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Une méthode de faisceaux du second-ordre pour minimiser la
fonction valeur propre maximale

Résumé : Dans cet article nous présentons une méthode d’optimisation non-différentiable pour
minimiser la valeur propre maximale de matrices symmétriques réelles dépendant de maniére affine de
parametres réels. Nous montrons comment une méthode de faisceaux élémentaire, appelée méthode
des valeurs propres approchées, peut étre utilisée pour assurer la convergenve (globale) de I’algorithme
du second-ordre proposé par M. L. Overton dans les années 80 et récemment revisité dans le cadre
de la théorie du U-Lagrangien. Pour montrer que I’algorithme obtenu produit une suite minimisante,
nous utilisons une description géométrique du sous-différentiel de la valeur propre maximale. Pour
garantir une vitesse de convergence quadratique, des hypothéses de stricte complémentarité et de
non-dégénérescence sont requises. Enfin nous relions notre algorithme avec une classe plus large de
méthodes de faisceaux, dédiées a la programmation sous contraintes de semidéfinie-positivité.



A secona-oraer bundle methoa for mazrimum eigenvalue problems b)

1 Introduction

Eigenvalue optimization problems have a long history: as mentioned in [25], Lagrange had already
stated in 1773 an eigenvalue optimization problem to design the shape of the strongest axially sym-
metric column with prescribed length, volume and boundary conditions. Yet it is only very recently
that it became an independent area of research with both theoretical and practical aspects. Although
the mathematical models of the underlying physical problems are generally not convex, it is notable
that the area has very strong connections with convex analysis. In fact, these problems have often a
composite structure with a convex component. The role of convex analysis was first emphasized by
R. Bellman and K. Fan in [4]; more recently, this point of view was developed further in [15] and [25].
We consider here a basic eigenvalue optimization problem

() 0 A(A()

where A;(X) is the largest eigenvalue of X = A(z), element of S, the space of n x n symmetric
matrices and

is affine: Ay € S;, and A is a linear operator from R™ to S,.

Existing numerical methods to solve (P) can be arranged in two classes: interior-point methods and
nonsmooth optimization methods. The first interior-point methods for solving (P) (in the framework
of semidefinite programming) were developed by Nesterov and Nemirovski [30]. With the exception
of Nemirovski’s projective method [31, 26], all the interior-point schemes proposed in the early 1990’s
(see the numerous references in [5, Chap.II, Notes and References|) were path-following or potential
reduction methods. As recently explained in a clear survey by Yu. Nesterov [27], “classical” interior-
point methods can be seen as a process to transform the initial problem into an equivalent one
which can be solved “easily” thanks to an addition of structure: self-concordance is used to obtain
the polynomiality of interior-point schemes [31]. A similar presentation can be done for predictor-
corrector type methods using small neighborhoods; many variants of them can be found for semidefinite
programming: to give only a sample we refer to [2, 38, 21].

Our approach is quite different but, as we will see, does not exempt us from finding a trade-
off between global and local requirements, i.e., between total complexity and speed of convergence.
Starting directly from problem (P) itself, we will use a recent second-order theory, namely the U-
Lagrangian theory [24], to speed up the asymptotic convergence of a first-order method developed by
Cullum, Donath and Wolfe [6] for a particular instance of (P) (A diagonal), and by Polak and Wardi
[37] in a more general framework. Using the terminology of [16, Chap. XIII], the method can be seen
as a Markovian dual bundle method: at each iteration an approximation of the e-subdifferential is
computed, via a bundling process, without using information from the previous iterations. We call it
the approximate eigenvalue method. More recently a stabilization of the cutting planes algorithm was
proposed in [39] and enriched in [19, 14, 23, 13| with semidefinite models of the objective function;
this belongs to the class of primal bundle methods [16, Chap.XV] which are very efficient to solve
large-scale problems with a moderate accuracy.

When high accuracy is needed, second-order information must be added in the model. Combining
a geometrical and the Sequential Quadratic Programming approaches, a local algorithm was presented
and analyzed in [10], [34], [36], [35] and [41]; in the latter two papers, a quadratic rate of convergence
was obtained. Yet, in this SQP framework, the authors considered only a local analysis; issues of
global convergence were not addressed.

In this paper, we present, as in [33], the second-order analysis of the maximum eigenvalue function
using the U-Lagrangian theory [24] and we show how to use the approximate eigenvalue method to
globalize the second-order algorithm while preserving asymptotically a quadratic rate of convergence.

Our paper is organized as follows. We first recall some well-known results on the first-order analysis
of A1. Then using simple chain rules, we derive easily a first-order analysis of the composite function
RR n°3738
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f := A10A. This enables us to simplify the approximate eigenvalue method developed in § 3: at a point
x we consider the enlargement of the subdifferential of A\; obtained with eigenvectors associated with e-
maximal eigenvalues; this set . f(z) plays the role of an approximation of the the true e-subdifferential
0 f(z). By measuring the quality of this approximation, we provide an explicit e-strategy to ensure
global convergence of the method; this is an improvement of [32, Theorem 5.5] where the distance
between the exact subdifferential of A\; at X € S,, and its e-subdifferential was considered. In §4, we
present the second-order analysis of A\; using the U-Lagrangian theory. We recall the main result of
[33]: this theory provides us with a second-order development of A; along a smooth manifold: the set
M, of matrices whose largest eigenvalue has multiplicity r. We derive similar results for f with a
so-called transversality condition. Then, in § 5, we show how to use the approximate eigenvectors (§ 2)
to introduce some viscosity in the second-order objects presented in §4. In particular we provide a
constructive characterization of the projection of a matrix X € S, onto the manifold r. (Theorem 5.5).
This results in a second-order bundle method which is globally and quadratically convergent. With no
additional assumptions, a minimizing sequence is generated. Some strict complementarity and non-
degeneracy assumptions are needed to guarantee the quadratic rate of convergence. In § 6 using some
duality, we explain how the approximate eigenvalue bundle method is related to a new generation
of spectral proximal-type bundle methods in which second-order information can also be introduced.
Finally we have chosen a numerical example from combinatorial optimization to illustrate a qualitative
distinction between interior-point methods and second-order bundle methods: for the latter methods,
superlinear convergence can be observe even when sctrict complementarity does not hold.

For the convenience of the reader an appendix explaining the notation is given at the end of the

paper.

2 First-order analysis

In this section we recall elementary results for the maximum eigenvalue function: the subdifferentials
of A1 can be characterized as exposed faces of a compact section of the cone of semidefinite matrices.
Then we propose an enlargement of the subdifferential of A\; based on the computation of approzimate
eigenvectors and a vertical development of A1, i.e., a development of the function ¢ — f!(z;d). We
derive similar results for f := A{ o A using a simple chain rule. This will lead us to the main result of
this section: any direction d separating 0 from the chosen enlargement of df(x) is a “good” descent
direction.

2.1 Subdifferentials and faces

In this paragraph we give explicit descriptions of the subdifferential and the approximate subdifferential
of A1. In this analysis, a convex compact set plays a paramount role: the intersection of the cone of
semidefinite matrices with the hyperplane {V € S, : trV = 1},

Crn={VeS:V=0trV=1}. (2)

The following result is well-known; the proof is easy to derive via the spectral decomposition of
symmetric matrices.

Lemma 2.1 The convez set C, is the convex hull of rank-one matrices:

Cn = co{qq” : gl =1}

Using Rayleigh’s variational formulation

INRIA



A secona-oraer bundle methoa for mazrimum eigenvalue problems 0

together with Lemma 2.1, a support function formulation is obtained:

M(X) = og (X). (3)

As in [15], we will favor the support function formulation since it will be our main tool in the analysis
of §2.3 . In order to describe the exposed faces of C,, (Theorem 2.3), we first establish the following
technical result.

Lemma 2.2 Let X and Z be in S,; let Q = [q1,--.,¢:] be an n X r matriz whose columns form an
orthonormal basis of ker X.

(i) Then, XZ =0 if and only if there exists Y € S, such that Z = QY Q7.

(ii) Assume in addition X, Z € S;; then (X,Z) = 0 if and only if there exists Y = 0 such that
Z=QvQr.

Proof. [(i)] We have XZ = 0 if and only if range Z C ker X = span{qi,...,¢-}. This is equivalent to
saying that Z belongs to the subspace

span{qiq] +q;q; 14,5 =1,...,7} = Q5Q".

