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Abstract:  Gibbs Fields are widely used in image processing for both segmentation
and restoration. Defined on a discrete lattice representing the image they exhibit a non-
isotropic behavior. Herein, we study and quantify this non-isotropy by computing the
boundary tension as a function of the angle of a line separating the plane in two parts
containing a different phase. From this study, we derive two quantitative criteria of the
non isotropy of the model. We then compute the shape at zero temperature of a droplet
of one phase within the other phase and study the non-isotropy of the shape for the
different models. Finally, we show the artifacts due to this non-isotropic behavior for
image segmentation and restoration.
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Propriétés d’isotropie de certains modéles
a interactions multi-corps :
deux critéres de qualité pour les modéles
a priori de type markovien en traitement d’image

Résumé : Les champs de Gibbs sont trés utilisés en traitement d’image a la fois pour la
segmentation et la restauration. Définis sur la trame discréte sous-jacente a 'image, ils
présentent un comportement non isotrope. Dans ce rapport, nous étudions et quantifions
cette non-isotropie, pour des modéles avec des interactions 3x3, en calculant la tension de
bord en fonction de ’angle d’une droite séparant le plan en deux parties contenant une
phase différente. De cette étude, nous dérivons deux critéres quantitatifs d’anisotropie des
modeéles. Nous calculons ensuite la forme d’une goutte d’une phase immergée dans une
autre phase a la température nulle pour les différents modéles, et étudions la non isotropie
des formes obtenues. Pour finir, les artéfacts induits par cette non-isotropie sont mis en
évidence sur des exemples de segmentation et de restauration d’image.

Mots-clés : Champs de Gibbs, Isotropie, Critéres de qualité, Segmentation et Restau-
ration d’Image
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4 X. Descombes, E. Pechersky

1 Introduction

Applications of the Gibbs field theory in image restoration and segmentation can be divided
into three parts. The first part consists in choosing a model. The second one is the
parameter estimation problem. The last one corresponds to the optimization of the chosen
model. The chosen model may induce some undesired properties in the result. One of such
properties which is the subject of our investigation hereafter is the non-isotropic behavior
of models. It seems to be obvious that the result of an image treatment must not depend
on the rotation of the camera with respect to the vertical axis, if the image was obtained
by a photography from above. However the digital image is, in most cases, a configuration
on the square lattice Z2 which has rather poor isotropic properties. Therefore finding a
Gibbs model which is isotropic as much as possible is quite an actual problem.

Herein, we restrict ourselves to the study of the isotropic properties of a class of mod-
els with respect to big objects. One can say we study the isotropic properties of two
dimensional objects. Further work will be devoted to small objects or to one dimensional
objects, such as lines.

Any Gibbs field is defined by its potential functions. In Gibbs field applications to
image processing, a Gibbs field is composed of two terms. The first term describes a Gibbs
model used in the problem. With the statistical point of view, the Gibbs model defines a
prior distribution within a Bayesian. The second type of potential functions, corresponding
to the likelihood in the Bayesian approach, is a Gibbs model introducing data in the Gibbs
field (for examples, see [5, 8|). The prior model is introduced within a Bayesian framework
to add some spatial homogeneity constraints on the solution. However, some artifacts can
also be introduced. The study of such artifacts motivates work presented hereafter.

Our goal is to study the Gibbs model giving the prior distribution. All considered
models are defined on Z? with the two-point spin space X = {0,1}. We first study the
behavior of the models for configurations consisting of two half-planes. Let n = (ny,ns)
be a unit vector in R?. Consider the configuration z(t) on Z? such that:

0, if ting + tong > 0,
z(t) = :
1, if tl’fll + t2n2 S 0.

