+1 — 6% = 0.
Therefore, {87 +1}cn also tends to 6*. Since VioI(8,0) is continuous in (8,0) equation (7) gives at
infinity
Vi, (0%) — *V1oI(6*,6%) = 0.

Now, it is straightforward that V1oI(6*,0*) = 0. Then,

Vi,(6*) =0. (22)

The proof is concluded as follows. As, by Assumption 1.i%, 1,() is concave, 0% is a mazrimizer of 1,(6)
so that 6* solves the Mazximum Likelihood estimation problem (1). Furthermore, as positive definiteness
of V21, implies that 1,,(0) is in fact strictly concave, this mazimizer is unique. Hence, {0*} has only one
accumulation point and {0*} converges to 6* which ends the proof.

We now establish the main result concerning speed of convergence.

Theorem 2 Assume that the sequence of relazation parameters {By}ren vanishes. Then, {0%} converges
surperlinearly to the solution of the ML estimation problem (1).

Proof 8 Due to Theorem 1, the sequence {6%} converges to the unique mazimizer 0p1, of 1,(6). Assump-
tion 1.i implies that the gradient mapping Vo (1,(0) — BrI(0,0nL)) is continuously differentiable. Hence,
we have the following Taylor expansion about Oy .
Vi, (0)—BkVi101(0,001) = Viy(Ormr)
= BkViol(Omr,0miL)

+ V21, (0m1)(0 — 1) (23)
— BkVioI(Orr,Omr) (@ — Orrr)
+ R(0 - HML),

INRIA
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where the remainder satisfies

i 1B = 0a0)]

= 0.
0—0nrL ||0 — 0ML||

Since Oy mazimizes 1,(0), VI,(Omr) = 0. Furthermore, VioI(@ar,0mr) = 0. Hence, (23) can be
simplified to

Vi,(0) — BeVioI(8,001) = V21y(Or1)(6 — Onrr)
— BrVioI(Omr,001)(0 — Onrr) + R(6 — Ourr). (24)

s From the defining relation (15) the iterate *! satisfies
Vi, (6% — B V1ol (0¥, 6%) = 0. (25)
So, taking 6 = 0%t in (24) and using (25), we obtain

Bi(VioI(0*1,6%) — VoI (0¥, 001)) =
+ V21 (Om )0 — On11) — BV i (Orer, O ) (0T — On11)
+ R(OF — Oar1).

Thus,

18k (V1o (85+1,0%) = V1o I(0"F, 60r1)) — R(O"F! — Onr1)| =
VL, (Oar) (0" — Onrr) — Bk VigI(Oarr, 00 ) (05 — Oarr)|. (26)

On the other hand, one deduces from Assumptions 1 (i) that V1oI(0, 0) is locally Lipschitz in the variables
8 and 6. Then, since, {0*} is bounded, there exists a bounded set B containing {6*} and a finite constant
L such that for all 0, 60", 0 and 8" in B,

IV101(6,60) — V1o I(6",6")|| < L([l6 — 6'||* + 116 = 6"[1*)*.
Using the triangle inequality and this last result, (26) asserts that for any 0 € B

BrLI|6F+" — Onrrll + 1RO — Oarr) | > 11(V2y (Oarr)
= BeVioI(Onrp,00r)) (08 — Oarp)ll- (27)

Now, consider again the bounded set B containing {6*}. Let \;, and A; denote the minima
i, = min {—Av2, ()}
Ar = min {)\ 5 }
L™ g gep "Viol(0.0)

Since for any symmetric matriz H, 7 Hz/||z||? is lower bounded by the minimum eigenvalue of H, we
have immediately that

I (=V2ly(Oarr) + BrViolr (O, 0m1)) (0" — Oarp)|I?
> (A, +ﬂk>\1)2||0k+1 —Omi]* (28)

By Assumptions 1.iii and 1.4v, N, + BrA; > 0 and, after substitution of (28) into (27), we obtain

BrL|I6* — Onrpll + IIR(O* — Oarr)|| >
(A, + BeAr) 1051 = Oare |, (29)

