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Abstract: We study the optimal consumption and portfolio in a jump diffusion market with
proportional transaction costs. We show that the solution in the jump diffusion case has the same
form as in the pure diffusion case; in particular, (under some assumptions) there is a no transaction
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Optimisation de portefeuilles et consommation optimale dans le cas
de diffusions avec sauts en présence de coflits de transaction

Résumé : On étudie la politique optimale d’investissement et de consommation d’un agent possé-
dant un actif non risqué et un actif risqué modélisé par un processus de diffusion avec saut, dans
le cas de cotits de transaction proportionnels. On montre que la solution a la méme forme que
dans le cas d’une diffusion pure traité par Davis and Norman [DN]. On montre en particulier qu’il
existe sous certaines hypothéses un cone de non transaction D o1 il est optimal de ne faire aucume
transaction tant que la position de l'investisseur s’y trouve et d’acheter et de vendre selon des temps
locaux sur la frontiére de D. On établit 'inéquation variationnelle intégro-différentielle associée a
ce probléme que ’on étudie par la théorie des solutions de viscosité.

Mots-clé : Controle stochastique singulier, Processus de diffusion réfléchis, Solution de viscosité,
Inéquation variationelle, Equations intégro-différentielles, Gestion de portefeuille, Cotits de trans-
action.
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1 Introduction

In this paper we study the problem of optimal consumption and investment policy in a jump
diffusion market consisting of a bank account and a stock, whose price is modeled by a geometric
Lévy process. Suppose the bank account gives a fixed interest rate r. Then the price P;(t) of this
asset is given by

dP; (t) =rP (t)dt, Pl(O) =p1 >0 (1.1)

Let P,(t) denote the price of the stock at time ¢. Assume that P»(t) is a cadlag process satisfying
the following stochastic differential equation

o0

dPy(t) = aPy(t)dt + o Py(£)dW (£) + Py(t) / 1 nN(dt,dn); P(0)=p;>0.  (1.2)

Here a > r and o > 0 are constant, W (t) is a Wiener process on a filtered probability space
(Q,F,F, P) and .
N(taA) :N(taA)_tQ(A); t>0, AEB(_LOO)

is the compensator of a homogeneous Poisson random measure N (¢, A) on RT x B(—1,00) with
intensity measure E[N(t, A)] = tq(A), where ¢ is the Lévy measure associated to N and B(—1, o)
denotes the Borel o-algebra on (—1,00). See e.g. Bensoussan and Lions [BL]|, Jacod and Shiryaev
[JS| and Protter |P| for more information about such stochastic differential equations. We assume
that

llgll := q((=1,00)) < o0. (1.3)

Note that since we only allow jump sizes n which are bigger than —1, the process P;(t) will remain
positive for all ¢ > 0, a.s.

We assume that at any time ¢ the investor can choose a rate ¢(t) that we can transfer money at
any time from one asset to the other with a transaction cost which is proportional to the size of the
transaction. Let X (¢),Y (¢) denote the amount of money invested in asset number 1,2, respectively.
Then the evolution equations for X (¢),Y () are

dX (t) = dX5M(¢)
= (rX(t) — c(t))dt — (1 + N)dL(t) + (1 — p)dM(t); X(07)=z€R
dY (t) = dY5M(1) (1.4)

o

=Y (t")(cdt + cdW(2) —i—/ nN(dt,dn)) +dL(t) —dM(t); Y0 )=yeR

Here L(t), M(t) represent cumulative purchase and sale, respectively, of stocks up to time ¢. The
coefficients A > 0, u € [0, 1] represent the constants of proportionality of the transaction costs. We
have to make a choice of version of the processes. We can either let £ and M be left-continuous,
which is maybe the natural choice from an impulse control point of view; or we can stick to the
usual set-up of stochastic integration and let all processes be right-continuous. We will choose the
latter approach.

RR n~3749



4 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

Remark 1.1. By multiplying all processes by e~"* and differentiating using the It6 formula, one will

see that the problem only depends on « and r through their difference, just like the Merton problem.
It would in fact suffice to consider the case r = 0; In this case, X (¢) would be nonincreasing except
at the times we sell stocks.

Our controls will have to meet certain conditions. The solvency region S is defined to be the set
of states where the net wealth is nonnegative:

S={(z,y) €R z+(1+ ANy >0and z+ (1—p)y >0} (1.5)

with boundaries 01S, 028 as in Figure 1.

0S: z+(1—py=0 _

Y
/
_

%

7 T
OS: z+(1+XN)y=0

Figure 1: The solvency region

It is natural to require that
If (,y) € S, then (X (¢),Y(t)) € S for all ¢ (a.s.). (1.6)

Note that in the presence of a jump term, we need to make sure that we can cover any position we
(with nonzero probability) could happen to jump to. Hence, if we define U’ C S as

U' ={(z,y); (z,y(1+n)) €S for all n € supp ¢} (1.7)
then it is necessary and sufficient for (1.6) to hold that
If (z,y) € S, then (X(¢),Y (t)) € U’ for all ¢ (a.s.). (1.8)