We want to know the boundary tension of the line 71n; + r9ns = 0, (r1,79) € R2. The
boundary tension is a specific energy 7, of interactions over this line. The isotropy (in the
sense we study hereafter) means that the specific energy does not depend on the vector n.
Of course, the models we study are not isotropic. We conjecture that there is no model
with finite range interactions on Z? having this property. We propose to evaluate the
non-isotropy of models with finite range interactions. More precisely, we study the models
having the clique sets bounded in a 3x3 site square. This class includes a rather wide set
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Isotropic properties of some models 5

of models. In particular, the Ising model belongs to this class.

We find the boundary tension 7, as a function of v = 7 for the pointed models. We
calculate minimal values of 7, and the corresponding values of 7. A special interest is the
number of values vy giving the minimal value 7,. We show that, depending on the model,
this number can take the values 4,8,12 and 16. Two criteria are derived to quantify the
non isotropy of the studied models.

Then, we describe the isotropy properties of models by studying droplets of one phase
inside another, for example the droplet of the phase combined by 0’s in the phase combined
by 1’s. We use Wulff construction to obtain the shapes of the droplets at zero temperature
(see |7, 10]). Our result is not a theorem because we do not use the rigorous definition
of the surface tension. Therefore we call the function 7., the boundary tension instead of
the surface tension which is commonly used. We conjecture that, in fact, 7, is the surface
tension at zero temperature. We shall study this problem in a near future. At the pointed
setting, we have found polygons giving shapes of the droplets.

Doing as mentioned above, we have found three basic shapes of the droplets for the
different studied models. There are also a set of models for which the shapes are “mixtures”
of the basic shapes. There are only two parameters (g, h) for the models which control
the droplet shapes.

Finally, we perform some experiments on image segmentation and image restoration to
show the artifacts due to this anisotropic effect. We compare the usual Ising model with
a 8-neighbors interaction Ising model and the Chien-model defined in [1, 6, 9].

2 3x3 models

2.1 Assumptions

To describe the studied models, we introduce a set V of cliques and for every clique
V €V, V CZ2? apotential function:

dy: XV - R (1)

We recall that X = {0,1}. Because we consider the translation invariant models, we can
only describe the cliques containing the site 0 € Z?2. Let V, be this set. In the 3x3 models,
every clique V € V) is a subset of the set:

W= {t=(ti,t) € Z*: |t;| <1,i=1,2}. (2)

We do not loose any generality if we take the set Vj containing only the clique W. Then we
only have to define a potential function ® which assigns an energy value to configurations
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6 X. Descombes, E. Pechersky

zw on W, zyw € XW. Since the potential function ® is invariant with respect to the
translations of Z2, we consider ® as a function of 9 variables.
Now we give the main assumptions on ®. We call a tile a table of nine numbers:

1 Ti2 Ti3
r= |\ re1 T2 To3 |, (3)
T31 T32 T33

where r;; € {0,1}. We consider the function ® as a function of tiles. ® can generally take
2% values. However, we require that @ is invariant with the respect natural symmetries
of tiles. Let T be a tile. All rotations of 7 and reflections with respect to horizontal and
vertical axes and with respect to the both diagonals compose a group G of tile changes.
Besides we add to G flips of T taking every r;; to 1+ r;; (mod 2). Let G be the complete
group of the described actions on 7.

We assume that the following four conditions on the function ® are satisfied:
Condition ®0

o(r) = 0(g(7)),
where g € G and T is a tile.
This condition reduces the 22 possible values of ® to 51.

Let 7y = and 7; = . We normalize the values of & by

o O O

0
0
0

o O O
[ S —
— =
— =

assuming that:
Condition &1

Consider the following tiles:

000
Go=|111
111
011 00 1
=111 ]w=(011
111 111

INRIA



Isotropic properties of some models 7

The next assumptions restrict the values of ® on the above tiles:
Condition $2

q)(ﬂ()) > Oa

®(up) + @(up) > 0,
O (ul) + @(uy) + ¢(u3) > 0.

Let ®(uy) = e. Let h and g be positive numbers such that:
®(uy) + ®(ul) = he,
®(uy) + @(uy) + ®(u3) = ge.

