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Abstract: The aim of this paper is to accelerate division, square root and square
root reciprocal computations, when Goldschmidt method is used on a pipelined
multiplier. This is done by replacing the last iteration by the addition of a correcting
term that can be looked up during the early iterations. We describe several variants
of the Goldschmidt algorithm assuming 4-cycle pipelined multiplier and discuss
obtained number of cycles and error achieved. Extensions to other than 4-cycle
multipliers are given.
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Une amélioration de l’algorithme de Goldschmidt pour la
division, la racine carrée et l’inverse de la racine carrée

Résumé : Le but de cet article est l’accélération de la division, et du calcul de racines
carrées et d’inverses de racines carrées lorsque la méthode de Goldschmidt est util-
isée sur un multiplieur pipe-line. Nous faisons ceci en remplaçant la dernière itéra-
tion par l’addition d’un terme de correction qui peut être déduit d’une lecture de
table effectuée lors des premières itérations. Nous décrivons plusieurs variantes de
l’algorithme obtenu en supposant un multiplieur à 4 étages de pipe-line, et don-
nons pour chaque variante l’erreur obtenue et le nombre de cycles de calcul. Des
extensions de ce travail à des multiplieurs dont le nombre d’étages est différent
sont présentées.

Mots-clé : Division, Racine carrée, Inverse de la racine carrée, Arithmétique des
ordinateurs, Algorithme de Goldschmidt.
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1 Introduction

Although division is less frequent among the four basic arithmetic operations, a
recent study by Oberman and Flynn [7] shows that in a typical numerical program,
the time spent performing divisions is approximately the same as the time spent
performing additions or multiplications.

This is due to the fact that in most current processors, division is significantly
slower than the other operations. Hence, faster implementations of division are
desirable.

There are two principal classes of division algorithms. The digit-recurrence meth-
ods [4] produce one quotient digit per cycle using residual recurrence which in-
volves (i) redundant additions, (ii) multiplications with a single digit, and (iii) a
quotient-digit selection function. The latency and complexity of implementation
depends on the radix. The method produces both the quotient which can be eas-
ily rounded and the remainder. The iterative, quadratically convergent, methods,
such as the Newton-Raphson, the Goldschmidt and series expansion methods (see
for instance [5, 6, 11]) use multiplications and take advantage of fast multipliers
implemented in modern processors. These methods, however, do not produce di-
rectly the remainder and rounding requires extra quotient digits. According to [7],
roughly twice as many digits of intermediate result are needed as in the final result,
unless the iterations are performed using a fused multiply-accumulate operator,
that performs computations of the form ������� with one final rounding only [1].

In this paper, we focus on the latter class of methods. Such methods have been
implemented in various microprocessors such as the IBM RS/6000 [12] or the more
recent AMD K7 processor [14]. Our goal is to find a way of accelerating the Gold-
schmidt iteration (G-iteration in the sequel) when implementing it on a pipelined
computer. We then extend our work to square root and square root reciprocal cal-
culations.

2 Division

2.1 Background and G-iteration

Assume two � -bit inputs � and 	 , that satisfy 
��
����	���� (i.e., normalized
significands of floating-point numbers). We aim at computing ��������	 . The
Goldschmidt algorithm consists in finding a sequence ��� , � � , �"! , . . . such that #%$&�
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	 � � � � ����� � $ approaches 
 as
�

goes to infinity. Hence,

� $ � � � � � � ����� � $�� � �

This is done as follows. The first factor � � may be obtained by table lookup. After
that, if #%$ � 
��
	 , we choose �"$ � 
 �
	 , which gives #%$�� � � 

�
	 � . To be able to
discuss possible alternatives to the basic algorithm, we give in detail the steps used
in computing ��� .

1. Step 1. Let 	 � 
 ��� � � � ����������� � , and define
�
	 � 
 ��� � � � ��������� , where � � � � .

Typical values are � ����� and ��� 
� . Obtain � ��� 
%�
�
	 from a � �"! � table

such that

#� � � � � � � 	 � 
&� � � � (1)

Define $ � 
%� � � 	 . From (1), & $�&�� � � � . Another solution is to add enough
guard bits in the table [2] to get


#� � � � ��'�( ) � � � 	 � 
&� � � � ��'�( ) (2)

In such a case, & $�& � � � � ��'�( ) . We successively compute

* # � � 	 � � � 
#�+$ (this multiplication will be called mult. 1);
* � � � � � � (mult. 2).