(Note that had we not chosen the right continuous version, we should have weakened the condition
to a.a. t.) Since we already have to deal with a cone contained in § (with equality iff ¢ = 0), we
get the following generalization more or less for free: Let U C U’ be a given open convex cone with
vertex at the origin. It will later be convenient to characterize U in terms of polar coordinates; let
OU be given by angles 6, € [—%,2T) and 6, € (61, 2F] (and such that U C U’). Thus,

U={(z,y) =Re®®, R>0; 6 <6<}
Then we will require the following:

If (z,y) € S, then (X(¢),Y(t)) € U for all ¢ (a.s.) (1.9)

INRIA



Optimal consumption & portfolio in a jump diffusion market with proportional transaction costs 5

The restriction to a (possibly) smaller cone U may be given an economic interpretation as (say,
law enforced) restrictions on short sale or leverage. Of particular interest is the case where U is
the first quadrant. This serves as the authors’ “moral justification” for the restrictive assumption
of Theorem 4.3, that the no transaction region is contained in the first quadrant (eq.(4.9)) — an
assumption we conjecture not to hold if the Merton line lies outside the first quadrant.

Definition 1.2. The set A of admissible controls is the set of consumption-investment policies
(c(t), L(t), M(t)) satisfying the following:

(i) The processes c(t), L(t), M(t) are predictable.

(ii) ¢(t,w) >0 for a.e. (t,w).

(iii) L£(t), M(t) are right-continuous, non-decreasing and £(0~) = M(0~) = 0.
(iv) Equation (1.9) holds.

The intuitive interpretation of (iv) above, is that if a jump should bring us out of U, then an
admissible control will bring us back into U immediately. Now since we have chosen to work with
the right-continuous version, then “out of U” should be interpreted as

(X(t7),Y(t7) + ANY (1) €T,

where

Y=Y () [ aN({t).dn) (1.10)

and N({t},-) denotes the jump in the Poisson random measure occuring at time ¢. Define the
performance criterion by
(1)

o
JoEM () :]Ew,y[/ e—ﬁtTdt] (1.11)
0

where 6 > 0, v € (0,1) are constants and E*Y is the expectation with respect to the probability law
P%Y of (X(t),Y(t)) when (X(07),Y(07)) = (z,y) € R%2. The problem is to find V and (if exists)
(¢*, L*, M*) € A such that

Jc,[,,M

= JOAE M (g, ). (1.12)

V(z,y) = sup (z,y)

(e,L,M)EA

In the special case when the stock price is a geometric Brownian motion (i.e., ¢ = 0) and there are
no transaction costs (i.e. A = g = 0) this problem was first studied by Merton [M]. He proved that
if

(a—r)?
— 1.1
5>’Y[T+202(1_7)] (1.13)
then the value function Vy(z,y) is given by
Vo(z,y) = Ko(z +y)? (1.14)

RR n~3749



6 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

where
1] 1 (o —7)? 71
Ky =—- 6 —yr — 1.15
°T 1—7( 7 202(1—7)) (1)
Moreover, the corresponding optimal consumption cj is given (in feedback form) by
1
co(z,y) = (Kov)" T (z +y) (1.16)

and the corresponding optimal portfolio is to keep the fraction Y (¢)/(X (¢)+Y (¢)) of wealth invested
in the stocks constantly equal to the value

a—r
(1 —=7)o?

at all times. In other words, it is optimal to perform transactions in such a way that the state
*

(X(¢),Y(t)) is always situated on the line y = I % in the (z,y)-plane (the Merton line).
—u

*

uy = (1.17)

*

In |[K] and later in [F@S| the results of Merton are extended to the case when the stock price
is a geometric Lévy process (i.e., given by (1.2)), still assuming that there are no transaction costs,
ie., A=pu =0. It is proved that the value function V(z,y) still has the same form, namely

V(z,y) = K(z +y)’ (1.18)

but with a different constant K (under an assumption similar to (1.13)). The corresponding optimal
consumption c* is given by

¢ (@,y) = (K7) 71 - ( + ) (1.19)

and the optimal portfolio is to keep the fraction Y (¢)/(X (¢) + Y (¢)) constantly equal to a value u*.
See |[FAS, Theorem 2.3]. In [FOS, Corollary 2.4] it is proved that if ¢ # 0 then

Viz,y) < Vo(z,y),
c*(z,y) > c5(z,y)
and
u* < ug.

In fact, the introduction of the jump term involving the integral with respect to N has the same
effect on the solution as increasing the volatility o.

The purpose of this paper is to study the general case with the stock price given by a geometric
Lévy process (1.2) and with proportional transaction costs. We prove that in this case there exists
a no transaction region D in the (x,y)-plane with the shape of a cone with vertex at the origin,
such that it is optimal to make no transactions as long as (X (t),Y (¢)) € D and to sell stocks at the
rate of local time (of the reflected process) at the upper/left boundary of D and purchase stocks at
the rate of local time at the lower/right boundary. These results generalize the results of Davis and
Norman [DN] who obtained similar results in the no jump case (¢ = 0). Our paper is also inspired
by the paper of Shreve and Soner [SS], who also considered the case ¢ = 0. They used, as we do,
a viscosity solution approach and were able to remove some of the assumptions in [DN]. Viscosity
solutions of combined stochastic control and optimal stopping problems for jump diffusion processes
are studied by Pham [Ph|. However, his conditions are not satisfied in the case we consider because
our utility rate % is not bounded as a function of ¢ > 0.