[(97)] When X and Z positive semidefinite, a consequence of the Schur product Theorem [17, §5.2] is
that tr XZ = 0 if and only if XZ = 0. Then, via (i), Z has the form QY QT it is positive semidefinite
if and only if Y > 0. O

The following theorem recalls previously known geometrical descriptions of 9A1(X) (see [10] or
[34]) and, along the lines of [15], makes an explicit link with the exposed faces of C,,.

Theorem 2.3 (i) Let X € S,, and let Q1 be an n X r matriz whose columns form an orthonormal
basis of E1(X). The face of Cy, exposed by X is

Fo (X)={QiYQ[ :Y €Cr} =co{qq” : llgll = 1,9 € E1(X)}; (4)
it is the face ezposed by any X' € Sy, such that E1(X') = E1(X).

(ii) The subdifferential of A1 at X is
oM (X) = Fp, (X). )

Proof. [(7)] Realize first that

cofqq” : lall =1,q € Bo(X)} = {QY Q] : Y €Cp} (6)

Indeed write any normalized vector of F1(X) under the form ¢ = Q12, with z € K" and ||z|| = 1. We
get
cof{gq” : [lgll =1,¢ € Ex(X)} =co{Qiz2"Q] 1z €W, || =1}
= Qreo{zz" 1z € R, |1zl = 1}QT

where, in view of Lemma 2.1, co{zz” : z € K", ||z|| = 1} = C,. Now, by definition of an exposed face,
Z € Fp (X) means
Z €Cy and (X,Z) =0 (X)=XM(X),

or equivalently,
Z €Cp and (M(X)I, — X,Z)=0.

Altogether, (4) is obtained with Lemma 2.2 and F; (X') = F¢_(X) if and only if ker (A (X)I, — X) =

ker (A (X, — X'), i.e., B1(X) = Ey(X").

[(44)] It is well known that the subdifferential of a support function oz at a point X is the exposed

face of C,, exposed by X [16, Example VL.3.1]. O
The description of the approximate subdifferential is also obtained directly from the support func-

tion formulation of A;.

RR n°3738
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Theorem 2.4 For all ¢ > 0, we have
oIMX)={Z€C,:(Z,X) > (X)—¢} (7)

Proof. The approximate subdifferential of a support function is given in [16, Example XI.1.2.5]. Then

(7) follows immediately. In [44] the same result is obtained via an analysis of the conjugate function

of \1. O
The directional derivative of A\; has an easy expression.

Theorem 2.5 For all D € S,,, we have
Xi(X;D) = M (Q] DQy).
Proof. Use (60) and (5) to obtain
M (X;D) = oa)\l(X)(D) = maxy ¢ (D, Q1Y QT
= maxXy ;. (@I DQ1,Y) = M(QTDQ1).
This completes the proof. This result was already established using perturbation theory in [22] and
can also be found in [15], [41]. O
It is well-known in nonsmooth optimization that the descent property A} (X;D) < 0 of a direction
D is unstable, the function X +— M| (X; D) being discontinuous. Minimization algorithms based on this

mere property are usually not convergent, because descent along such directions may be numerically
insufficient. One is much more interested in e-descent directions, for which

1:(X;D) == 790 (x) (D)

is negative. Said otherwise, these directions separate 0 from 9:A;(X) the continuity of X — X| _(X; D)
[16, Theorem XI.4.1.3] guarantees the numerical efficiency of such directions. Yet the difficulty here is
to get a separation algorithm, and this is the rationale for dual bundle methods [16, XIII,XIV]. This
paper follows the same approach; but, instead of separating 0 from 9. A;(X), we use the structure of
our specific problem to provide a tractable “good approximation” of the latter set.

2.2 Enlargement of the subdifferential

Since A; is the support function of a convex compact set, it can be seen as an infinite-max function.
Then a first idea could be to consider the enlargement proposed in [8, Chap. VI]: the convex hull of
the gradients of e-active functions. Here the functions are linear and it is easy to see, via (7), that the
obtained enlargement is exactly the e-subdifferential of A;. In [6], J. Cullum, W. E. Donath and P.
Wolfe introduced a smaller set: they considered the eigenvectors of eigenvalues at a distance ¢ from
A1(X) and the convex set generated by the associated rank-one matrices.

Definition 2.6 For X € S, and € > 0 we define

o the set of indices of e-largest eigenvalues
Ig(X) = {iE{l,...,n}:/\i(X)>A1(X)—€}, (8)
o the e-multiplicity of A\1(X) : o := max{i : i € I.(X)},

o the e-first eigenspace: E (X) := ®icr,(x)Ei(X), where E;i(X) is the eigenspace of X associated
with the ith eigenvalue \;(X),

e its orthogonal complement: F.(X) := @i¢r.(x)Ei(X),
o the “spectral separation” of e: A (X) = A\ (X) = A 1(X).

INRIA
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Pseudospectrum. The notions of approximate eigenvalues can be connected with the recent theory
of pseudospectra of linear operators [43, 42]: this notion is mainly used to cope with the lack of
regularity of nonsymmetric matrices; here, for symmetric matrices, a pseudospectrum can also be
useful. Indeed it enables us to recover more than first-order regularity of the largest eigenvalue
(precisely some local regularity of the set of approximate subgradients). For a normal matrix (in
particular for a symmetric matrix) the e-pseudospectrum comprises the union of the closed balls of
radius € about each eigenvalue. In fact we consider here one of these e-balls, the one centered at A;(X),
and we take its intersection with the spectrum of X. The important role played by the approximate
eigenvalues justifies the wording approzimate eigenvalues method.
O
Take now an n X r, matrix . whose columns form an orthonormal basis of E.(X). Then we define
the following compact convex set:

8eA1(X) == cofee” : [le]| =1, e € E(X)}. (9)
or equivalently, via Theorem 2.3,
8eMi(X) ={Q:YQ{ Y €Cp} = F (Q:Q7) = 9M(Q:Q7). (10)
This set is an outer-approximation of 9A;(X) and an inner-approximation of 9:A;(X):
Proposition 2.7 Let X € §,,. Then for all € > 0, we have
oA (X) C oM (X) CONM(X). (11)

Proof. The inclusion OA;(X) C 6:A1(X) derives directly from (4) and (9). Another easy inclusion is
6:M1(X) C Cp. Takenow Z € 6:M1(X): Z = Q.YQT withY € C,_ implies (Z, X) = (Y, QT AQ.) > \,.
since
QT AQ. = diag (A1(X), ..., A (X)) = A1y,

and trY = 1. Together with (8), we obtain (Z, X) > A\(X) — ¢; since Z € C, this means, according
to (7), that Z € 0:A1(X). O

A crucial point consists now in quantifying the (Hausdorff) distance between our enlargement and
the approximate subdifferential. One way to proceed is to get a vertical development of A;.

2.3 Vertical development

The notion of vertical development is presented in [33]. It will result in Theorem 2.11, which gives an
explicit upper bound for the distance between the approximate subdifferential and the enlargement
0:A1(X). We start with some linear algebra.

Lemma 2.8 Let U € R™*" be such that UTU = I,,. Then, there exist n x n matrices (E., F.,%,T)
such that

the columns of E. are unit vectors of E.(X) (a)
the columns of F¢ are unit vectors of F.(X) (b)
Y and T are diagonal and positive semidefinite (c) (12)
41?2 =1 (d)
U=EX+FET (e)

Proof. In [33, Lemma 5.2], we give a constructive proof of this result for ¢ = 0. There is no difficulty to
see that the same proof can be applied here by decomposing each column of U on E.(X)® F.(X) = R".
O

The decomposition R = E.(X) & F.(X) provides us with some useful relations.
RR n°3738
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Lemma 2.9 Let (E., F.,X,T) be a quadruplet satisfying (12)(a,b,c,d) and © = diag (04,...,0,) € Cy.
Then we have,

ETAF, = FTAE, =0 (a)
)‘7‘5 (X) < <X7 (EE(")EET» < )\I(X) (b) (13)
(X, F:0F) < A\p41(X) (c)
tr (2OT) < [tr (TOT)]/? (d)

Proof.

[a]: The subspaces E.(X) and F.(X) are orthogonal and invariant by X. Then the columns of X F,
are in F.(X) and they are orthogonal to the columns of E.. This implies (a).