RR n°3756



10 Stéphane Chrétien, Alfred O. Hero

for all 6 € B. Therefore, collecting terms in (29)

|R(O**! — 9ML)||) 1%+ — O
L> 1N, +08kAr — . 30
oz (o + v = gl ) Fr = 0
Now, recall that {6*} is convergent. Thus, limy,_, o, ||0*—0xr1|| = 0 and subsequently, limy_. o, ”%ﬂf—‘gfxﬁ‘)”

0 due to the definition of the remainder R. Since convergence of {0} also implies that limy_, o ||0% —
6*~1|| = 0, invoking the assumptions of Lemma 8 yields: limy_, o B = limy_ ¢(||6% — 6% 1||) = 0.
Therefore, as A, > 0, equation (30) gives

||0k+1 - eML“ _ 07

lim —————
k— o0 ||0k — 0ML||

and the proof of superlinear convergence is completed.

Remark 2 The convergence Theorems 1 and 2 make use of concavity of 1,(6) and convezity of 1(6,6)
via Assumptions 1.4 and 1.iv. However, for smooth non-convex functions an analogous local superlinear
convergence result can be established under stronger assumptions similar to those in [3].

Remark 3 The convergence Theorems 1 and 2 also clearly apply to a class of objective functions which
is mot restricted to Likelihood functions. For instance, the analysis directly adapts to Penalized Mazimum
Likelihood problems.

5 Second order Approximations and Trust Region techniques

The main drawback of the Kullback proximal point algorithm (15) is that for 8 # 1, for which it reduces
to EM, recursion (15) may be difficult to implement. In this section, we discuss an easily implementable
version of the KPP algorithm using second order approximations which preserve monotonicity. The second
order scheme is related to the well-known Trust Region technique for optimization introduced by Moré
[21].

5.1 Approximate models

In order to obtain computable iterations, the following second order approximations of 1,(#) and I(6,6%)
can be introduced

~

1,(8) = 1,(6F)+V1,(6*)T (8 — 6%) +
%(a — 6" TV21,(6)(6 — 6F).
and
1(0,6%) = %(0 — 6F)TV2,1(6%,6%)(6 — 6%).
In the following, we adopt the notations

gr = V1, (%)
Hk = V2ly(t9")

and

I, = V3,1(6%,6%).

INRIA



Kullback Proximal Algorithms for Maximum Likelihood Estimation 11

The approximate KPP algorithm is defined as
OF+! = argmaxg . {1,(0%) + g (6 — 6%)

+ %(0 — 05T H, (0 — 6%) (31)
— %(0 —0")T1.(6 - 6%)}

At this point it is important to make several comments. Notice first that for 8 = 0, &k = 1,2,..., the
approximate step (31) is equivalent to a Newton step. It is well known that Newton’s method, also known
as Fisher scoring in statistics, has superlinear asymptotic convergence rate but may diverge if not properly
initialized. Therefore, at least for small values of the relaxation parameter (3, the approximate PPA
algorithm may fail to converge for the same reasons as for Newton’s method. On the other hand, for
Br > 0 the term —25( — 6%)TI,(§ — 6*) penalizes the distance of the next iterate #*+! to the current
iterate §*. Hence, we can interpret this term as a regularization which stabilizes the possibly divergent
Newton algorithm without sacrificing its superlinear asymptotic convergence rate. By appropriate choice
of {81} the iterate §¥*1 can be forced to remain in a region around % over which the quadratic model
iy(O) is accurate. This idea is very popular in optimization and is better known as the “Trust Region
technique” [21][22].

Remark 4 In many cases a quadratic approzimation of a single one of the two terms 1,(6) or I(6,6%)
is sufficient to obtain a closed form mazimization (14). Naturally, when feasible, such a reduced approzi-
mation is preferable to the approrimation of both terms discussed above. For concreteness, in the sequel,
although our results hold for the reduced approzimation also, we prove convergence for the prorimal point
algorithm implemented with the full two-term approzimation only.