2. Step 2. By 2’s complementing # � , we get �"��� 
&�+$ . We then compute

* # � � # � �"��� 
���$ � (mult. 3);
* � ��� � � � � (mult. 4).

Note that �
	 �

� �

#�+$ � �

3. Step 3. By 2’s complementing # � , we get �"!�� 
&�+$ � . We then compute

* # ! � # � �"!�� 
���$
�

(mult. 5);
* � !�� � � � ! (mult. 6)

such that �
	 �

� !

#�+$

� �

INRIA
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4. Step 4. By 2’s complementing # ! , we get � � � 
 � $
�
. We then compute� � � � ! � � (mult. 7) such that

�
	 �

� �

#�+$ � � (3)

For instance, if � � 
 � , and if we do not have guard bits in the table that gives
� � , the previous process gives an approximation � � to ��� 	 that satisfies

� � � �
	 � � ��� 
 � � �����	� �

If we have guard bits in the table that gives ��� , so that (2) is satisfied, we have

� � � �
	 � � ��
 
&� � � � � � �
� �

For instance, if � ��� , the error is bounded by � ����� . This method has a quadratic
convergence: at each step, the number of significant bits of the approximation to
the quotient roughly doubles.

Getting correctly rounded results, as required by the IEEE-754 standard [8], may
seem less straightforward than with the digit-recurrence methods. And yet, many
studies performed during the past recent years [1, 9, 15] show that with some care
this can be done easily, for division as well as for square root. See [1, 12] for more
details.

2.2 Basic implementation on a pipelined multiplier

In this section, we assume that we use a � -cycle � ! � pipelined multiplier. We start
counting the cycles when � � becomes available.

The error committed using this first method is easily obtained from (3): it is
around � � � � (e.g., for � � 
 � , it produces around ��� bits of accuracy). This imple-
mentation requires 
�� cycles. The scheduling of the multiplications in the pipelined
multiplier is shown Figure 1. It is worth noticing that we can use the “holes” in the
pipeline to interlace independent divisions. By doing that, performing two inter-
laced divisions requires only 
	� cycles (see Figure 1).We can use this method with
bipartite tables (see [3]). In such a case, ��� � 
%��	 is obtained by looking up two
tables with � address bits. One can show


 � � ������ � � ��� � 	 � 
 � � ������ � � (4)
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Figure 1: Schedule of the original G-iteration. It requires 
�� cycles to get the final result.
It allows interlacing of two independent divisions: it suffices to start multiplication mult.
1 of the second division at cycle 3, mult. 2 at cycle 4, mult. 3 at cycle 7, mult. 4 at cycle 8,
mult. 5 at cycle 11, mult. 6 at cycle 12, and mult. 7 at cycle 16. Two interlaced divisions
require 19 cycles.
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After four conventional iterations, one can get

� � � �
	 � � ��
 
&� � � � � � � � � �

For instance, if � � � , this process gives an approximation with error less than
� � � ' ' .

2.3 Variant A

As soon as $ becomes available (i.e., in cycle � ), we look-up
� $
�

in a table with �
address bits, where

� $ is a � -bit number, constituted by the bits of & $�& of weight
� � � � � , � � � � � , . . . , � � � � . That is, if $ �  �    �����  $ � � ��$ � � ��$ � � !�$ � � � ����� , then

� $ �
 �    �����  $ � � ��$ � � � ����� $ � � . Then, instead of successively computing � !�� � � 
 
�� $ � �
and � � � � ! 
 