[b]: Since E.OFET =P  0;e;el’, where the e;’s are the columns of E,, we have

p
(X,E.0ET) =" 6e] Ae; .
=1

Now use the fact that for all unit vectors e € E.(X), A\.(X) < eTAe < M\ (X), together with
O = diag (#1,...,0,) € Cp, to get (b).
[c] Similarly to [b], we have

p n
(X, FLOFT) = 3" 0,7 Af; < A1 (X)(365) = A1 (X).
i=1 i=1

[d] Note that ¥ < I,, and ©T is (diagonal) positive semidefinite to get
tr (20T) < tr (0T). (14)

Now use © = diag (64,...,6,) € C,, and T = diag (¢1,...,t,) = 0, together with the concavity of the
square-root function, to obtain

S0t < (3 02
i=1 i=1
In matrix notation, this means tr (OT) < [tr (TOT)]'/2. Together with (14), this gives (d). O
We can now give a key result toward relating the two sets of (7) and (10).

Proposition 2.10 Let X € S, € > 0 and n > 0. For all V € 0y (X)), there exists G, € 6.\ (X)
and five n x n matrices (Ee, F.,%,T,©) such that

(E., F.,2,T) satisfies (12) (a, b, c,d) (a)
© = diag (#,...,0,) € Cy, (b) 15
Z =G, + (E.XOTF! + F.XOTEY) + (F.TOTF! — E.TOTEY) (c) (15)
e TOT < X =% 2 (%) = Boni(X) (d)

Proof. Write the spectral decomposition of Z € 9,A1(X): there exists U € R**", such that vl =1,
and a diagonal matrix © such that Z = UOQUT. In view of (7), we have ® € C,. Then, apply
Lemma 2.8: U = E.X + F.T where (E., F.,%,T) satisfies (12)(a,b,c,d)‘ Substituting this in the spectral
decomposition of Z, we obtain

Z =G, + (E.2OTF! + F,.TOXET) + (F.TOTF! — E.TOTEY), (16)

where G, := E.QOE! = P f;e;el and the e;’s are unit vectors of E.(X). According to (10), this
means G, € 6:A1(X). Then (a,b,c) are satisfied. In order to prove (d), take the scalar product of X
with the left- and right-hand side of (16) and use (13)(,; . q) to obtain

A (X) + A1 (X) = A (X))t (TOT) > (X, Z) .
INRIA
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Since Z € OyA1(X), we have together with (7), (X, Z) > A(X) — 5. This enables us to complete the
proof. O

The following result says that §.A;(X) is a good approximation of d,A;(X) for n small enough,
depending on the spectral separation of Definition 2.6.

Theorem 2.11 For alle >0, 7> 0 and D € S, we have
{45 D) < 0y 5 () (D) + pn.€) D], ar)

or equivalently,
IA1(X) C 6 A(X) + B(0,p(n,¢€)), (18)

where p(n, €) := (525" + (535)-

Proof. Let € > 0,7 >0, D € S, and Z € 9\ (X). From (15)(6), we obtain

(Z,D) = (G.,D) + (2OT,E' DF. + F'DE.) + (TOT,FI DF. — E'DE,).
Let us bound each of the three terms from above. First, G € 6:A1(X) implies
(Ge, D) <045, (x)(D) - (19)
Then, denoting (X07T) = diag (0161t1,-..,0,0,t,), we have
n
(SOT, B DF. + F/DE) = 3 0ifiti (D eifi + fie] )]
i=1
Now, use the Cauchy-Schwarz inequality, together with ||e; fT + fiel || = v/2, to get
(20T, ETDF. + FT'DE,) < V2||D|tr (2OT). (20)
Similarly we have for the last term

<T®T7 Fz—,TDFE - EgDE6> ?:1 ezt'? [<D> fozT - eieT)]

<t (xO1) D] (Ifif7] + lesel ) (21)
< 2te(TO7) D],
since ||f;f'|| = ||le;el || = 1. Putting together (19), (20), (13)-(d) and (21), we get

(2,D) < o5y, (x)(D) + V2D (tr (TOT))'* +2|| D] tx (TOT). (22)

Together with (15) 4, we obtain (17); (18) is the geometrical form of (17). a
We will use this result in a simplified form.

Corollary 2.12 Let X € S, € > 0 and n € [0, #] Then for all D € S, we have

87
19(X; D) < 75,2 (X) (D) + (m)WHDH- (23)
Proof. Since n < #, we have 0 < ﬁ)ﬁ < (ﬁ)ﬁ)lﬂ which, together with (17), gives (23). O

Finally, we show we have s simple expression for the support function of 6. A;(X): it is the largest
eigenvalue of an 7. X r; symmetric matrix.

Proposition 2.13 Let X € §,,. Then for alle >0 and D € S,,, we have

75,0 (x) (D) = A (QIDQ:). (24)
Proof. The set 6:A1(X) has the same structure as OA;(X); the proof is then similar to that of Theo-
rem 2.5. |

In the following paragraph we extend these results to the composite function f := A1 o A.
RR n°3738
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2.4 Composition with an affine mapping

We recall that A denotes the linear part of A(-) and A* its adjoint. First-order composition is based
on the following elementary chain rule.

Proposition 2.14 For x € R™ and € > 0,

O:f(z) = A*0: M1 (A(z)) - (25)
Proof. This is a straightforward application of the chain rule given in [16, Theorem XI1.3.2.1]. |
Then an enlargement of df(x) is the following convex set:
b f(x) == A6 M1 (A(w)) (26)
and its associated support function
Fi(a; d) = 05, (@) (27)

Here we use the notation fé(a:, d) to emphasize the analogy with the approximate directional derivative
of f at x:

I . -—_
fe(z; d) == 0 ¢()(d).

Applying the linear mapping A* in (11), it comes

Of(z) C 6o f(z) C O-f(x), [geometric form] (28)
or equivalently }

f(z;d) < fi(z; d) < fl(z;d), |analytic form]

The quality of this approximation is derived from inequality (23): for all ¢ > 0, 5 € [0, A;(A(z))] and
deR™,

fi(w d) < fl(a d) + <%>WHMH < fi(a; d) + <%W%ndn , (29)

where k := SUP)|| ]| =1 |l A(x)]| is the largest singular value of A.

Furthermore, it is straightforward from (24) and (26) that f'(z; d) is also a maximum eigenvalue:
Fila; d) = M(QT (Ad)Q:) - (30)
In particular for ¢ = 0, we have
folw; d) = f'(z3d) = \(Qu(ADQT). (31)
Ideally we would like to choose € > 0 and find a so-called direction d of e-descent.

Lemma 2.15 ([16, Lemma XITI1.1.2.3]) Suppose that d € R™ is a direction of e-descent: fl(x;d) <
0. Then the set of all t > 0 such that f(z +td) < f(z) — e forms a non empty interval.

The difficulty here is that 0. f(z) is so rich that computing its support function f’(z;d) for a given
direction d or a fortiori looking for the best e-descent direction ArgminH d||=1 f'(z;d) seems to be as

expensive as the original problem (P). Therefore instead of working with 0. f(xz) we deal with its
inner approximation 6, f(z). Equality (30) quantifies the effort needed to evaluate f/(z; d): it requires
the computation of the largest eigenvalue of an 7. X r. matrix. We can now specify to what extent a
direction d € R™ satisfying at z € R'™ )
fi(z; d) <0, (32)
is a “good” descent direction.
INRIA



A secona-oraer bundle methoa for mazrimum eigenvalue problems

Theorem 2.16 Let x € R, ¢ > 0 and d € R™ be such that (32) holds. Then

(i) d is a direction of n(z,€)-descent, where

~I - 2
n(z,e) == [%] A (A(x)).

(ii) In addition, assume there ezist w € [0,1], 6 > 0 and p > 0 such that

fla; d) < —w|ld|l?, (33)

|d|| > & and A:(A(z)) > p; then ,
woe) > [2] . (3)
Proof. 1t is straightforward from (29). O

Remark 2.17 Let g € 6.f(x) be such that d = —g satisfies (33) for w = 1; then g = projésf(a:) 0.

When w €]0,1], g is an approximation of this projection. In § 3.1, we present a separation algorithm
to obtain such directions.

3 First-order algorithm

We describe here an iterative process to compute 7-descent directions using the information stored in
8- f(z), n and ¢ being related as in Theorem 2.16. Then the step-length is determined with a (finite)
dichotomous line-search for 7-descent. The approximate eigenvalue algorithm and its convergence
analysis complete the section.

3.1 Projection problem

The problem we want to solve is
. 2
min _|g|%. (35)
!Ieéaf (‘T)
This problem is a quadratic optimization problem over the cone of positive semidefinite matrices.
Indeed, in view of (26) and (10), program (35) is equivalent to

min [ A*(Q.Y QD)|”
Y >0 (36)
trY =1.