INRIA
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2 An integro-variational inequality verification theorem

In this section we show how to associate an integro-variational inequality to the value function
V(z,y) defined by (1.12).

First note that is we apply a Markov control ¢(t) = ¢(X (), Y (¢)) and there are no transactions,
then the generator A of the time-space process

dZ(t) = (dt,dX (t),dY (1))

is given by
: _ Oy Op  Op 1 ,,0%
A(p(s,ac,y)—a%—(rx C)&v +ayay +20 Y oy o
o a °
+ [ lotea+ ) = plo,2,) = Fs,3,0) -l da).
If ¢ has the form
(s, ,y) = e 9(,y)
then
Ap(s,z,y) = e A(z,y)
where
9] 0 1 0?
A (z,y) = ~0(,y) + (rz — L 4 ay O 4 Loy
or oy 2 oy
- » (2:2)
+ [ Wle+um) = vle) - G (0) il datn).
If (¢(t), L£(t), M(t)) is an admissible control, we will in the following let ¢; denote the jumping times
of (L(t), M(t)). The jumps of L(t), M(t) at t = t are

AL(tk) = L(t) — L(E),  AM(t) = M(ty) — M(ty),

respectively. And we let

Lot):= L) = Y ALMG),  Mc(t):=M@E) — Y AM(t)

0<t <t 0<ty <t
be the continuous part of L(t), M(t), respectively. If v is a continuous real function on § we let
Armv(Z(tr)) = v(Z(t,)) — v(Z(t;)) (2.3)

denote the jump in the value of v(Z(t)) caused by the jump of (L(t), M(t)) at t = 5. We emphasize
that the possible jumps in Z(t) coming from N are not included in Az pv(Z(tx)).
First, we give a few properties of the value function:

Lemma 2.1. a) V(z,y) is a nondecreasing function with respect to both x and y.

RR n~3749



8 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

b) V(z,y) is a concave function of (z,y).
c) V(z,y) is homogenous of degree vy, i.e. V(pz, py) = p"V(z,y) for all p > 0.
d) Outside U, the value function has the form

V(z,y) =K1-(z+ (1 +Ny)? on6 <86, and
V(z,y) =Ko - (z+ (1 —p)y)? on > 6.

Proof. a) If £ > = and § > y, then one can reach (z,y) from (Z,y) by an immediate transaction
(possibly both buying and selling at the same time).

b) This follows from the concavity of the utility function ¢ — %07 and the linearity of (1.4), as in
[AST, Prop. 3.1].

c) This follows as in [DN, Th.3.1a)].

d) Outside U, a transaction (at least) to U is compulsory, and therefore the value of a state
outside U is constant along the half-lines from U and parallell to the boundary of the solvency

region. Then the claim follows from homogeneity.
O

Part d) above now characterizes the value function outside U.

Theorem 2.2 (Integro-variational inequality verification theorem). a) Suppose there ez-
ists a nonnegative function v(z,y) € C?(S°) such that

ov Ov
Lv:=—(1 — 4+ —< 24
v (+/\)a$+ay_0 (2.4)
v Ov
My =(1—pyu)———< 2.
vim (L= = 50 <0 (25)
A% + 107 <0 onU forallc>0. (2.6)
v
Then
v(z,y) > V(z,y). (2.7)

b) Suppose, in addition to (2.4) - (2.6) that there exists é(x,y) > 0 such that

max { Lv(z,y), Alo(z,y) + %@(w,y), Muv(z,y)} =0 (2.8)

for all (z,y) € U. Define the no transaction region D by

D = {(z,y); Lv(z,y) <0 and Mv(z,y) < 0}. (2.9)

INRIA
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Suppose there exist ﬁ(t), M(t) such that W := (é,ﬁ,./\;l) 1s admissible and such that, if we put

Z0(t) == (XSEM (1), Y EM (1)) (2.10)
then we have
dv  Ov - A
(—(1+ /\)% + a—y)(Zw(t))dﬁc(t) =0 for all t, (2.11)
((1- “)Z_Z — Z—Z)(Zw(t))d/\;lc(t) =0 forallt (2.12)

where Lo(t) = L(t) — Z AL(ty) is the continuous part of L(t); AL(ty) = /j(tk) — ﬁ(t;) being
0<tp<t
the jump of L(t) at the jumping times t;, of (L£(t), M(t)), and simalarly with M.(t).
Moreover, suppose that (see (2.4)) for all jumping times ty of (L(t), M(t)) we have

Armv(Z(tr)) = v(Z(ty)) —v(Z(t;)) =0 (2.13)

for all jumping times t of (L(t), M(t));

Z%(t) € D for almost all t (2.14)
and
lim E*Y[e TRy (Z%(TR))] = 0 (2.15)
R—o0
where )
Tr = min(R, inf{t > 0; |Z%(t)| > R}).
Then

v(z,y) = V(z,y) for all (x,y) € U (2.16)

and the control W = (é,f,,./\;l) is optimal.