�� $

� �
� � � 
 
�� $ � � $

�
� $ � � , we compute directly from � � an

approximation ���� to � � : � �� � � � 
 
&�+$ � � � $
� �
�

We now discuss the error in the result produced by this variant. First, neglecting
the term in $ � leads to an error around � � � � . Moreover from the expansion

$
�
� 
 � $ �+$��

� �
� � $

�
� � $�� � $ ! � ��$ �� � $ � � � $ !� � $ �+$

�
� (5)

where $ � ��$ � � $ (which gives & $ � & � � � � � ), we find that the error committed when
replacing $

�
by

� $
�

is around � � ) � � � . For instance, if � � 
 � this variant allows to
perform the division in 
 � cycles (see Figure 2), with an error around � ��) � . Hence,
we save � cycles compared to the direct implementation, but at the cost of a poorer
accuracy. If we use a bipartite table lookup, the same error � ��) � is achieved, with �
equal to � instead of 
 � (i.e., with much smaller tables).

2.4 Variant B.

To get a better accuracy than with variant A, compute the first error term in (5),
that is, � � � $ � � $ ! . This is done by tabulating

� $ ! and performing the multiplication
$ � ! � $ ! in the pipelined multiplier. Hence, in this variant we compute a better
approximation to � � , that is,

� � �� � � � 
 
&�+$ � � � $
�
� � $ � � $ ! � �

RR n˚3753
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Figure 2: Schedule of variant A. Requires 13 cycles, with an accuracy lower than that of
the direct implementation. Two interlaced divisions are performed in 15 cycles.
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We need one more cycle (for the computation of � ) and one more table (for
� $ ! ) than

in variant A. However, it is possible to improve this using the following expression
for � � �� : � � �� � � � 
 
&�+$ � � � $ ! 
 � $ � � � $ ��� �
We now only need one table for

� $ ! , and one cycle for the computation of � � �� $ ! 
 � $ � � � $ � . The error is about � ! � ��� � : for � � 
 � , this is less than � � ��� . If we use
a bipartite lookup, we get an error � � � ! with � � � . The corresponding schedule
is shown Figure 3. On a � -cycle multiplier, it requires 
 � cycles. If we interlace
two divisions, the whole calculation requires 
�� cycles only. A better performance
can be obtained when performing two or three consecutive divisions by the same
denominator. This happens, for example, in normalizing � -D ( � -D) vectors. The
improvement comes from the fact that the # $ ’s are the same. Computing � � � � and
��� � � ( � � � � , ��� � � and ��! � � for 3-D) requires 
 � cycles (resp. 
	� cycles), whereas
first computing 
%� � and then multiplying this intermediate result by �"� and � � ( � � ,
��� and ��! ) would take 20 cycles (resp. 21 cycles).

2.5 Variant C

In Variant B, the values of
� $ ! are precomputed and stored in a table with � address

bits. If we consider the following formula: 
 
 � $ � � $ � � � 
 
 � $ � � $ � 
 
 � $ � � $ � , it
is possible to compute 
 
 � $ � � $ � � as soon as $ � is known. This technique requires

	� cycles but no table (except the one for � � ) and the error is around � � � � . This
variant is probably less interesting than the direct implementation or Variant B. We
mention it since it reduces the table requirements.

We present a summary of the properties of these different variants in Table 1.

Method number of cycles bits of accuracy table size
Direct 17 96 � ! � � bits
Variant A 13 58 � � ! � � bits
Variant B 14 69 � � ! � � bits
Variant C 16 71 � ! � � bits

Table 1: Main properties of the proposed variants. The third column gives the amount of
memory required including the table used for ��� .

RR n˚3753
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begining of second division

Figure 3: Variant B. Mult. c’ is the computation of
� $ ! 
 � $ � � � $

�
. Mult. 5” is the final

multiplication. It has one more cycle than Variant A, but the accuracy is much better. Two
interlaced divisions need 17 cycles.
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2.6 Implementations on multipliers with a different number of cycles

The variants presented so far were illustrated assuming a � -cycle pipelined multi-
plier. They can be used on multipliers with less or more than � cycles. For instance,
let us assume a � -cycle multiplier. With such a multiplier, the direct iteration (as-
suming we still wish to compute � � ) is implemented in � cycles. Variant A is im-
plemented in � cycles, and variant B is implemented in � cycles.