In [35], a similar projection problem is encountered. The authors adopt the following approach:
instead of projecting onto é.f(x), they project onto aff 6. f(z), i.e., the constraint Y > 0 is replaced
by Y € §,.. This leads them to a quadratic problem with linear equality constraints which can be
solved with classical (and efficient) techniques. Yet this approach has a major drawback: when the
minimizer is not positive semidefinite, we have no interpretation for the resulting projection; one has
to escape from the current iteration and to change the multiplicity r..

Here we compute an approximation g of proj 8. f(x) 0: we require

ry 2
fi(z; —g) < —wllgll*,
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where w €]0,1] is a tolerance that controls the proximity of ¢ from the projection proj 5. f () 0 (see
Remark 2.17). The algorithm we present here is essentially the one proposed by J. Cullum, W.E.
Donath and P. Wolfe in [6]. It is an instance of a general scheme, called the support-black box method
in [16, §1X.3] to minimize a quadratic form on a convex set. This algorithm is in fact a separation
algorithm that was first exposed in [12]. Nowadays two other alternatives are proposed in the context
of proximal type bundle method: one consists in calling an interior-point method subroutine [14] and
a more recent one proposes to compute an explicit solution in a well chosen metric [13].
SUPPORT-BLACK BOX METHOD

Step 0. Set [ =1 and s = 57 € 6. f(z).

Step 1. Compute d; = —projp, 0, where P, = co{s1,..., 8}

Step 2. Compute s;41 € 8. f(z) such that

sla—ldl = Uégf(l') (dl) .

Step 3. (Stopping criterion). If 5. f () (d}) < —wl||d;||* then STOP.
Replace I by [ + 1 and return to Step 1.

O
Note that s;;; in Step 2 has the form A*wuu? where u is a unit eigenvector associated with
M (QT(Ad))Q.). During the separation process a bundle of e-subgradients {sy,...,s;} is generated;
in that sense the first order method presented in this section is a bundle method.
The convergence of the support-black box method is investigated in detail in [16, §IX.3]. In
particular, we have the following properties.

Proposition 3.1 The support-black box method at x € R™ with w €]0, 1] converges in a finite number
of steps. Assume that the e-Strict Complementarity condition holds at x € R™,

(SC)e projégf(l_) 0€rib.f(x).
Then finite convergence is obtained also if w = 1.
Proof. Set g := projg f(z) 0. Then the results are directly derived from Theorem IX.3.3.3 and Pro-
13
positionIX.3.3.4 in [16]. O

Remark 3.2 The complexity of the support-black box method is not explicitly known. It seems that
the number of steps will depend on the condition number of the linear operator

8.3 Y = Ku(¥) 1= QY QT — (). (31)

Requiring that . is not singular was already a condition introduced in [35] and was the first apparition
of the notion of transversality in semidefinite programming although it was not named as such. The
connection is clearly established in [41].

3.2 Line-search

Let z € R™ and d € K™ be produced by the support-black box method of § 3.1, so that f(z; d) < 0.
Then, according to Theorem 2.16, the objective function can be decreased by a positive number 7(z, €).
The problem we consider is now: find £ > 0 such that

flz+1td) < f(z) — n(z,e). (38)
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When assumptions of Theorem 2.16 (i) hold, a simple line-search for 7-descent can be presented. We
expose here a line-search based on a dichotomous scheme controlled by a 7-descent stopping criterion.
For an advanced implementation we refer to [16, Remark XIII.2.1.2].

LINE-SEARCH

Step 0. Set t; =0, tg = 400 and ty = 1.

Step 1 (work). Obtain ¢(t) := f(z + td) and ¢/, (t) := f'(z + td, d) using (31).

Step 2 (n-descent test). If (38) holds stop.

Step 3 (Dichotomous search). If ¢', (t) > 0 set tg := ¢; else set ¢, = t. Compute ¢ = L2, O

Theorem 3.3 Let x € R™, ¢ > 0 and d € R™ be satisfying the assumptions of Theorem 2.16 (i3).
Then the line-search for n(z,e)-descent stops after a finite number of steps.

Proof. From Theorem 2.16 (ii), the quantity n(z,¢) is strictly positive. Use now Theorem 2.16 (4),
together with Lemma 2.15: {t:€ Ry : f(z +td) < f(z) —n(z,d)} is a non empty interval. Therefore
the dichotomous scheme will detect one of its elements after a finite number of iterations. O

3.3 The approximate eigenvalues algorithm

To get a simple convergence analysis, the first-order algorithm we present here will use the following
e-strategy (see Figure3.3). Choose first a tolerance £ > 0. Then define at z € R™

Figure 1: e-strategy

((Re(z):={re{l,....,n—1} : \,(A(z)) — A\r11(A(z)) > %’},

F(z) = { {r:r € minRs(z)} if Rg(.’L:) # 0
n otherwise, (39)

f(@) = Moy (A(2)) + 5 if Re(z) #0

L 3 otherwise.

Here, £ is the final tolerance: Algorithm 3.4 below is aimed at minimizing f within a tolerance £.
With reference to Definition 2.6, observe that 7(x) is the e(z)-multiplicity of A1 (A(z)). If R=(z) # 0,
the spectral separation of ¢(z) is larger than . Moreover we have A.(A(z)) — Ar41(A(z)) < £, for
r=1,...,7(z) — 1, when 7(z) > 1.
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Algorithm 3.4

Step 0 (Initialization). Choose the tolerances § > 0, &€ > 0, w €]0, 1[; initialize z := zy € R™.

Step 1 (Separation). Set ¢ := ¢(z) and compute d € —6, f(z) satisfying (33) with the support-black
box method.

Step 2 (Stopping criterion). If ||d|| < § stop.

Step 3 (Line-search). Compute ¢ such that

f(z +td) < f(z) — n(z,e),

with the Safeguarded Armijo Line-Search.
Step 5 (Update). Replace z by z + td; return to Step 1.

O
To ensure that our problem (P) makes sense, we assume that f is bounded from below. We have:

Lemma 3.5 The function f is bounded from below if and only if

(%) 0 e A*(Cyp),
or equivalently,
) (range A)- NS # {0}.

Proof. From convex duality [16, Chap. X], —f*(0) = infyerm f(x), where f* is the conjugate function
of f; as shown in [44], we have

—f*(0) =sup{(Z, Ag) : Z € C,, Nker A*}.

Then f is bounded from below if and only if C,, N ker A* # (), which is clearly equivalent to (7) and
(73). Note that (i¢) can be directly obtained from [26]. O
This leads us to the following result.

Lemma 3.6 For all x € R™, the parameter e(x) of (39) is not greater than &. Therefore

As a result, if f is bounded from below, we have

() AmlA) > Z,
(ii) or Oe( gs(x)f(x). (41)

Proof. Take x € R™ and consider the two following cases.
[Re(z) # 0]: by construction of e(x) (39), (i) holds: A4 (A(z))

Y

%_. Furthermore

e(z) = f(z) — Ap(a) (A(z)) + 5 < (7(z) — <e;
together with (28) and the fact that the set-valued function ¢ — 0. f
(40).

[R: = 0]: we have 7(z) = n and e(z) = . Hence (40) still holds. Then from (10) and (26), we have
be(z)f () = A*(Cp). On the other hand, we know from Lemma 3.5 that f bounded means 0 € A*(Cy,).
This implies (7). 0

~—~~

z) is not decreasing, this gives

Remark 3.7 In practice we will use € bigger than e(x): at each iteration k we choose g in [0, max{e(zy), 0%eo}|
such that A, (z3) is maximized, where 6 6]%, 1[ is a given parameter which forces the convergence of
€ towards &.
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We are now in a position to prove finite convergence of Algorithm 3.4 towards an approximate solution
of (P).

Theorem 3.8 Assume that f is bounded from below. Then Algorithm 3.4 stops after a finite number
of iterations, yielding T satisfying the approrimate minimality condition

fy) > f(z) —€—6lly — z|| for all y € R™

Proof. While ||d|| > 6, we have 0 ¢ &,(;)f(z) and according to Lemma 3.6, A,;y(A(z)) > £. Together
with (34), this gives us f(z) — f(z +td) > n(z,e) > [T—:]Qg. Then Algorithm 3.4 must stop before N
steps, where N is the first integer satisfying

mé? N
ml i< o,

3
n

f(évo)—N[

4 Second-order analysis

As with the first-order analysis, a convenient approach consists in studying the second-order behavior
of A\; and then deriving that for the composite function f = A; o A by chain rules. Yet, even though
their formulation is simple, chain rules are not easy to obtain here; as explained in [33], we need to
introduce a geometrical condition to get them.