5.2 Trust Region Techniques

The Trust Region strategy proceeds as follows. The model [,(§) is maximized in a ball B(6*,6) = {ll6 -
0%, <6 } centered at #* where § is a proximity control parameter which may depend on k, and where
llallz, = a" Ira is a norm; well defined due to positive definiteness of I}, (Assumption 1.iv). Given an iterate
6% consider a candidate 8 for #¥+! defined as the solution to the constrained optimization problem

6 = argmaxaeRpiy(H)
subject to

16— 6%|7, <86. (32)

By duality theory of constrained optimization [23], and the fact that iy(G) is strictly concave, this problem
is equivalent to the unconstrained optimization

6°(8) = argmingeg,L(6, B). (33)

where

L6, 8) = —i,(8) + = (/16 — 6*||2 - 6°).

IS

and 3 is a Lagrange multiplier selected to meet the constraint (32) with equality: ||8°(3) — 8||;, = §.

We conclude that the Trust Region candidate #° is identical to the approximate KPP iterate (31) with
regularization parameter 8 chosen according to constraint (32). This relation also provides a rational rule
for computing the relaxation parameter 3.

RR n“ 3756
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5.3 Implementation

The parameter § is said to be safe if #° produces an acceptable increase in the original objective ly. An
iteration of the Trust Region method consists of two principal steps

Rule 1. Determine whether ¢ is safe or not. If § is safe, set §;, = § and take an approximate Kullback
proximal step 8¥t1 = #°. Otherwise, take a null step 5+1 = g*.

Rule 2. Update 6 depending on the result of Rule 1.

Rule 1 can be implemented by comparing the increase in the original log-likelihood [, to a fraction m of

the expected increase predicted by the approximate model iy(G). Specifically, the Trust Region parameter
0 is accepted if

1,(67) — 1,(6%) > m(1,(67) — 1,(6%)). (34)

Rule 2 can be implemented as follows. If § was accepted by Rule 1, § is increased at the next iteration in
order to extend the region of validity of the model Zy(ﬁ) If 6 was rejected, the region must be tightened
and ¢ is decreased at the next iteration.

The Trust Region strategy implemented here is essentially the same as that proposed by Moré [21].

Algorithm 1 Step 0. (Initialization) Set 8° € RP, &, > 0 and the “curve search” parameters m, m' with
0O<m<m <1.
Step 1. Solve

6% = argmaxycgoly(0)
subject to
16 — 6¥|| < 6.

Step 2. If 1,(8%) — 1,(6%) > m (I, (8% ) — 1,,(%)) then set O%+1 = §% . Otherwise, set G5+ = 6.
Step 3. Set k = k + 1. Update the model f’;(&) Update 6, using Procedure 1.
Step 4. Go to Step 1.

The procedure for updating éy, is given below.

Procedure 1 Step 0. (Initialization) Set v1 and 5 such that v; <1 < vs.
Step 1. If 1,(8%) — 1, (8%) < m (I, (%) — 1,,(8%)) then take Sx11 € (0,716%).
Step 2. If 1,(8%) — 1, (8%) < m' (1,,(8%) — 1, (6%)) then take 611 € (Y16k, 6)-
Step 3. If 1,(8%) — 1,(8%) > m' (I,(8%) — 1,,(8%)) then take Sp11 € (6k,V20)-

This algorithm satisfies the following convergence theorem

Theorem 3 Let g(y;0) and k(z;0) be such that Assumptions 1 are satisfied. Then, {6%} generated by
Algorithm 1 converges to the mazimizer Oxrr, of the log-likelihood 1,(6) and satisfies the monotone likelihood
property L, (0¥+1) > 1,(6%). If in addition, the sequence of Lagrange multipliers {3} tends towards zero,
{6%} converges superlinearly.

Remark 5 The proof of Theorem 3 is omitted since it is standard in the analysis of Trust Region methods.
Superlinear convergence as {8y} vanishes comes from the Dennis and More criterion [22, Theorem 3.11].

Remark 6 The Trust Region framework can also be applied to nonconvexr contexts. In the case where Iy,
remains positive definite, global convergence to a local mazimizer of 1,(6) can be obtained under Assump-
tions 1.3 and 1.4 only following the proof technique of [21].

