Improving Goldschmidt Division, Square Root and Square Root Reciprocal

Abstract : The aim of this paper is to accelerate division, square root and square root reciprocal computations, when Goldschmidt method is used on a pipelined multiplier. This is done by replacing the last iteration by the addition of a correcting term that can be looked up during the early iterations. We describe several variants of the Goldschmidt algorithm assuming 4-cycle pipelined multiplier and discuss obtained number of cycles and error achieved. Extensions to other than 4-cycle multipliers are given.
Type de document :
Rapport
[Research Report] RR-3753, INRIA. 1999
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00072909
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:15:08
Dernière modification le : jeudi 18 janvier 2018 - 01:36:49
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:27:25

Fichiers

Identifiants

  • HAL Id : inria-00072909, version 1

Collections

Citation

Milos Ercegovac, Laurent Imbert, David Matula, Jean-Michel Muller, Guoheng Wei. Improving Goldschmidt Division, Square Root and Square Root Reciprocal. [Research Report] RR-3753, INRIA. 1999. 〈inria-00072909〉

Partager

Métriques

Consultations de la notice

247

Téléchargements de fichiers

917