4.1 The U-Lagrangian of )\,

For a presentation of the U-Lagrangian theory in a more general framework we refer to [24]. The
second-order analysis we present here starts with the following idea: consider at X € S, the largest
subspace where )| (X;-) is linear.

Definition 4.1 At X € S,,, we define
UX):={U €S, : N(X;U) + X[ (X;-U) =0},
and V(X) :=U(X)* .

The subspaces U(X) and V(X) are also characterized as follows.
Proposition 4.2 ([24]) Let X € S,,.

(i) For any G € rioX(X), U(X) and V(X)) are respectively the normal and tangent cones to O (X)
at G.

(ii) U(X) and V(X) are respectively the subspaces orthogonal and parallel to aff OA(X).

O

A first attempt to reach second order could consist in introducing the function induced by A; in

U(X). Yet, proceeding this way we would miss a major fact: a good model of A\; must consider the

local behavior of all “active constraints” at X. At this stage geometry can help: it suggests fixing the

multiplicity (i.e., the “activity”) of A;; this point of view is the one adopted in [36]. The “surface of
activity” is defined as

My = {M €Sy : M(M)=...= (M) > i1 (M)}.

Reference [3] is usually proposed to prove the smoothness of M,. In fact, it can be obtained as a
simple consequence of the Constant Rank Theorem [40, Chap.III §9]. This gives us a geometrical
interpretation of the subspaces U(X) and V(X).
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Theorem 4.3 ([33, Corollary 4.8]) Let X € M,. The subspaces U(X) and V(X) are respectively
the tangent and normal spaces to M, at X:

UX)={U€S,:QTUQ: - L(tr QTUQ1)I, = 0},

and V(X)={Q1YQT :Y €S,, (V,I,) =0}. (42)

O
The U-Lagrangian is a convex function which identifies locally the “ridge” of A;.

Definition 4.4 Let X € S, and G € 0M\1(X). The U-Lagrangian of A1 at the primal-dual pair (X, G)
is the function

UX) DU = Lu(X,G;U) = min M(X+U+V) = (G,V).

We define also the associated set of minimizers
V(X,G;U) = Argminy cy A (X +U +V) — (G, V).

O
The following theorem is established in [24] for any finite valued convex function, we express it in
our specific context.

Theorem 4.5 Let (X,G) € S, x 0A\(X). Then, we have
(i) the function Ly (X, G;-) is well-defined and convex over U(X).
Assume, in addition, that G € ridOA1(X). Then,

(ii) for allU € U(X), V(X,G;U) is a nonempty compact convex set which satisfies

sup |[V[ = o(||U]])- (43)
VEV(X,G;U)

(iii) In particular, at U = 0, we have V(U) = {0}, Ly(X,G;0) = M (X) and VLy(X,G;0) =
projyx)G eazists.
A geometrical interpretation of (43) is that U (X) is tangent at X to the “ridge”:
{(X+U+V(X,G;U):U eU(X)}.

In our context we can prove that this geometrical set coincides in a neighborhood of X with M, when
G € rio (X).

Theorem 4.6 ([33, Theorem 4.11]) Assume (X,G) € S, x ridA\1(X). Then there ezists 6 > 0
such that, for allU € U(X) N B(0,6), V(X,G;U) is a singleton. Moreover the map

UX)N B(0,8) 35U — X + U + V(U) (44)

is a C*°-parameterization of the sub-manifold M,.

This gives us a second-order development of A\; along M,.
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Theorem 4.7 ([33, Theorem 4.12—Corollary 4.13]) Take (X,G) € S, xridA(X). Then Ly(X,G;-)
is C*° in a neighborhood of U = 0 and we have the following second-order development of A\

MX+U+VO)=MX)+(GU+V(U))+ %(VQLU(X,G;O) -UUY + o(JU)), (45)

where V2L (X, G;0) is known explicitly:
ViLyu(X,G;0) = projyxy H(X, G) projyx) ,
and H(X,QG) is the symmetric positive semidefinite operator

S$,3Y = H(X,G)Y := GY |\ (X)I, — X]' + [M(X)I, - X]TYG.

The operator V2Ly(X,G;0) is called the 4-Hessian of A\; at (X, G).

4.2 Composition with affine operator

When composing with the affine operator A(-), we expect the same type of results as for A\; and we
would like to have similar geometrical interpretations. It is obvious that the subspace where f/(z;-)
is linear and its orthogonal complement can be written:

U (z) = AN (U(A(z))) and V(z) = AV(A(z)).

Yet, when concentrating on second-order, the first difficulty encountered is that the inverse image of
M, i.e.,
{zr eR" : A(z) e M;} =W,

may be nonsmooth. Then to simplify the analysis, a transversality condition is relevant.

Definition 4.8 TRANSVERSALITY We say that A(-) is transversal to M, at x € W, if and only if

(T) U(A(z)) + range A= S, .

The transversality condition guarantees a one to one relation between df(x) and 91 (A(x)).

Lemma 4.9 Assume that transversality holds at x € R™ and take g € 3f(xz). Then there exists a
unique G € O\ (X) such that g = A*(G); if g is in ridf(z), G is also in ridN1(A(x)). Moreover

dim V/ (z) = r(r2—+1) -1

’ 46
and dimuf(w):m+1—T(T2—+D. (46)

Proof. Apply Theorem 5.5 in [33]: let @1 be a n X r matrix whose columns form an orthonormal basis
of E1(A(z)); then the mapping

V(A(z)) 2V — A*(V)
is nonsingular. Together with (42), this implies (46). The one-to-one relation between the subdif-

ferentials is easily derived from the fact that G — G' € V(A(z)) when G and G’ are in 0\ (A(x)).
O

Finally transversality is a sufficient condition to obtain the differentiability of the {/-Lagrangian of
f and to compute its Hessian via simple chain rules.
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Theorem 4.10 ([33, Theorem 5.10]) Assume that the transversality condition holds at x € R™
and take g € ridf(x). Then the U-Lagrangian of f at x,

U (z) s uw— sz;(x,g;u) = min f(z+u+v)—glv,
veVf(z)

is C*° in a neighborhood of w = 0. In particular,
VLZf,‘{(:L'7 g; 0) = prOjL{f(z)g ;

and
V2L (w,9;0) = projjs u H (z,G) projus(yy »
where HY (z,G) := A* H(A(z),G) A and G is the unique (via Lemma 4.9) vector of riO\ (A(x)) such
that g = A*(G).
O

The operator Vngl(x, 9;0) is called the -Hessian of f at (z, g). The projection operator projysy)
is given by the expression [33, Corollary 5.7]:

Projy s () = Im — Ko(K5Ko) ™' K5,

where K is obtained by taking ¢ = 0 in (37).

The transversality condition enabled M. L. Overton and R.S. Womersley, in [35], to parameterize
M, using exponentials of matrices and to transform the original unconstrained minimization problem
into a smooth constrained one. This led them essentially the same second derivative formula. Going
along the lines of [35] and [9], we can prove that H(A(x),G) is the second covariant derivative in the
Euclidean metric of the function

£100) = 230001,
=1

which is smooth near A(z) € M, and coincides with A\; on M,.

Yet, note that the transversality condition is only sufficient to prove the smoothness of L{,(m, g;°)-
The following example shows us that it is not necessary either to get the differentiability of L{,(m, g;°)
or to guarantee the smoothness of W,.

Example 4.11 Consider the mapping from R? to S3 defined by

1 — T2 0 0
Az, x9) = 0 zg—x1 0
0 0 1

We have f(z) = max{|z; — z3],1} and at & := 0 ] the transversality condition does not hold. We

1

1

the transversality condition would imply, via Lemma 4.9, dimV7(0,1) = 2. Yet, W, is linear and
therefore smooth in a neighborhood of z:

1

e

Moreover, for all g € 8f(%) and u € U7(0,1), v(z,g;u) = {0} and Lgl(x,g;u) = 1 is trivially twice
differentiable.

have obviously 9f(£) = {« [ _11 ] :a € [0,1]}. Then V/(0,1) =R

-1 1. ... .
is unidimensional, whereas

Wo=2+U(z) =2 +R
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5 Global second-order algorithm

We first explain how to “stabilize” the U-objects. Then we present the three steps of the global
U-Newton algorithm: dual, vertical and tangent steps.