Proof. Several versions of this result are known. See e.g. [BL]. For completeness we include a
sketch of a proof. If v satisfies the conditions of a) then by the Ito formula for semimartingales
(see e.g. [P, Th.I1.7.33]) we have, for any admissible (¢, £, M) with corresponding state process
Z(t) = (X (1), Y (1),

Tr
B [e=Try(Z(Tx))] = v(Z(0)) + E | /0 e~ ACu(Z(t))dt]

+

s [ e 2a) - (-0 4 Nag () + 0 - pame)
0

ov _
+8_y(Z(t ) - (dL(t) — dM(t))}] (2.17)
HEY [ Y e {Ap mu(Z(t))
0<t,<Tr
_%(z(t;)) A X () — g—Z(Z(t;)) A mY (tr) }],

RR n~3749



10 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

where #j, denotes the times of jumps for (L(t), M(t)), Az mX (k) = X(tx) — X (¢ ) and similarly
for Ap mY (tr), AL(t), AM(ty) and Ap pmv(Z(tx)) == v(Z(ty)) — v(Z(t;)) as in (2.4). This can
be written

E*Y [e *TRy(Z(tg))] = v(z,y) + E*Y [/0 ! 676tAc’U(Z(t))dt:|

T v v
pE[ [t g+ S WL o)

T v v
+Ez,y[/0 (1= g—y)(Z(t))nd(t)]

—f—]Ew’y[ Z eth’“AL:,MU(Z(tk))}'

0<tx <Tr

(2.18)

Note that by the mean value theorem we have

Az aol(Z(t) = v(Z () — v(Z(5,)
— oo ) DX (0) + 52 Beaa () 2.19)

Oz
= (= @+ NG+ T )AL + (L+ )50 + 52) (Za) M),

where Z(k) is some point on the line segment between Z(t,) and Z(t;). Hence if (2.4), (2.5) and
(2.6) hold then by (2.18) and (2.19) we get

v(z,y) > limsup E*Y [/ t)dt + e TRy (Z(TR))] > Jo“M(x,y). (2.20)

R—o0

Since this holds for all admissible (c, £, M) we conclude that (2.7) holds.
To prove b) we apply the above argument to the control (¢, £, M). Then by (2.11) — (2.14) we
get equality in the first part of (2.19), so that

Tr 1 -
o(z,y) = B2 / =L ()t + e~ Tro(Z(Ti))].
0 Y
By (2.15) this gives

o(z,y) = BV /0 ” e“”%ﬁ(t)dt] < V(,y).

Combined with (2.9) this gives the result. O

Remark 2.3. Suppose the domain D defined by (2.9) is known and has a smooth boundary (e.g.
Lipschitz). Then one can regard (2.8) as a Neumann boundary value problem in D. In Section 4 we
will discuss the relation between such problems and reflections/local time of diffusions in our jump
diffusion case. Such a relation makes it possible to identify (£(t), M(t)) as the local time at 8D of
the process (X (t), Y (t)) = (X¢(t), Y (t)) obtained by reflecting (X¢(t),Y (t)) at &D in the directions
indicated by (2.11) and (2.12).

INRIA
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Remark 2.4. Theorem 2.2 shows that it is natural to associate the integro-variational inequality
1
max {Lv(m,y), sup { A%(z,y) + =}, Mv(x,y)} =0 (2.21)
c>0 Y

to the value function V defined in (1.12). However, a priori we do not know if V' is smooth enough
for (2.21) to make sense in the usual way. Nevertheless, in the next section we will prove that V
solves an equation related to (2.21) in the weak sense of viscosity.

Before we do this we establish some other useful properties of V.

Lemma 2.5. a) Suppose (1.13) holds. Let Ky be as in (1.15). Then

V(z,y) < Ko(z +y)? for all (z,y) € U. (2.22)

b) Let b be a constant such that

l—p<b<1l+A (2.23)
Suppose
d > ya. (2.24)
Then there exists K < oo such that
V(z,y) < K(z + by)? for all (z,y) € U. (2.25)

Proof. Let b be as in (2.23) and choose K > 0. We will apply Theorem 2.2a) to the function

v(z,y) == K(z + by)”. (2.26)
First note that by (2.23) we have
Lv=—-(1+ )\)B—U + G _ (—(14+X) +b)yK(z+by) "1 <0 (2.27)
or Oy
and
My = (1— )@—@—((1— ) —b)yK(z+by)"t <0 (2.28)
v = u 9z Oy = H YHRAT Y =Y :

so clearly (2.4) and (2.5) hold.
To verify (2.6) we first note that

/_o: [v(z,y +yn) —v(z,y) — Z—Z(w, n)yn) dg(n)

- K /_T[(:c +by + byn)” — (z + by)" — y(z + by)"~"byn] da(n)

=K~y / 1 [(z + by + Obyn)" " — (z + by)" byn dg(n)

RR n~3749



12 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

for some 6 € (0,1) by the mean value theorem. This integrand is negative if n > 0 (since v < 1)
and also if n < 0. Thus this integral is always nonpositive. Hence, for all ¢ > 0 we have

0

1 1 1
Aole,g) + 367 < ~0ulo) + (o )50 + oy + 30470

+ —c7

Oz 82

For b = 1 and K = Kj the last expression is nonpositive, for all ¢ > 0, because we know that
vo(z,y) := Ko(z + y)7 solves the Hamilton-Jacobi-Bellman equation for the Merton problem (¢ =
A = p = 0). We conclude that vy satisfies all the conditions of Theorem 2.2a) and a) follows.