On a � -cycle multiplier, the direct iteration is implemented in 
 � cycles, whereas
variant A is implemented in 
� cycles, and variant B in 
 
 cycles.

Nevertheless, performing two consecutive divisions with multipliers with less
than � cycles seems less interesting than previously. On a � -cycle ( � -cycle) multi-
plier, the direct iteration is implemented in 
	� ( 
�� ) cycles, variant A in 
 � ( 
 � ) cycles,
and variant B in 
 � ( 
	� ) cycles.

2.7 Implementations with more than four iterations

The same approach is applicable if we want to perform one more iteration of the
Goldschmidt algorithm. For example, assume that we add one more step to the
algorithm presented in section 2.1. The final result � ) is obtained as

� ) � � � ! � ) � � � � 
&�+$
� � �

A direct implementation on a � -cycle pipelined multiplier requires � 
 cycles. How-
ever, once $ is known, we can look-up in a table the value

� $ � , where
� $ is the same

� -bit number as in the previous sections. That value will be used to directly esti-
mate an approximation to � ) from � ! . Hence, we can build several variants of the
algorithm:

* First variant we compute

� �) � � ! � 
&�+$
�
� � $

� �
on a � -cycle multiplier, this requires 
�� cycles. The error is less than � ��� � � � .

* Second variant we compute

� � �) � � ! � 
 �+$
�
� � $

�
��� � $ � $ � �

on a � -cycle multiplier, this also requires 
�� cycles, and the error is less than
� � � ' � � � . Therefore this variant is more interesting than the previous one.

RR n˚3753
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* Third variant we compute

� � � �) � � ! � 
&�+$
�
� � $

�
� � � $ � $ � � � � � $ � $ �� �

on a � -cycle multiplier, this requires 
�� cycles, and the error is less than � � � � � � � .

3 Square root and square root reciprocal

3.1 Conventional iteration

In this section we will focus on the computation of 
%� � � and
� � for some real

variable � . We will start from the generalization of the Goldschmidt method for
square-root and square-root reciprocal that was introduced in [11]. An alternative
would have been to use Newton-Raphson iteration for

� � :

# $�� � � 

� # $

� � � ��# �$ � �
that can be conveniently implemented (as suggested by Schulte and Wires [16]) as:

� $ � # �$
� $ � 
�� � $ �
# $�� ��� # $ � # $ � $ � � �

This approach requires three dependent multiplies per iteration, similar to the Gold-
schmidt method introduced in [11] and cited here.

An interesting discussion on the computation of square roots and square root
reciprocals using Newton’s method can be found in [10].

Assume we wish to compute
� � or 
%� � � for 
 � � � � . We shall consider the

extension to the binade � � � � � in section 3.3. The first step is similar to what we
have done for the division method. Starting from

� � 
 ��� � � � ������� �

we define �� � 
 ��� � � � ������� � � � � � � �

so then
& � � �� & � � � �

INRIA
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where � � � � . From
�� we look-up � � 
 bit round-to-nearest values of ��� �� � 
 
%� �� � � � 
 � �� � �! ������� �� � � and

�
� � � � � 
 
%� � ��

�
� � 
 � � �� � � �! ������� � �� � � in a table with

� ��
 address bits. The trade off of using table lookup of ��� rather than computing
the square of the table lookup of

�
� � , saves the latency cost of a dependent multi-

ply while increasing the total table size. Importantly, the tables must be designed so
that each table lookup value of � � corresponds at full target accuracy to the square
of the table lookup value of

�
� � . This requirement precludes the use of bipar-

tite or linear interpolation for constructing both tables to greater initial accuracy as
considered for division. Then, the conventional method (assuming we perform �
iterations) consists in performing the following calculations itemized by groups of
independent multiplications depending on results of the previous groups.

1. First group We define the variable � � and a variable # � by the independent
multiplications
* � � � � ! � � (called mult. 1 in figure 4)
* # � � �

� � if we aim at computing 
%� � � ;
* # � � � ! �

� � if we aim at computing
� � . (mult. 1’)

These choices are due to the fact that the next iterations compute # � �
�
� � � .

2. Second group We define $ � � 
 � � � and compute the independent multipli-
cations:
* 
 
&������ � � � 
 
&������ � ! 
 