5.1 Enlargement of U/

From the enlargement of dA;(X) introduced in §2.2, we derive easily an enlargement of U(X). We
give here the e-version of Definition 4.1; note that T5. 2 (X) (+) plays the role of | (X;-) = TN (X) ().

Definition 5.1 Let € > 0 and X € S,,. We define U:(X) as the largest subspace where T8 (X) 18
linear:

ME(X) = {U €S, : UéEAl(X)(U) + O-ésAl(X)(_U) = 0} .
and V:(X) == U.(X)* .
Proposition 4.2 can also be extended in this context.
Proposition 5.2 Let € > 0 and X € S,,. The subspaces U, and V. are equivalently characterized by:

(i) For any G € rié:\(X), UA(X) and V(X) are respectively the normal and tangent cones to
65)\1(X) at GE.

(ii) U(X) and V(X)) are the subspaces respectively orthogonal and parallel to aff 6 A1 (X).

Proposition 5.6 below will show that . (X) is just the usual U/ at an appropriately shifted matrix
X.. As a result, all the geometrical interpretations of §4.1 can be reproduced.

5.2 Dual step

The dual step is essentially done in §3.1: we compute an approximation of the projection of 0 onto
0 f (z) with the support black-box method and obtain g. € 6. f(z) such that

fé(xa —g:) < _ngsHQ . (47)

In fact the support-black box also produces a matrix G, in 6:A1(A(z)) such that g. = A*(G¢). The
subgradient g. will be used to guarantee an efficient descent and the dual variable G, will be needed
to compute the Hessian of the ¢/-Lagrangian.

Actually, it is important for quadratic convergence to obtain the exact projection. The following
result shows that this is possible.

Proposition 5.3 Assume (T') of Definition 4.8 of and (SC)y of Proposition 3.1 hold at z* € R™.
Then for 0 < e < Ao(A(z*)) (Definition 2.6) , the e-strict-complementarity condition (SC)e holds in
a whole neighborhood of x*.

Proof. When 0 < € < Ag(A(z*)), by continuity of eigenvalues, we have r.(z) = dim E.(A(z)) = *
when z € B(z*, p) for some p > 0. In fact, for p small enough, we have E.(A(z)) = Eot(A(z)), where
Eiot(A(z)) is the total eigenspace for the A;(A(z*))-group at A(z); this notion is defined in [18] and
used in [41, 33]. Then introducing, as in [33, Theorem 4.5], the C*° map X — Quxt(X) defined in a
neighborhood of A(z*), the projection problem involved in (SC). can be written together with (10)
and (26): ,

min || A* (Quot(A(z))Y Quot (A(z)T))]|” -

veC,

(48)

Then the proof becomes similar to the one of [33, Proposition 6.9].
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e The first-order optimality conditions of (48) with the transversality condition at z*, enable us
to use the Implicit Function Theorem and to get a C* map B(z*,6) 3 = — Y (z) solution of
(48).

e The strict complementarity condition at z* tells us that Y (z*) is positive definite.

e The continuity of Y(-) implies that Y (x) is positive definite for z in a neighborhood of z*. This
means that the e-strict complementarity condition is satisfied in the latter neighborhood.

O

Corollary 5.4 Assume that (T') and (SC)o hold at x* and take 0 < &€ < Ao(A(z*)). Then there exists
p1 > 0 such that for all x € B(z*, p1), the support-black box method with m = 1 produces proj(ssf(x) 0

in a finite number of steps.

Proof. Combine Proposition 3.1 with Proposition 5.3. |

5.3 Vertical step

It would be nice to project the current point  onto the manifold W, := {z € R™ : A(z) € M, }. Yet,
even in the case where transversality holds, such a projection is very hard to obtain. Nevertheless,
in the space of matrices it is easy to compute a point of M, which satisfies the first-order optimality
conditions associated with the projection problem. Consider a spectral decomposition of X € M,.:

X = QsAsQZ + REEERga

where A. and X, are respectively 7. X 7. and (n — r;) X (n — r.) diagonal matrices, and R, is a
n x (n — r.) matrix whose columns form an orthonormal basis of E,(X)*. Here the components of A,
are greater than the components of ... Then define for all X € S,

. 1 &
Me(X) = — > Ai(X),
£ i—1

and X
X. = M (X)Q:QF + R.X.RT.

We have the following result.

Theorem 5.5 The matriz X, satisfies the first-order optimality conditions associated with the pro-
jection problem

min ||M — X||*. (49)
MEM’I‘E

Proof. Let M be a solution of (49). From Theorem 4.3, the manifold M, is smooth in a neighborhood
of M and its normal space at M is V(M ). Then the (necessary) optimality conditions associated to
(49) at M are

MeM, and X — M e V(M).

It is obvious that X, € M,_, that
X - XE = QE[AE - 5‘l,s(X')]-r‘g]sz:

and that tr (A, — j\l,g(X)ITE) = 0. This proves X — X, € V(X,) and completes the proof. O
We will also use the following property.
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Proposition 5.6 Let € > 0 and X € S,,. We have

50 (X) = O (X.)
U(X) = U(X.) and Vi(X) = V(X.).

Proof. By construction, A;(X.) = A1.(X) and E;(X,) = E.(X). Then, together with (10) and (5), we
have 6:A1(X) = OA1(X:). The rest is straightforward. O

The step (in the space of matrices) from A(z) to A.(z) := [A(z)]. will be called a vertical step or
Ve-step.

5.4 Tangent step

We assume that, at x € R™, the dual and vertical steps have been previously computed: we have
ge(z) = A*(Ge(x)) € 6. f(z) and A (z) € M,_. Then we define the following quadratic program,

min (G, (z),U) + 5(H(A:(x), G(z)) U,U)
U € U(A(z)) (50)
A (z) + U € Ap + range (A),

where H is defined in Theorem 4.7. When G, € rid.A\1(A(x)), i.e., (using Proposition 5.6) G, €
ridA1(A:(x)), (50) is equivalent to minimizing the second-order approximation of Ly(A.(x),G;")
subject to A.(z) + U lying in the image of the affine mapping A(-): the existence of a corresponding
step in the space of variables is guaranteed. Then, program (50) takes the following form in the space
of variables:

{ min g.(z)7d + $dTHI (z,G.(z))d (51)

A(z) — A (z) + Ad € U:(A(x))
To solve (51), we assume nonemptiness of the feasible domain: there exists dy € R™ such that
A(z) — Ac(z) + Ady € U (A(x)) . (52)

When (52) is feasible, we set u := d — dyp. Then program (51) amounts to

(53)

min b.(z)Tu + 2uTHY (z,G.(2))u
u € Ul (z),

where H/ is defined in Theorem 4.10, b.(z) := g.(z)+ H' (2, G.(z)) dy, and U (z) := {u € R™ : Au €
U.(A(z))}. To guarantee that u is well-defined, we assume that H7(z,G.(x)) is positive definite.
Then, to ensure global convergence, we check whether the direction d := dy + u satisfies

fila; d) < —u' 2], (54)
where ' is a given number in |0, w|.

Remark 5.7 Even when applied to a smooth function, global convergence of the Newton algorithm
is an open question when the Hessian has an unbounded condition number. This explains the need
for an anti-zigzag mechanism, and we found that (54) is useful to prove convergence.

5.5 Global algorithm

The global U-Newton algorithm is organized as follows.
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Algorithm 5.8

Step 0 (Initialization). Choose the tolerances § > 0, &€ > 0, w €]0, 1] and ' €]0, w[; initialize z := z( €
R™ and set € := e(z).

Step 1 (Dual step). Compute g.(z) € 6. f(z) and Ge(A(z)) € 6.\ (A(x)) satisfying (47) using the
support-black box method.

Step 2 (stopping criterion). If ||g:(z)|| < ¢ stop.

Step 3 (Vertical Step). Compute A.(z).

Step 4 (Horizontal Step). If (52) is feasible and H7(z, G.(x)) is positive definite, set d to the solution
of (51). If (54) holds and ||d|| > 6 go to Step 5.

If any of these conditions is not satisfied, set d = —g.(z).

Step 5 (Line-search). Compute ¢ such that

f(z +td) < f(z) — n(z,e),

with the Line-Search of § 3.2.
Step 6 (Update). Replace z by z + td and ¢ by e(z + td); return to Step 1.

O

Theorem 5.9 Assume that f is bounded from below. Then Algorithm 5.8 (with m < 1) stops after a
finite number of iterations, yielding T satisfying the approximate minimality condition

fy) =2 f(z) —&€—b|ly —Z| for all y e R™. (55)

Proof. The proof is as in Theorem 3.8, since (54) is guaranteed to hold at each iteration. O
In order to obtain quadratic convergence, we introduce a condition which can be seen as the
generalization of the regularity assumption needed in all Newton-type methods.