To prove b) it suffices to verify that with v as in (2.26) there exists K < oo such that

0 0 1 0? 1
H(c,z,y) := —(5v+(rm—c)a—z +aya—u+— 2 28 12) + —07 <0.
Since ¢ — H(c,z,y) is maximal when
1
. [(Ov\1

c=c = ( &C) ,
it suffices to obtain

ov 0 1 0? 1—

Ho(a,y) = H(¢',2,9) = ~0v + ro gl + oyl + 30 5+ — L (K)TT(@ + )’ <0
which holds if - )
[— 5 Y (Ky) 7T — 6K + Kya|(z +by)? < < S0 Ky(1— )by’

for all z,y. This holds if and only if the coefficient of (z + by)? is nonpositive, i.e., if and only if

§>ya+ (’yK)vlTl (2.29)

If (2.24) holds, then there exists K such that (2.29) holds and therefore (2.6) holds for v given by
(2.26). This completes the proof of b). O

Lemma 2.6. V(x,y) is continuous on S.

Proof. The continuity of V on 8%, the interior of S, follows from the fact that V is concave. (See
e.g. [R]). If (z,7) € OS then the only admissible control is to take (Xz(t),Yy(t)) to the origin
immediately, because otherwise diffusion will bring the process out of &, almost surely. Hence
V(z,y) =0 for (z,7) € dS. So it remains to prove that

lim V(z,y) =0for all (z,y) € 3S.
(z,9)—~(2,9)

This follows from Lemma 2.5b) by choosing b=14+ A and b=1— p. U

Suppose the system is in state z = (z,y) and we decide to make an admissible transaction ¢ =
AL >0 and m = AM > 0. Then the state jumps to 2z’ = (z',3'), where (see Figure 2)

g =z—1+XNl+(1—-p)m
Yy =y+l—m

INRIA
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T,y)

[ =0,m >0 (sale)

',y

[ > 0,m = 0 (purchase)
(xl’ yl) \

(z,y)

T
oS

Figure 2: Transaction policies

Suppose we, when starting from (z,y) € S, make an immediate transaction which brings us to the
state (z',7y') € S and from then on perform optimally from (z’,3’). Then we get a performance
which is at most as good as the best possible when starting from (z,y).

Therefore we have

Lemma 2.7.
V(z,y) > V(d',y') for all (z,y) €S, £>0,m >0.
Now fix (z,7y) € S and consider the function
9(l) = gz y(@) =V(z— 1+ Nby+4L); 0<L</L (2.30)

where B
L=sup{f>0;(z— (1+N)L,y+¥¢) €S}

It follows from Lemma 2.7 that g is a decreasing function. Hence ¢'(¢) < 0 for a.a. £ € (0,£). Now

g'(£) is just the directional derivative of V in the direction (—(1 + X),1) and since 3 exists for

a.a.z for each y (by Lemma 2.1a)) we conclude that

ov. oV
") = —(1 — + — for a.a. .
910 = -1+ NGo + 5, foraa z,y.L

This gives part a) of the following result:
Lemma 2.8. a) —(1+ )\)%—‘; + %—‘; <0 for a.a. (z,y) €S,

b) (1-p)%L - %—‘; <0 for a.a. (z,y) €S.

RR n~3749



14 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

Part b) of this Lemma is proved similarly to part a) by replacing g by the function
h(m) =V(z+ (1 —p)m,y—m); 0<m<1m, (2.31)
where
m = sup{m > 0;(z + (1 — p)m,y —m) € S}.

Note that g and h are concave functions, because they are just the restriction of the concave function
V to straight lines.
For an arbitrary continuous function v : § — R we now define Lv and Mv by

—1 ifv(z— (L + N,y +£) <wv(z,y) for all £ € (0,)
f/v(w,y) =490 ifv(z— (1+Ny+L) =v(z,y) for some £ € (0,2) (2.32)
+1 ifv(z — (1 4+ Ny +£) > v(z,y) for all £ € (0,£)
-1 fv(z+ 1 —pm,y —m) <v(z,y) for all m € (0,m)
Mv(w,y) =490 ifv(z+(1—pu)m,y—m)=ov(z,y) for some m € (0,m) (2.33)
+1 ifv(x+ (1 —p)m,y —m) > v(x,y) for all m € (0,m)

Then we have seen above that
LV (z,y) <0 and MV (z,y) <0 for all (z,y) € S°.

Moreover, if LV (zo,y0) < 0 then we must have ¢'(¢) < 0 for arbitrary small £ > 0 and hence for
almost all £ > 0 by concavity. A similar argument works for h(m). This proves:

Lemma 2.9. a) If LV (xo,y0) <0, then —(1+ )\)%‘; +3 6V <0
at almost all points (z,y) = (xg — ( + A4,y + £), 0 <L<UL.

b) If MV(ﬂUo,yo) <0, then (1 — )%—Z — V. -0
at almost all points (z,y) = (xo + (1 2 myyo —m), 0<m <.