&������ �
* # � ��� 
 ��� ��	� ! # �

3 Third group We compute

* � ��� 
 
&��� �� � � ! � �
and we define $ � by $ � � 
 � ��� .

4. Fourth group We compute the independent multiplications:
* 
 
&� � �� � � � 
 
&� � �� � ! 
 
&� � �� �
* # ! ��� 
 ��� ��	� ! # �

5. Fifth group We compute

* � !�� 
 
&��� �� � � ! ���

RR n˚3753
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and we define $ ! by $ ! � 
 � ��! .
6. Sixth group We compute

* # � � 
 
&� � ��
� ! # !

Note that these computations would require a number of cycles equal to at least
6 times the multiplier latency in a pipelined multiplier implementation.

The error committed by approximating
� � (or 
%� � � , depending on the initial

value we have chosen for #�� ) is easily found. Let us define $ � $ � . Then recalling
� � is rounded to nearest to � � 
 places,

& $�& � & 
�� � � ��& � & �� � � &�� � � � � � � � � � � �

for � � � � . From ��$ � � � 
 
 � ���� � � � $ � 
 
 � $ $ � �� $ �$
�
� $ and $ $�� � � 
 � ��$�� � we easily

find
$ $ � � � �

� $ �$ �


� $ !$ (6)

hence

$ � �
� �
��� � $ � � � �

� � � � (7)

Now, since each time we multiply � $ by some factor to get � $�� � we multiply #%$ by
the square root of the same factor, we can easily deduce

# � ��� � �� � ! # �
Hence,

# � � 
 ��	
� � � # �

where & 	 & � � � � � � ! . This gives the final result:
* if we compute 
%� � � (that is, we have chosen #�� �

�
� � ) then

# � � 

� �


 
&�+	
�
� with & 	 & � � �

� � � !

* if we compute
� � (that is, we have chosen #�� � � � � � ) then

# � � �
� 
 
 ��	

�
� with & 	 & � � �

� � � ! �

INRIA
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3.2 Accelerating square root (inverse square root) method

Now, let us try to accelerate the computation by directly deducing an approxima-
tion to # � from # � . To do that, we first deduce the values of the $ $ ’s as polynomial
identities in $ using (6). We obtain

$ � � �
� $ � �



� $ !

$ ! � �
�
��� $

�
� �
� � $

) � � �
� � � $

� � �
�
� � � $

�

� �
� � � $

�
� 

� � � $

� �
Using this result, since # � � � 
 � � �� � � 
 � � �� � # � , we can deduce

# � �
�

 � $ �

� ��� 
 $ � � # � (8)

where

� 
�� � � �
�

 � �

� � � �
��� �

) � 
 � �

� � � �

� � 
 � �

� � � �

�

� � � 

�  ��� �

�
� 

� �
� � � �
�

�� � � � �
' � �


� � � � � �

� 

�  ��� � � � �

This leads to the following solution: once $ is known, we can look-up in a table
with � � 
 address bits the value � 
 � $ � , where

� $ (as for the division algorithm) is a
� -bit number, constituted by the bits of & $�& of weight � � � � � , � � � � � , . . . , � � � � � � and a
terminal unit. That is, if

& $�& �+ �    �����  $ � � ��$ � � ��$ � � !�$ � � � ����� � & $�& � � � � �
then truncating to a midpoint in the � � ’th place,

& � $�& �+ �    �����  $ � � ��$ � � � ����� $ � � � � � � � � � � & � $ & � � � � �
where with

� $ defined to have the same sign as $ ,
& $ � � $�& � � � � � �
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Then we get the First scheme: We compute

# �� �
�

&� $ �

� ��� 
 � $ � � �
The error of this first scheme is around $ � � � 
 $ � (where $ � � $ � � $ , so & $ � &�� � � � � ),
which is less than � �! � � � ) � . This scheme avoids several of the previous dependent
multiplies. With a � -cycle pipelined multiplier the procedure can be implemented
in 
	� cycles. We do not discuss this implementation in detail, since the following
� nd scheme is more accurate and implementable in the same number of cycles.