Definition 5.10 Let z* € R™ be a solution of (P). We say that the Strict Second-Order Condition
(850C) holds at z* if (T') of Definition 4.8 and (SC)g of Proposition 3.1 hold at z* and the U-Hessian
of f at (z*,0) is positive definite.

We first give consequences of (SSOC).
Proposition 5.11 Assume that z* is a solution of (P) and that (SSOC) holds at z*. Then
(i) x* is the unique solution of (P),
(ii) for any p > 0 there exists o > 0 such that

fz) < f(e")+a = =z € Bz p),

(iii) for any p > 0 there are € and § small enough, such that Algorithm 5.8 yields at least one iterate
in B(z*,p), and all the subsequent iterates remain in B(z*,p) as well.

Proof. [(i)]. Decompose an arbitrary d € R™ as d = u + v with v € Uf(z*) and v € VI(z*). By
definition of the U-Lagrangian (see Theorem 4.10), f(z* + d) > LIJ;(.’E*, 0;u). Hence

1
fla® +d) > Lfj(a*,05u) = f(a") + 5u VAL (2", 0;0) u + ofJul®).

If d is small, u is small and clearly f(z* + d) > f(z*).

[(43)]. Then argmingcpm f(z) is bounded; f has bounded level sets ([16, Proposition IV.3.2.5]): say
f(z) < f(zo) + 1 implies ||z — z*|| < M. Assume for contradiction that there exist p > 0 and a
sequence {zy }xen such that for k > 1,

* 1 *
flag) < f(z") + o < fzo) +1 and |jzg — 27| > p.
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Then zj is bounded: ||z} — z*|| < M. Extract a subsequence converging to some Z and pass to the
limit (using continuity of f) to obtain the desired contradiction:

f(#) < f(z%) and [|& —z*[| > p;

% # x* is a minimizer of f, which contradicts ().
[(423)]. Observe that Algorithm 5.8 produces a decreasing sequence of f-values: every iterate satisfies
|z —z*|| < M. Given p > 0, take @ > 0 as in (i1), set £ and é such that £+ éM < a: from (55), at
least the final iterate z satisfies f(Z) < f(z*) + «, hence T € B(z*, p); if this occurs before stopping,
it occurs at each subsequent iteration. O

The following lemma will enable us to guarantee that, close enough to a solution z*, the exact
multiplicity 7* is identified.
Lemma 5.12 Assume that 0 < € < A¢(A(z*)). Then, there exzists ps > 0 such that for all x €
B(.T)*, p2)7

re(z) = 7(x) =r",

where 7(x) is defined in (39) and rz(z) := dim Ez(x).

Proof. When 0 < & < Ag(A(z*)), it is clear in (39) that r-(z*) = 7(z*) = r*. Then, the result derives

directly from continuity of all eigenvalues. O
In the following theorem, we combine Corollary 5.4, Proposition 5.11 and Lemma 5.12 to show

that after some iteration Algorithm 5.8 coincides with the Z/-Newton algorithm presented in [33].

Theorem 5.13 Assume (P) has a solution * € R™ at which (SSOC) holds. Let Algorithm 5.8 be
applied with m =1 and € > 0, § > 0 and ||xg — x*|| sufficiently small. Assume also that the solution
of (51) is accepted by Step 4 and that Step 5 produces t = 1. Then, there exists C > 0 such that

lzt —2*|| < Clle —=*||*. (56)

Proof. Consider p; > 0 of Corollary 5.4 (with e = £) and ps > 0 of Lemma 5.12. Suppose zg € B(z*, p),
with 0 < p < min{p1, p2}. By Proposition 5.11 (7ii), all subsequent iterates are in B(z*,p). Then,
from Lemma 5.12, rz(z) = 7(z) = r* and from Corollary 5.4 the support-black box method with
m = 1 converges in a finite number of steps. If in addition, (54) holds and the step length ¢ = 1 is
accepted in the line-search, Algorithm 5.8 coincides with the local second order algorithm described
in [33]. This algorithm has a quadratic rate of convergence [33, Theorem 6.13]: for p small enough,
there exists C' > 0 such (56) when z € B(z*, p). O

In the following section we connect this work with recent results on bundle methods for semidefinite
programming.

6 From dual to proximal-type bundle methods

When presenting the first-order method in § 3, our main objectives was to provide an algorithm with
a simple geometrical description to globalize second-order schemes “a la” Fletcher-Overton. Yet, for
practical purposes, the following must be noted:

1. the ratio (use of the information)/(computational cost) in Algorithm 3.4 is pretty low: sub-
gradients and e-subgradients computed during the global process (Step 1) or during the local
line-search are used only once,

2. the algorithm is very sensitive to the choice of the e-strategy; choosing at each iteration ¢ = e(x)
(39) ensures global convergence but may be not the best policy in practice.

Therefore there are advantages to move from a dual Markovian bundle method to a polyhedral-
semidefinite prozimal bundle method [23]. The obtained algorithm, in its first-order version, is closed
to the one described by K.C. Kiwiel in [19] where the precision to compute the largest eigenvalue is
also controlled by the global scheme.
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Transporting old subgradients. A first step consists in using old é-subgradients as e-subgradients
at the current point for some € > £. This can be expressed as follows.

Proposition 6.1 Let k > 1. Assume that, at each point z;, we have computed g; = A*G; € 6:f(x;)
with G; € Cp, for i =1,...,k — 1. Let Qi be an n X v matriz whose columns form an orthonormal
basis of Ez(A(xy)). Set ay = [ai,...,ap_1]7 € RF71 1,1 € R¥™L the vector of all ones and for
€ > 0 consider the set

{z’“ LG+ QY QT : G eRETT Y € S+
1% 1&k + <Irk;Y>
(X4 06 +QkYQk, (k) > f(mn) — €}

Then for all € > &, we have

8:f(zk) C A* Gre C Ocf (1) (57)

Proof. This is a straightforward consequence of (7) and (25). O
Inclusion (57) suggests that the convex set A* Gy . could be taken as our new approximation of

aaf(xk) at Tg.

Using some duality. This leads us to a new projection problem for (35):
min [|g]|*, g€ A" G-

Setting Gy := Gk + o0 and denoting by G(&,Y) := Zk L @G+ QY QL an element of Gy, the projection
problem amounts to
min || A* (d Y)IIQ, G(a,Y) € Gi
T (58)
flzx) — <Z =1 ' G + QrY Qy, Azy)) —e < 0.
Penalizing the linear inequality constraint by introducing a multiplier 2u; > 0, we obtain the new
problem

{ min | A* G(& V)| + 21 (£ (@) = (A" G(@,Y)) i — (40, G(@ V) —e) (59)

G(&, Y) €G-
Now, multiplying the objective function by 1/(2u,) and dropping the constant terms, it is proved in

[13, Theorem 11.3.1] that (59) is exactly the dual (in the sense of Lagrangian duality [16, Chap. XII])
of the primal problem

M 2
Join or(y) + 5 My — el

where ¢y, is the mixed polyhedral-semidefinite model of f at zy :
= A G).
r(y) = max (A(z), G)

Recalling the variational formulation of A\; and observing that Gy D 6:A1(A(z)) contains at least one
matrix of the form gg¢” where ¢ is a unit vector in Ej(A(zy)), it is easy to verify that this model
satisfies
ek (y) fly) forally e R™,
and @k (yx) flyr) —

In this approach the control parameter is (u) which is updated with a simple strategy [20].

IV A

A contribution for large-scale problems The resulting first-order polyhedral-sdp proximal bundle
method seems to be promising to solve large-scale eigenvalue problems: in [23], we present applica-
tions from control theory which involve 1000 x 1000 matrices depending on a large number of decision
variables m = 500000.
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7 Dropping strict complementarity: an example from combinatorial
optimization

In this paragraph we have chosen an example from combinatorial optimization, conceived by Yu.
Nesterov [29], to illustrate a qualitative distinction between interior-point methods and second-order
bundle methods: for the latter methods, superlinear convergence can be observe even when sctrict
complementarity does not hold. This fact seems to be corroborated by the recent theoretical work of
A. Forsgren [11].