Theorem 2.10. There exist real numbers 07, 05 with 01 < 07 < 05 < 0y such that if we define

B={(z,y) =Re®’ €eU; R>0; 60<6} (the buy region) (2.34)
and
S={(z,y)=Re® €cU; R>0; 6>65} (the sell region) (2.35)
then
ov. oV =0 ae onB
LV (z,y) = —(1 + \) o + —— 2.36
(@:9) =~ )855 9y {<O a.e. onU\ B (2.36)
and
ov. oV =0 a.e onS
MV(z,y) =1 -2 -2 2.37
(z:9) = )633 oy {<O a.e. onU\S (2:37)
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oS

Figure 3: The buy and sell regions

Proof. Following [AMS] we introduce the new variables
p=xz+ (1 —pu)y (net wealth) (2.38)

and

5= (1—py

(fraction of net wealth invested in stock). (2.39)
p

Then by homogeneity we can write

V(o) =V(pll - B, p12) = V(1= 6, 1) = 9'G(),
where
—vi-pg B 1o
GO =V(1-p 7). B>

Note that G(f) is concave, because it is just the restriction of a concave function to a straight line.
Moreover,

ov 1 v 1 ov oV

—— A=) — o]

!
= (=1 4+ — 7 —
G(B) = )8x+1—u8y 1—p or Oy

Suppose there exists §* > — P such that ¢’ (6*) < 0. Then by concavity we must have G'(8) <0

for a.a. 8 > *. On the other hand, by Lemma 2.8b) we also have G'(3) > 0 for a.a. 8. We conclude
that G'(8) = 0 for a.a. 8 > B*. Therefore, if we define

5 = inf{p"; G'(8") < 0}

RR n~3749



16 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

we have

G'(B) > 0 for a.a. B < 35 and
G'(B) =0 for a.a. B> 5.
Since
B3
(1=p83)(1—p)

B> 05 < 0>0; where tanf; =
we conclude that (2.37) holds with

B3
(1-85)1—p)

tan 05 =

Similarly, by using the coordinates
I+ Ny
p
we deduce that (2.36) holds. O

p=z+(1+Ny, B=

3 Viscosity solutions
Let L, M and A€ be as in Theorem 2.2, L, M as in (2.32), (2.33) and define

Lu(z,y) = max (Lu(z,y), Lu(z, y)) (3.1)
Mu(z,y) = max (Mu(z,y), Mu(z, y)). (3.2)

We consider the following integro-variational inequality associated to (2.21):

max {f)u(x,y), sup { A(z,y) + 1c"’}, Mu(x,y)} =0in U. (3.3)
c>0 Y

We define viscosity solutions of (3.3) as follows:

Definition 3.1. a) A function u € C(U) is a viscosity subsolution in U of (3.3) if, for all functions
w € C?(U) and all zy = (z9,y0) € U such that w > u on U and w(z) = u(z) we have

max {f/w(zo), sup { A“w(z) + l07}, Mw(zo)} > 0. (3.4)
c>0 Y

b) A function u € C(U) is a viscosity supersolution of (3.3) if, for all functions w € C?(U) and all
20 = (%0, y0) € U such that w < wu on U and w(zg) = u(z9) we have

max {f/w(zo), sup { A°w(z) + lcAV}, Mw(zo)} <0. (3.5)
c>0 Y

¢) A continuous function u on U is called a wiscosity solution of (3.3) if it is both a viscosity
subsolution and a viscosity supersolution.
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Theorem 3.2. Let V be the value function for problem (1.12). Then V is a wiscosity solution of
(3.3) on U.

Proof. We know that V is continuous.

(i): V is a subsolution
Choose w € C?(U) and zy € U such that w > V on U on w(z) = V(z). By the dynamic
programming principle we have

— su 20 Te—th e—JT T
Vi) = swp E [/O D+ v (2(7) (3.6)

weA(2o

for all stopping times 7. Let € > 0 and choose an e-optimal admissible control & = (& £, M), so
that for all stopping times 7:

V(z0) < B[ /O ’ e“”%(t)dt b eV (Z ()] + ¢ (3.7)

where Z = Z®. On the other hand, by the Ito formula we have (see (2.18))

B [e~"w(Z(7))] = w(zg) + E [/OT et A%w(Z(t))dt]

20 T 6—575 o 8_’11) a_w
+E [ e (- 1+ NG + 5 (2L
ow Ow

cmol [Tt (- 52 - Sz M)

+EO[ Y e AL pmw(Z(t))]
0<tr<r

for all admissible controls w = (¢, £, M) and all stopping times 7 satisfying
T<71m:=MANinf{t > 0;|Z(t)| > M or Z(t) € 0S}

for some M < co. Combining this with (3.7) we get, with Z = Z?,

0< et B / " et (Arw(Z (1)) + %)dﬂ

0
B [0 (- 4 NG + G EWL]
FB [ [ (1= — G (20NN
+EO[ Y e AL qw(Z(t)]-
0<t <t

Let #; be the first jumping time of (£(t), M(t)). Note that since #; is an F;-stopping time we know
that {w; #;(w) = 0} is Fy-measurable and hence this event has probability either 0 or 1. So we have
either #;(w) = 0 a.s. or #1(w)) > 0 a.s. Let us first assume that #;(w) > 0 a.s. Choose

O<’TS£1/\TM.