The next condition ensure that our models are of ferromagnetic type. Consider a table
5 = (sij)1<ij<5, where s;; € {0,1}. Let P; = {7} be the set of all tiles 7 which can be
extracted from 3.

Condition ®3
If 5 is not the constant 0 or 1 then:

Y a(F) > 0.

F€P§

It is obvious from conditions ®0-®3 that the configurations v°(¢) = 0 and v'(t) = 1
are periodical ground states and there are no other ones. Of course, there are infinite
many non-periodical ground states whose types depend on the values of h and g. It is also
easy to see that the Peierls conditions are satisfied [4]. Therefore, there exists a critical
temperature separating the case of the unique Gibbs state and the case of two (at least)
Gibbs states.

2.2 Examples

First we discuss an example of models which only have pair interactions. The well-known
Ising model is a particular case of the models considered in this section.

If z € X”" is a configuration then zy is the restriction of z on W (see eqn. (2)). We
denote W, = W + t where t € Z2. The sets W and W, are called plaquettes. Let:

R ={1,v2,2,/5,2/2} (4)
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8 X. Descombes, E. Pechersky

NI/ANY
JS? //J

=

g

Figure 1: Pairwise interactions in the 3 x 3 site square

be the set of distances between pairs of sites (see figure 1).
We consider models with the formal Hamiltonian

5

Hx)==Y 7 Y [20(t)—1][2a(s) — 1], (5)

=l [t—s|=p;

where p; € R such that p; is equal to the i-th number in (4), for example, ps = v/5. Next
we represent eqn. (5) as a double sum, the inner is over pairs of sites in a plaquette and
the outer is over all plaquettes:

A== 3% S () - 1) - 1L (©
wen? =1y s e W,
|t —s| = pi

where n; are as follows: ny = 6, no =4, n3 = 3, ng = 2, ng = 1. The value n; is the
number of plaquettes which contain a pair of sites for which the distance between the sites
is equal to p;. To meet the condition ®1, we change the Hamiltonian described in eqn. (6)

in a way which does not change the model. Namely, we introduce the potential function
d:

@(7) = — Z ﬁ Z [27'k:,l — 1][27‘m,n — 1] - JZ'CL,L' , (7)

- n;
1=1 |(k,1)—(m,n)|=p;

2, ifi#4
where a; = 4’ 1fz 7 R and 7 is a tile (see eqn. (3)). We added the constant > a;J;
S

to the energy of every tile in eqn. (6) such that the energy of the tiles 7y and 7; is equal

INRIA
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to 0, which gives the condition ®1. The condition ®0 is obviously satisfied.

Up to now, we did not impose any condition on the constants Ji,...,J5. Next, we
consider the condition ®2. We have:

e=®(up) = J1 +2Jy +2J5 + 6J4 + 4J; (8)

The first inequality of condition ®2 requires the positivity of the above sum. The following
equations give the energy of all other tiles involved in condition ®2:

2 1 4
O) = Ji+ =Jo+ = Js +2J, +2J;

3 2 3
.. 4. 3.8
(I)(’U,l) = g:]l + §J2 + §J3 + 6J4 + 2J5
3
q)(ﬂ%) =J1 + §J2 +2J3+4J, + 2J5
4 8
o(ul) = ng +2J5 + §J3 +6Jy + 4J5.

The last two inequalities in condition ®2 give the following relations:

he =2J, + 2J, +4J3+8J4+4J5 > 0,

9
ge = 3J&'+'4Jé'+'6J%'+'12J4‘+'8J%:> 0. ( )

It is clear that if all the constants Ji, ... ,Js are positive then condition ®3 holds. We
do not loose any generality if we put

2¢e =1 (10)

Further we shall assume that eqn. (10) is fulfilled. The new Hamiltonian is then:

H(z)= > ®(xw,). (11)

u€Z?

Remark that the specifications defined by both Hamiltonians in eqn. (6) and (11) are the
same.