Second scheme: We now assume that � � 
 � $ � is tabulated, and we use the fol-
lowing approximation to # � :

# � �� �
�

&� $ �

� � � 
 � $ � �+$ � � � 
 � $ � � # � �
The error of the second scheme is around �

�
�� � � � 
 $ � , which is less than

� �� � � ��� � . For
instance, if � � 
 � , this gives an error less than � � � � .

Figure 4 depicts the implementation of the computation of either 
%� � � or
� �

using a � -cycle multiplier. Operations 
 , � , � and � correspond to the computations
of � � , # � , ��� and # � �� . Mult. 
 ’ is performed only for the computation of

� � . One
can notice that the number of cycles required for both computations is the same
since the initialization multiplication #�� � �

�
� � is inserted in the pipeline when

computing the square root function.
This method requires � tables with � � 
 address bits each for ��� , � � � , � 
 � $ � and

� � 
 � $ � with total size of 
 � � � � 
 � � � � ��� ! � � � � bits.

3.3 Expanding domain and contracting tables

Depending on whether the exponent of the input value is even or odd, we need
to compute the square root and/or square root reciprocal of � or � ! � to span the
domain

� 
 � � � . This can be implemented by optionally inserting a multiplication by�
� somewhere in the pipeline. This can be done without increasing the latency

in view of the one cycle allocated to the addition needed to form 
 
 � �� � � 
 � $ � �
$�� � � 
 � $ ��� . In Figure 4, #%� is available at cycle 10. Thus we can perform an optional
multiplication # � ! �

� from cycle 10 to cycle 13. Another solution is to store tables
for both

� � � and
� � � � . But these tables can be large and avoiding duplication of

storage is desirable.
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�

�

�

�

�

�

�

�

�

�
	

���

� �

� �

cycle
�

� �

� �

� �

� is available
� � is available

� � is available

�
’ � � � �

mult.

� � is available
�
�
� � � � � � is available

� � is available

� � �� is available

� � � � � � is available

� �

init. � � � ��� � �
for sqrt only

Figure 4: Implementation of
� � and 
%� � � on a � -cycle pipelined multiplier. Mult.


 ’ is performed only for
� � ; � and �

� correspond to the computations of $ � and
$ � � � 
 � $ � .

For the first lookup for � � and
� � � , we can relax the bound for & $ ��& by storing

only a rounding to ��� � bits in the output table for �� �� . We still obtain & $ ��& �
� � � � '�( � ) . Importantly, we than should store the exact � ��� � bit square of the output
of the first table as the result for � � to make sure that the table values for � � and�
� � are correctly related.

The Second scheme requires the computation of � 
 � $ � �
$ � � � 
 � $ � . If we expand
� 
 � $ � � $ � � � 
 � $ � , we may replace the product-sum employing two tables by a single
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product employing only one table similar to the procedure in [13].

� 
 � $ � �+$�� � � 
 � $ � � 
 � $ � � $�� � 
 �
�
 � �
� $ ! � �

���
� $
�
� 
 � �

� � �

� $ )
�
���

� $
�
$�� (9)

where & � & � 
 .� $�� � $ � can be obtained as follows: we have a 2-bit overlap between
� $ and � $ �

at the � � 
���� and � th positions. These two bits can be added into
� $ while we do

the table lookup for 
 � �� � � � $ ! � �� � � $ � � � ) �� ' � � � $ )
�

using
� $ . � � $

�
$ � provides the error term.

The error is roughly of the same order of magnitude, i.e., � � ��� � � '�( � )�� . This avoids
one lookup table with no extra latency. Note that reducing the precision of the table
output of � � and

�
� � may increase

� $ to slightly more than � � � . This could require
a � bit index lookup for at least a part of the range of � , a small increase compared
to the major reduction in table size for � � and

�
� � .

Conclusion

We have presented several variants for implementing division, square roots and
square root reciprocals on a 4-cycle pipelined multiplier. The proposed schemes
are based on the Goldschmidt iteration, and require fewer cycles than the original
scheme. They also exhibit various trade-offs between computational delay, accu-
racy, and table size.
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