RR n~ 3749



18 Nils Chr. Framstad, Bernt Oksendal and Agnés Sulem

Suppose Lw(z) < 0 and Mw(z) < 0. Then

ow Ow
(—(1+ /\)Z + a—)(zo) <0
ow Ow

(Q—p )g—a—y)( 0) <0.

Hence by choosing 7 to be smaller than the first exit time from a small enough neighbourhood of
2o we get from (3.9) that

E® | / ' e (Alw(Z(t)) + (E);(t))dﬂ > —e. (3.10)
0
Suppose
Ruw(z) := sgg {A%w(z) + < } =28 <0. (3.11)

Then necessarlly 5= (20) > 0 and hence by contlnulty = > 0 on some neighbourhood A of zp. But
then
ow 1 ,0%°w &

0
+(rz =85 +ays- + 500 5n + = (3.12)

Ruw(z) = oz 6 oy v

w
ds
with é = é(z) = (g—g’) = on A. It follows that Rw is continuous on A. Choosing 7 small enough,
we have e %R < 3 for 0 < t < 7 and from (3.10) we must have 0 < SE?[r] + . Now let € — 0 to
obtain a contradiction. We conclude that (3.4) holds if #; > 0. Next, if ; = 0 a.s. then we choose
7=201n (3.9) and get

E*[Az qw(Z(0))] > —e.

This implies that either Lw(zy) > 0 or Mw(zg) > 0, so (3.4) holds in this case also. Hence V is a
subsolution.
(ii): V is a supersolution.

Choose w € C?(U) and 2y € U such that w <V on U and w(zp) = V(2). Then by combining
(3.6) and (3.8) we get, for all admissible controls w = (¢, £, M) and all 7 < 1y,

02 E[ [ e (aruz) + )ai

ow Ow

vEol [T (- e nGE + S @)ac.)

e[ [ 5 - G E0) M)

+EO[ Y e A mw(Z ()]

(3.13)

Now choose M = 0 and L£(t) to make an immediate jump to £ > 0 at time ¢ = 0. Then by (3.13)
we get
B0 [A g (Z(0))] < 0
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ie.,
w(zo — (14 M), y0 + £) < w(zo,Y0)-
This implies that Lw(zg,yo) < 0. Similarly we obtain Mw(zg,10) < 0. Finally, by choosing

w = (¢,0,0) for t < 7 with ¢ > 0 constant (and 7 so small that w is admissible) we get by (3.13)
that

E# [/OT e O (A%w(Z(t)) + %)dt] <0.

Dividing by E* [7] and letting 7 — 0 we get

2

Aw(z) + % <0. (3.14)
We conclude that (3.5) holds. So V' is a viscosity supersolution. O
Corollary 3.3. Suppose V. € C?(U). Then
1
max {LV(:B,y), sup {ACV(x,y) + ;c”’}, MV(:B,y)} =0 on U. (3.15)
c>0
Moreover, with B, S as in Theorem 2.10 we have
LV(z,y) =0 < (z,y) € B (3.16)
MV(z,y) =0 <= (z,y) €S (3.17)
1
sup { AV (z,y) + ;c"’} =0 < (z,y) €U\ (B°USY). (3.18)
c>0

Proof. Since V satisfies (3.3) in viscosity sense and V € C?(U) we know that V also satisfies (3.3)
in the ordinary sense. This immediately implies that the left hand side of (3.15) is < 0. On the
other hand, if (z,y) € U is such that

LV(z,y) <0 and MV(z,y) <0

then clearly LV (z,y) = —1 and MV (z,y) = —1, so LV (z,y) < 0 and MV (z,y) < 0. Therefore by
(3.3)

1
sup {AV(z,y) + ="} = 0.
>0 Y

This proves that (3.15) holds. Then (3.16) — (3.18) follow from Theorem 2.10. O

4 Reflected jump diffusions and identification of the optimal port-
folio

In this section we identify the optimal portfolio with the local time of a reflected jump diffusion.
We start with the following result, which is an adaptation of Theorem 15 in [CEM].

RR n~3749
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Theorem 4.1. Let ¢(t) > 0 be a given adapted process. Fix 91,52 such that

01 < 6) < 6y <6,

and define
D ={(z,y) = Re’’; R>0; 6 <0<by} (4.1)
oD ={(z,y) =Re’; R>0;, 0=0,}, k=12 (4.2)
B={(z,y) =R’ €8S; R>0; 6<6,} (4.3)
S={(z,y) =R c€S; R>0; 6, <6} (4.4)

Then there exist unique adapted processes X (t),Y (t), L(t), M(t) satisfying the following Skorohod
stochastic differential equation, given by the set of conditions (4.5) — (4.8):

dX(t) = (rX () — c())dt — (1 + N)dE(t) + (1 — p)dM(t); X(07) =z R

- . o < - B (4.5)
dY (t) =Y (¢ )(adt + odW (t) + / nN(dt,dn)) +dL(t) —dM(t); Y0 )=yeR
-1
(X(t),Y(t)) € D for allt >0 (4.6)
L(t), M(t) are nondecreasing and their continuous parts, L.(t), Mc(t), (47)

increase only when (X(t),f/(t)) € 01D, (X(t),l?(t)) € 09D, respectively

AL(t) > 0 if and only if (X(t7),Y (t7) + AnY (t)) € B,
AM(t) > 0 if and only if (X(t7),Y (t7) + AnY(t)) € S,
and if this is the case then
AL(t) = min{f > 0; (X(t7) — (1 +NL, Y (t—) + AnY(t) +¢) ¢ B®}
AM(t) = min{m > 0; (X(t7) + (1 — p)m, Y (t7) + ANY (t) —m) & S°}
(4.8)

with ANY (t) as in (1.10).