We consider some particular cases of the models described by eqn. (7):

Model 1. Let Jy, = J3 = J, = J5 = 0. Then we have the Ising model with e = %, h =
2, g=23.
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Model 2: In the next example, we assume that J3 = J;, = Js = 0. For this case (called
the 8-connected Ising model in the image processing community), recalling that e = %, we
have:

1
Ji+ 20y = >
g=2+2J, (12)

Hence J; > —% to satisfy ®2. If J; = % then J; = 0 and we have the previous case.
Remark also that for J; < 0, the configuration:

o(t) = {1, if [t + [2] = 21 13

0, if|ta]+ta] =20+1

has a negative energy. Namely:

> d(xp) =365,

P:0ecP

where P is a plaquette. Hence ®3 is not satisfied. The direct calculations show that for
Ji > 1 (in this case Jo < 0), the energy of every tile, except v° and v', is positive. It
means that ®3 holds.

3 The boundary tension

3.1 Computation of the boundary tension

The first result concerns the boundary tension. Herein, we give the exact definition of this
notion. Let n = (ny,ny) be a unit vector, and 27 € X% the configuration on Z? such that:

o7 = 1, if nity + naty > 0,
0, otherwise

n2

where v = 2. We evaluate the energy of interactions over the line L, = {(ri,72) :
T + NoTo = 0}

Let W, = W +t, where t € Z?* (see eqn. (2)). Let also:

W={r=(r,mn) eR: |r|<1i=12}

INRIA
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and

Finally, let for z > 0:
U,(2) ={t=(t1,ts) €Z*: W, N L, #0,[t:| < 2} (14)

Let = be a configuration, then the energy of the projection 3%7(2) is:

Hy,)(27) = Z (zy,)

t€U(2)
The boundary tension of the slope 7 is:
- Hy,(z)(2")
T, = lim ————= 15
=l (15)
Theorem 1 The boundary tension has the following form:
Ng—2+2 ify <1
7 ’Y — 7
Y ’ (16)
7 2[7(2h*9)+(9*h)]6 Zf% <y <.

V12
Proof. Let t = (t1,t3),u = (t1,us) € Z? be such that:

L) Wt N L’y 7& @a
2) K(tl,h_l) n L’Y = 0’
3) WaN L, #0,
4) W(tl,u2—|—1) N L'Y = 0

We shall study separately the cases v < %

of the tiles

and v > 1. In the first case, the sequence

Y Y Y
xW(tl,tz)’xW(tl#zﬂ)’ U ’xW(th) (17)
is either
0 0O 0 0O
111 000 (18)
1 11 1 11

RR n°® 3752



12 X. Descombes, E. Pechersky

or
100 000 000
111 100 000 (19)
111 111 100

or
110 000 000
111 110 000 (20)
111 111 110

The energy sum of the first sequence is 2e and the sum of the two last sequences is ge (see
condition ®2). Remark that the two last sequences appear simultaneously. Therefore their
contribution to the energy is equal to 2ge when they appear. We calculate the frequency
p = p(7) of that appearance as a function of . Since v < %, there exists k£ > 2 such that
k%rl < 7y < 1. Let the pairs ¢ = (t1,t3), u = (t1,us) and ¢ = (¢}, ¢,), v’ = (¢}, u}) satisfy
conditions 1)—4) above and t] = ¢; + 1 then for considered case t; — ¢, < 1. If t, —t), =1
then we have a jump down at which the two last sequences of (18) appear. Let N, be
a number of the jumps down in the set U,(2) (see eqn. (14)). Then lim,_. 3= — 7.
Therefore, the total number M, of appearances of the two mentioned sequences of the

plaquettes are estimated as follows:
dzy(1 —e) < M, < 4zy(1+¢)

for any € when z is large enough. Every pair of the sequences gives the energy contribution
equal to ge. The number of the first sequence of (18) is 22— M,. Therefore the total energy
of the set U, (z) is estimated as:

22[27ge + (1 — 2)el(1 - £) < Huygo(a”) < 22[27ge + (1= 2)el(1+2).  (21)
Hence, the boundary tension for 0 < y < 1 is:

__nlg-2+2,
v /1+72

Next, we study the case 1 <y < 1. Then the sequence: (17) is either

(22)

[ et
— = O
— = o
— = O
—_ o O
o O
—_ o o
o oo
o OO

INRIA
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or
110 000 000
1 11 110 000
1 11 1 11 110
or
110 1 00 000 000
1 11 110 1 00 000
111 1 11 110 1 00

The energy of the last sequence is 2h (see condition ®2). Producing considerations
close to those done for the case v < %, we obtain that the frequency of the last sequence
is 2y — 1. The analogue of the inequality (21) is:

22[2(1 — y)ge + (27 — 1)2he](1 — €) < Hy,(»)(x") < 22[2(1 — v)ge + (27 — 1)2he](1 —1—(5))
23

Applying definition (15), we obtain:

_ 2[y(2h —g) + (9 — h)]

Ty Sl

3.2 Study of the boundary tension minima

e O (24)

This subsection is devoted to the study of the minima of the boundary tension 7. Let:

2
Ai={(h,g): 0<h<\/gg,0<g§\/5},

A%z{(h,g): 0<h<\/§,g>\/5},
Ay = ALU A,

Az={(h,g)= h>\/gg,0<g§\/5},
Agz{(h,g): h>\/§,g>\/5}.

A1, Ay and Aj are open sets. Depending on the values of h and g, there are three values
of v where 7, attains its minimum. More precisely, let I'(h,g) C [0,1] be the set of
where this minimum is attained then we have:

RR n°® 3752



14 X. Descombes, E. Pechersky

Corollary 2

Iy =T(h,g9) ={1}, if (h,g) € Ay,
Ty =Pl g) {5} i (h9) € A,
I3 = F(ha g) :{0}’ if (h’a g) € As.

Moreover, on the common boundary of the sets A; and A;, we have:
Fij = F(h,g) = Pz U Pj,
where (h, g) € 0A; N 0A;.

Finally at the point (\/5, \/5) which is 0A1 N 0A; N 0A3, we get:

2’

r(\/éx/S) :Flunurgz{o,1 1}.

Proof. First we study the case v € [0, ]. Taking e = 1 we have the following derivatives:

r g— 2— Y
Ty = "3
(14+92)
and
2 =3(g-2)—1
= . .
! (1+7%)”
For small v the second derivative is negative. It means that 7., is concave in the region

of small v. Let vy € (O, %) be a point such that on the interval (0,7) the function 7, is
concave. Remark that at the point:

Nn=9-2,
where the first derivative is equal to 0, the second derivative takes a negative value:
—(9-27°-1
(1+20)F

Therefore 7, is the point of a local maximum of 7,. There is no other value of v in the
interval [0, %] such that 77 = 0. Hence there are no local minima of 7, for v > ~, where
7, is convex. It proves that, on the interval [0, %], the minima values can be attained on
the ends of this interval.

INRIA
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Next we study 7, on [1,1]. We have:

o _yh—g)+2h—g
- 3
' (1+7%)*

and

o —27*(h—g) — 372h—g) ~h—g
(1492
As in previous case, we have only the point:
_g—2h
h—g’
where the function 7, has a local minimum. The second derivative at this point is:
(g—2h*+(h—g)? 1
hte st
Hence, its sign depends on the relation between h and g. Eqn. (25) takes the positive

value at a negative ;. Therefore, we obtain that minimal values of 7., are attained on the
ends of the interval [1,1]. The result follows now from the expression (16). O

V2

(25)

We have shown the non isotropic behavior of the studied models. The different curves
plotted on figure 2 show the boundary tension for different models. Figure 2.a corresponds
to an Ising model for which e = 3, (h,g) = (2,3). We have a single minimum for the
boundary tension. Using an Ising model with 8 neighbors, we can set the parameters in
order to have two minima for the boundary tension. Figure 2.b shows such an example
for e = %, (h,g) = (/2,1 + v/2). Finally, the least non isotropic models correspond
to e = %, (h,g) = (v/2,4/5), as shown on figure 2.c. Such an example is given by the
Chien-model described in [9].