6 Application to Poisson data

In this section, we illustrate the application of Algorithm 1 for a maximum likelihood estimation problem
in a Poisson inverse problem arising in emission computed tomography (ECT).

INRIA
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6.1 The Poisson Inverse Problem

The objective is to estimate the intensity vector 8 = [61,...,60,]7 governing the number of gamma-ray
emissions N = [Ny,...,N,]T over an imaging volume of p pixels. The estimate of § must be based on
a vector of m observed projections of N denoted Y = [Y7,...,Y,;]T. The components of N; of N are

independent Poisson distributed with rate parameters 6;, and the components Y; of Y are independent
Poisson distributed with rate parameters ¢ | P;j;0;, where Pj; is the transition probability corresponding
to emissions from pixel ¢ being detected at detector module j. The standard choice of complete data
X, introduced by Shepp and Vardi [24], is the set {Nj;}1<j<m, 1<i<p, Where Nj; denotes the number of
emissions in pixel ¢ which are detected at detector j. The corresponding many-to-one mapping h(X) =Y
in the EM algorithm is

YjZZNﬁ, 1<j<m. (35)

It is also well known that the likelihood function is given by
m 14 p
log g(y;6) =) <Z Pjiai) —y;log (Z Pjiai) + log y;! (36)
j i=1 i=1

j=1 =
and that the expectation step of the EM algorithm is (see [25])

Q(6,0) = Ellog f(x;0) | y; 0] = (37)

. i Pjif;
Z Z (%Pﬂg log(P;:0;) — Pjiei).

3

6.2 Simulation results

For illustration of the convergence properties of the algorithms studied here, we performed simulations on
a simple one dimensional deblurring example with Poisson noise model. This example easily generalizes
to more general 2 and 3 dimensional Poisson deblurring, tomographic reconstruction, and other imaging
applications. The true source 6 is a two level phantom shown in Figure 1. The blurring kernel is a Gaussian
function yielding the noiseless blurred phantom shown in Figure 2. In Figure 5 are shown the results of
deblurring in the absence of noise via optimization of the @) function 37. Our simulation results show in
Figure 3 that, the Trust Region implementation of our Kullback proximal algorithm enjoys much faster
convergence towards the optimum than EM after only a few iterations, for (8y)ren being the sequence of
Lagrange parameters associated to the sequence of trust region radii (6x)ren updated as in Procedure 1.
Figure 4 validates the theoretical superlinear convergence of the Trust Region iterates as contrasted with
the linear convergence rate of the EM iterates. Figure 5 shows the reconstructed signals and demonstrates
that the Trust Region technique achieves better reconstruction of the original phantom. Finally, Figure 6
shows the iterates for the reconstructed phantom, plotted as a function of iteration on the horizontal axis
and as a function of grey level on the vertical axis. Observe that the proximal point EM achieves more
rapid separation of the two components in the phantom than does standard EM.

7 Conclusions

The main contributions of this paper are the following. First, we introduced a very general class of
iterative methods for ML estimation based on Kullback regularization and the proximal point strategy.
Next, we proved that the EM algorithm belongs to the proposed class, thus providing a new and insightfull
interpretation of the EM approach for ML estimation. The proximal approach developped here naturally
adapts to penalized Maximum Likelihood problems. Finally, we showed that Kullback proximal point
methods enjoy global convergence and even superlinear convergence for vanishing sequences of relaxation
parameters. Implementation issues were also discussed and we provided second order schemes for the case
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where the Maximization step is hard to obtain in closed form. We adressed Trust Region methodologies
for the updating of the relaxation parameter. Computational experiments provided evidences for the good
behavior of the approximate second order scheme in pratice and showed superlinear behavior of the iterates
on a simple example. Several extensions of the proposed approach are currently under investigation. In
particular a Proximal generalization of the SAGE algorithm of Fessler and Hero [26] is proposed in [27],
in the case of mixture densities estimation.
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Figure 6: Evolution of the reconstructed image vs iteration
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