Remark 4.2. The process (X(t),Y () is called the reflection of the process (X(¢0:0)(¢), v (¢0.0)(¢))
in the directions (—(1+ A),1) and ((1 — p),—1) at the two boundary curves ;D and 92D of D.
Note that we only have AL(t) > 0 or AM(¢) > 0 if either ¢ = 0 and Z(0~) & D or if Z(t) (by
the jump in the random measure term) jumps out of D. In these cases we either buy (A[, > 0) or
sell (AM > 0) immediately to bring Z(t ) to OD. See Figure 4. The two processes L(t ) M(t) are
called the corresponding local times of (X (t),Y (t)) at 8,D, doD. We see that L£(t), M(t) satisfy
the equations (2.11) — (2.12).

Finally we use this to give an explicit description of the optimal control for problem (1.12), under
some conditions:
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Figure 4: Optimal wealth process and corresponding local times investment policies
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Theorem 4.3. Suppose V € C?(U) and let 61 < 07 < 03 < 05 be as in Theorem 2.10. Suppose that

039;‘<9;§g (4.9)
and that
1, o0
§>ya—go y(1 =) —vllqll + / 1 (T +n)" —1) dq(n). (4.10)
Define
(X*,Y*, L5 M*) = (X, Y, L, M) (4.11)

~

where (X',f/,f,,/\/l) 1s the solution of the Skorohod equation in Theorem 4.1 with
0, =07, 0, =03
Put

1
, oV 7T
- (55)

Then w* = (c*, L*, M*) is an optimal control for problem (1.12) and Z*(t) = (X*(t),Y*(¢)) is the
corresponding optimal state process.

(4.12)

Proof. We apply Theorem 2.2b) with v = V. By Corollary 3.3, we know that

1
sup {AV(z,y) + ="} =0 (4.13)
c>0 Y
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for all (z,y) = Re® with 67 < @ < 65. This implies that %—‘;(a:,y) > 0 and that the value of ¢ for
which the supremum in (4.13) is attained is

. oV \ 7T
C:C((ﬂ,y): %

Hence, with é = ¢* we have (2.8) satisfied. Next, with £, M as in Theorem 4.1 we see from (4.7)
that (2.11) and (2.12) holds, while (4.6) implies (2.14). Moreover, by (4.8) and (3.16) — (3.17)
we know that V' does not change value under any of the jumps of Z(t) casused by the jumps of
(£(t), M(t)). Hence (2.13) holds.

It remains to verify (2.15). Since V(z,y) < Ko(x + y)? (by Lemma 2.5a)) it suffices to prove
that

lim E2Y[e~9TR (X" (Tg) + Y™ (TR))"] = 0. (4.14)

R—o00

To this end, note that from the dynamics of X and Y, combined with (4.9) we have, with Z* = Z%",
Cx> ~
dZ*(t) < aZ*(t)dt + o Z*(t)dW (t) + Z*(t)/ nN (dt,dn). (4.15)
-1
Hence (see the proof of Theorem 2.3 in [F@S] for details)

Z*(t) SZ(O)exp{(a—%a — gt + oW (t / / n(1+n)N(ds dn)}
and hence
Ele """ (Z*(TR))"]

< 2O ep{ (~ 5490 gt =) ~alal+ [ (@40 = 1) dal)Te}|

which goes to 0 as R — oo because by (4.10) the coefficient of T in the exponent is negative. [

For future research

Economic intuition suggests the following properties:

e The continuation region tends to the first quadrant as A — oo and u — 1. It is tempting to
guess that the boundaries of the no transaction region tend monotonically to the axes. This
agrees with the conjecture in [SS, Remark 11.3] in that when leverage is optimal in the Merton
problem, then the presence of transaction cost will reduce the leverage. We expect to see the
similar for short-selling as well. Furthermore, if these properties hold, then the 6; boundary
coincides with the i-th axis iff the Merton line does, again in accordance with the remark in

[SS].

e Let us note that if 5 = 7/2, then we face the following interesting situation: Once on the
y-axis, we have dX = 0 so that dM = cdt/(1 — p) is absolutely continuous for ¢ > 0 and
we face a pure consumption optimization problem. (A similar thing happens on the z-axis

INRIA



Optimal consumption & portfolio in a jump diffusion market with proportional transaction costs 23

if 61 = 0). It is fairly obvious that if the no transaction region has no boundaries coinciding
with axes, then £ and M are dt-singular, while they are absolutely continuous (for ¢ > 0) if
on the axes. This may be the explanation why it has turned out to be difficult to prove the
value function to be C? on the axes.

e In all cases, we conjecture that the assumptions made to ensure that the Merton line lies in
the first quadrant, are not needed.
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