3.3 A first criterion to quantify the non isotropy

In order to compare the different models and the to assess their quality with respect to
isotropy, we propose to define a criterion based on the boundary tension. This criterion
reflects the average fluctuations with respect to minimal boundary tension. It is defined
as follows:

1
d
ANTS, — Jo T (26)

mln[o’l] 7—7

RR n°® 3752
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00 250

(a): e= %, (h,g) =(2,3) (b): e= %a (h,g) = (ﬁ’ 1+ \/i) (c): e= %a (h,g) = (\/5’ \/5)

Figure 2: Boundary tension for model 1 (a), model 2 (b) and the Chien-model (c) (X-axis:
256 * v, Y-axis: 7,)

For an isotropic model, we have ANIS; = 1.

Recalling that:

I

and therefore,

% d’)/

— 7210 2—10 _1+\/ga 27
/0 i losz sl ) 0
1

d

_ /77:]og(ﬂ—1)+10g2—10g(—1+\/5), (28)
114742
3 ~ydy 1

Y R L N Y 29
0 V1+72 2 ( )
1 d 1
1142 2

for the studied models:

Mo = [ riy =0 =D+ I+ @h=g)la o= )T (31)

we obtain the following expressions:

ANISi(g,h) =1I(g,h) ifg>+V5and h> V2, (32)
ANIS,(g,h) =Y i /29> \/Bh and b < V2, (33)
ANIS,(g,h) = LMo if /29 < \/5h and g < V5. (34)

9
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Figure 3 shows the values of ANTS;(g, h) in the (g, h) plane. The minimum is obtained
for (g,h) = (v/2,v/5). This corresponding value represents a minimal bound for 3 x 3
models on a square lattice.

22

18

<16

14

1.2

1.8 2 2.2 2.4 2.6 2.8 3
9

Figure 3: The criterion ANIS; in the (g, h) plane (dark (resp. light) values represent low
(resp. high) values) of the criterion

3.4 A second criterion to quantify the non isotropy

The first criterion can be interpreted as an average non-isotropy ratio. We now quantify
the maximum of the ratio. Therefore, we define a second criterion as follows:

maxijo 1] T (g, h)

ANIT h) = .
S2(9:h) ming 1) 7(g, h)

(35)

We obtain an isotropic model if and only if ANIS5(g,h) = 1. We study the values

1

where the derivative is equal to 0 and their position with respect to 0, 5 and 1. The

minimum and maximum values of 7., for 7 € [0,1 and v € [3,1], depending on (g, k), are
respectively given in Tables 1 and 2. We then have:

max (max[oé] 7,(g, h), max;1 ) 7(g, h))

ANIS;(g,h) = (36)

min (min[o,%] 7,(g, h), ming (9, h))
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g |g<2] 2<g<b Vb<g<2: |g>3
: 2ge 2ge
min % % 2e 226
max | 2e | 2e/(g—2)2+1]2e/(9—2)%+1 %
Table 1: Minimum and maximum values of 7, for v € [0, 3] in the (g, h) plane
3 3 V2 V2 2 2
h | h<zg ggﬁhﬁﬁg ZI<h<3ig h>3g
min Zhe zhe 29 29
; . : .
max | % 2e4/(2h — g)2 + (g — h)? | 2e\/(2h — )% + (g — h)? %

Table 2: Minimum and maximum values of 7, for v € [,1] in the (g, h) plane

Figure 4 shows the values of ANIS,(g, h) in the (g, h) plane. Once again, the minimum

is obtained for (g, h) = (v/2,v/5). This corresponding value represents a minimal bound
for 3 x 3 models on a square lattice.

22

18

<16

14

1.2

1.8 2 22 2.4 2.6 2.8 3
9

Figure 4: The criterion ANIS, in the (g, h) plane (dark (resp. light) values represent low
(resp. high) values)
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4 Wulff construction at zero temperature

In this section, we describe the shape one phase takes inside the other phase. We consider
the shape of droplets of one phase placed in another phase as a measure of the isotropy
of the models. Hereafter, we give a complete classification of the 3x3 models with this
respect. We describe the droplet shape at zero temperature. We show that the droplets
are polygons. The parameters (g, h) define the polygons in unique way.

Let I1(g, h) be a shape describing the droplet given values of (g, h). To find II(g, h), we
use the Wulff construction |7]. Let §(vy) be the surface tension corresponding to the slope
7 (see the definition of the surface tension in [7] or [10]). Then, the droplet is:

Us = Myest {2 = (z1,22) € R*: (z,n) <A, }, (37)

where (z,n) = —2= + —=2=, X defines the volume of the droplet. Instead of the
ViH?2 o /1492

surface tension J.,, we use the boundary tension 7.,. The droplet II(g, h) = ¥.. Due to the

symmetries exhibited by the shapes, we can consider the part of I1(g, h) between the lines

z; =0 and z, = x; on R?. Let I1°(g, h) be this part.
In the following, we describe the shapes which we call basic. For any v € [0, 1] let:
V,={z=(21,35) €R*: (z,n) < A1, }.
Therefore, the boundary L, of the half-plane V, is given by:

T+ Y2y = A/ 1+ 27, (38)

We take A = 1. It implies that II(g, h) has different volumes for different (g, h). We can
consider TI(g, h) as a set of homothetical shapes.

The following polygons Y1, 3, 33 are called the basic shapes. We only determine the
parts X9, 29, X9 of the polygons between the lines 2y = 0 and z5 = ; located in R%. The
polygons X1, ¥y, 33 are recovered using the symmetries. The polygon parts are the set:

) = {(@1,2): 0< 2 <1,0 <@y < 2}
Y9 = {(x1,22): 21+ 22 < 1,21 > 0,35 > 0}

1 1 2
¥ = {(a;l,acQ):0§x1§%,$1+§x2§1,x1+x2§\/g}. (39)

Next propositions describe the regions where the above polygons are the droplets.
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Proposition 1 If g > 3 and h > 2 then 11°(g, h) = 0.

Proposition 2 If h <min {1,£} then 11°(g, h) = 9.

Proposition 3 If g <2 and h > 2g then I1°(g, h) = 3.

For the proofs of the propositions, we consider the three following points:

(#1(7),0) (@1(v),1)  (1(7),21())

corresponding to the points of intersections of

Lv = {(xlaxz) DT Xy = mﬂ}

with the lines 1 = 0, z; = 1, and x; = x5 respectively. We have

—2)+1,if0<y<
x?:mﬂ,:{fﬂg J+Lifl<y<s, (40)

Y(2h —g)+g—h, if 3y < 1.

1 Yg—3)+1,if0<y <L,
T = ]_+ 27—_ = 41
P=V1+72r - {V(Qh_g_ng_h, if 1y < 1. )
. 1
2= VIE? 5= 2+ 0y <, (42)
Ty T 5k g+ iR <y <L

Proof of proposition 1. Let
Ay ={(g,h): ¥, is the droplet}

and
L1(7) = {(g:h) = z1(7) > 21(0)}-
It is clear that:
Ay = Mogy<al(7)-
It follows from eqn. (41) that z1(0) = 1. Then for 0 <y < 1, we have:
z1(7) > 1 (43)

which implies g > 3 and:
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For £ <~ <1 the inequality (43) holds if 1 — g < 0 and h > 2. Therefore:

m%g'yglrl(r)/) = {(gvh) g Z 17h Z 2}

O
Proof of proposition 2. Let
Ay ={(g,h): 3y is the droplet}
and
La(7) = {(9,h) : wp(7) > 25(1)}-
It is easy to see that:
Ay = No<y<1T2(7).
Simple considerations show that:
. g
mOSyS%PQ(V) = {(g: h) : h < min {17 5}} :
and g
ﬂ%ggFZ(V) = {(ga h): g>1,h> 5}
O
Proof of proposition 3. Let
As ={(g,h) : X3 is the droplet}
and )
i) = {2t 222 (3}
2 1 (1
[3(y) = {(9; h): z3(y) > = (5) }
We have:
Ag = ﬂogyggré(ﬁ’) N ﬂ%gyglrg(ﬁ’)-
The direct calculation show that:
ﬁogyg%rzla(’)’) ={(g9,h): g< 2}
and 3
m%évélrg(V) = {(ga h): h> 59}
O
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Figure 5: The stable shapes in the (g, h) plane

On Figure 5, we show the different stable shapes in the (g, h) plane. Three main areas
respectively correspond to a square, an octagon and a rhombi. These areas are separated
by strips corresponding to mixture between these basic shapes with eight, twelve or sixteen
edges (see hachured areas). Regular polygons are obtained on the half lines h = V5,9 >3,

g=+v2,h>2and g = %h,h < V/2 (dashed lines). Finally, the more isotropic case is
obtained for (h, g) = (v/2,v/5).

5 Induced effects in image processing

When segmenting an image, the data can be interpreted as an external field. To visualize
the non-isotropy effect of the prior model, we first consider a 4-connected Ising model in
this experiment. In this case, the boundary tension is minimized for horizontal and vertical
edges. We simulate the ground state of the Ising model with a low non homogeneous
external field defined by a cylinder composed of two connected parts separated by a frontier
at a given angle (see Figure 6.a). The choice of a cylinder allows us to avoid boundary
effects. The segmentation process shows that the model behavior depends on the angle
of the frontier. The best segmentation is obtained for an horizontal frontier. For angles
corresponding to a higher boundary tension, the energy minimization leads to inaccuracy
in the boundary delineation. (see Figures 6.b and 6.c).
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a: External field

b: Segmentation result

c: Segmentation errors (in white)

Figure 6: Segmentation using a 4-connected Ising model as a prior: two adjacent rectangles
represent the two faces of a cylinder.

We now consider a more realistic case where a binary image is corrupted by a channel
noise (i.e. 20 percent of the pixels have been flipped). We want to restore the noisy
image, which defines the external field in the restoration process [2, 3]. The restored
image is the ground state obtained using a simulated annealing when adding a prior in a
Bayesian framework. We have used three different priors: the Ising model with 4-neighbors
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(e=1, h=2, g =3), the Ising model with 8-neighbors (e = %, h = v/2, g = 1++/2) and
the chien-model described in [9] (e = 1, h = /2, g = V/5). The obtained restorations are
shown on Figure 7. We can remark that the anisotropy induced by the prior produces some
deformation of the restored object. In the case of the 4-connected Ising model, we tend to
obtained a square whereas the shape is closest to an octagon when using an 8-connected
Ising model. The best result is obtained when using the chien-model which corresponds
to the optimal point in the plane (g,h).

6 Conclusion

In this paper, we have studied some Gibbs models commonly used as prior distribution in
image segmentation or restoration. The computation of the surface boundary tension and
the Wulff construction at zero temperature have exhibited a non-isotropic behavior of the
models. From this study, quality criteria with respect to the isotropy property have been
derived to justify the choice of a particular prior model for a given image segmentation or
restoration problem. Moreover, we have shown the existence of a lower bound for these
criteria when considering 3 x 3 interaction models on a square lattice. Therefore, the size
of the chosen neighborhood imposes a limit on the isotropy properties of the model. This
non-isotropy induces artifacts during a segmentation or a restoration process, as shown on
a synthetic example.

Future work will be devoted to the study of these model artifacts on small objects and
lines in an image.
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