Let us consider the Boolean quadratic maximization problem

max z!Qz

(BQM) { e i

where Q = —cc! and ¢ = [n —1,—1,...,—1]. A primal semidefinite relaxation [28] for (BQM) is

max (@Q,X), X €S,
(5PP) {d<X>=1n,Xzo,

where d(X) is the diagonal of X. The dual of this problem is then

min 1£u, u € R?

(SpPY { D(u)- Q= 0,

where D(u) is the matrix with uq,...,u, on its diagonal. Tt is easy to check that the three problems
(BQM), (SDP) and (SDP)* have the same zero value. The solutions of (BQM) and (SDP)* are
unique: z* = 1, and u* = 0; X* = 1,17 is a solution of (SDP). Strict complementarity for (SDP)
[1] does not hold: the matrix D(u*) — Q + X* = cc + 1,17 is not positive definite. Consider now the
equivalent eigenvalue formulation of (SDP)* [7, 14]: making the change of variable u = a1, + v with
vT1, = 0, we obtain

minna, (o,v) € R*H

al, = Q —D(v)
vl1, =0,

which is in turn equivalent to the unconstrained eigenvalue problem
(BVP) min f(5),

with R* ! 3 4 = (v1,...,0,-1) = f(?) = n)X (Q — D(vy,. ..y Up—1, — 20 ’UZ)) We know that
the notion of strict complementarity (SC)o in Proposition3.1 of an eigenvalue problem coincide with
the corresponding one in semidefinite programing [33, Remark 6.6]. We can verify here by hand that

T
?*=0and 0 ¢ ridf(0): 0 = A*(%) where A* is the linear operator

Xll - Xnn
Spn2 X A X =-n : eRrR !,
X(nfl)(nfl) — Xon

and %ﬁ is in the boundary of dA1(Q). We run Algorithmb5.8 for n = 10 and 9; = 1,1 with
6 =107% & = 107* and w = 0.1 and 9. Figure7 can be interpreted as follows: At the initial point
the multiplicity is 1 and the distance to the second eigenvalue is large (Az(v1) = 98); therefore the
first-line search is very efficient (recall Theorem 2.16). Yet the descent provokes a clustering of the 9
first eigenvalues: Az(v) become small but not enough to increase r; := 7(7x) (39) until iteration 7
where they are counted as %-eigenvalues. Then second-order steps start to be efficient and superlinear
convergence is observed.
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Figure 2: Superlinear convergence

8 Conclusion

In this paper, we have shown how to use a second-order theory, the {/-Lagrangian theory, to speed
up the convergence of a first-order scheme to minimize the maximum eigenvalue function. The intro-
duction of second-order information in a Markovian dual bundle method (the approximate eigenvalue
method of [6, 37]) enabled us to obtain the quadratic convergence of the resulting second-order bundle
method when some regularity conditions hold. We also have made a connection with a new generation
of bundle methods for semidefinite programming.
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Appendix A

Our notation follows closely that of [24] and [15].

R™ m-dimensional Euclidean space

z1'y scalar product of z,y € R™

|z]| := VzTz Euclidean norm of z € R™

UL orthogonal subspace of the subspace U

projc : R™ — U projection operator onto the closed convex set C' C R™

aff C' affine hull of the nonempty set C C R™

ri C' relative interior of the convex set C' C R™

span C linear subspace generated by the nonempty set C C R™

B(z,6) open ball centered at z € R™ with radius § > 0

R™ > d— oc(d) = SUPgec gT'd the support function of the nonempty set C C R™
Fc(d) :== Argmax,c-dT ¢ the face of the nonempty set C C R™ exposed by d € R™
O0f (z) the subdifferential of the finite-valued convex function f at x € R™

Of(z) :={s € R™ : f(y) — f(z) > sT (y — z), forall y € R™}
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f'(z; d) the directional derivative of a convec function f at z € R™ in the direction d € R™

ooy e f(@+td) — f(z)
f(w;d) := inf ¢

or equivalently (see [16, § VL.1]), the support function of 9f (z)
F(@:) = 055 (2)0) (60)
O: f(z) the e-subdifferential of f at z € R™:
0. f(z) == {s € B™: f(y) — f(x) > (5,5 — 2) — ¢ for all y € B")

fi(z;d), the e-directional derivative of f at € R in the direction d € R, is the support function of
0= f (z):
I . -—_—
fs(xa ) = Jﬁgf(x)()

S, space of n X n symmetric matrices
ST cone of positive semidefinite matrices
X = Y (resp. X > Y) means that the matrix X — Y € &, is positive definite (resp. positive
semidefinite)
tr X := Y 7*, Xj; trace of the matrix X € S,
(X,Y) := tr XY Frobenius scalar product of X,Y € S,
| X || :== v/(X, X) Frobenius norm of X € S,
Xt Moore-Penrose inverse of X: if X = 3" | (X )gigl is the spectral decomposition of X, X t can
be defined as X1 := 30, x40 ﬁqiq;‘r
A(X) > ... > Ap(X) eigenvalues of X € S, in decreasing order
E1(X) first eigenspace of X € S,,, i.e., the eigenspace associated with A\;(X)
A* + S, — R™ is the adjoint operator of the linear operator A : R" — S, defined by: for all
(d,D) e R™ x S,
(D,Ad) =d*A*D

When Ad = 37" djAj, with A; € S, forj =1,...,m, we have forall D € S, A* D = [(A1, D), ..., (A, D)

References
[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in semidefinite
programming. Mathematical Programming, 77:111-128, 1997.

[2] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point methods for semidefinite
programming: Convergence rates, stability and numerical results. SIAM J. Optimization, 8(3):746-768,
1998.

[3] V.I. Arnold. On matrices depending on parameters. Russian Math. Surveys, 26:29-43, 1971.

[4] R. Bellman and K. Fan. On systems of linear inequalities in Hermitian matrix variables. In V. L. Klee,
editor, Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, pages 1-11. American Ma-
thematical Society, 1963.

[5] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz Inequalities in System and Control
Theory, volume 15 of Studies in Applied Mathematics. STAM, Philadelphia, PA, June 1994.

[6] J. Cullum, W. E. Donath, and P. Wolfe. The minimization of certain nondifferentiable sums of eigenvalues
of symmetric matrices. Math. Programming Study, 3:35-55, 1975.

[7] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical Program-
ming, 62:557-574, 1993.

RR n"3738



rrancors QJusiry

[8]
[9]

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]
[18]
[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]

[27]
[28]
[29]

[30]

V.F Demjanov and V.N Malozenov. Introduction to Minimaz. Wiley & Sons, 1974.

A. Edelman, T. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.
Technical report, Massachusetts Institute of Technology, Cambridge, MA 02139, February 1997. Submitted
to STAM J. Matrix. Anal. Appl.

R. Fletcher. Semi-definite matrix constraints in optimization. STAM J. Control Optim., 23:493-523, 1985.

A. Forsgren. Optimality conditions for nonconvex semidefinite programming. Technical Report TRITA-
MAT-1998-0S6, Department of Mathematics, Royal Institute of Technology, 1998.

E.G Gilbert. An iterative procedure for computing the minimum of a quadratic form on a convex set.
SIAM J. Control, 4:61-80, 1966.

C. Helmberg and F. Oustry. Bundle methods to minimize the maximum eigenvalue function. In Lie-
ven Vandenberghe R. Saigal and H. Wolkovicz, editors, Hanbook on Semidefinite Programming. Theory,
Algorithms and Applications. Kluwer Academic Publisher, 1999. To appear.

C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. Technical Report SC
97-37, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, August 1997.

J.-B. Hiriart-Urruty and D. Ye. Sensivity analysis of all eigenvalues of a symmetric matrix. Numerishe
Mathematik, 70:45-72, 1995.

J.B. Hiriart-Urruty and C. Lemaréchal. Conver Analysis and Minimization Algorithms. Springer-Verlag,
1993. Two volumes.

R. A. Horn and C. R. Johnson. Topics in Matriz Analysis. Cambridge University Press, 1991.
T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1980.

K. C. Kiwiel. A linearization algorithm for optimizing control systems subject to singular value inequalities.
IEEE Trans. Autom. & Control, AC-31:595-602, 1986.

K.C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical
Programming, 46:105-122, 1990.

M. Kojima, M. Shida, and S. Shindoh. Local convergence of predictor-corrector infeasible-interior-point
algorithms for sdps and sdlcps. Mathematical Programming, 80:129-161, 1998.

P. Lancaster. On eigenvalues of matrices dependent on a parameter. Numerishe Mathematik, 6:377-387,
1964.

C. Lemaréchal and F. Oustry. Nonsmooth algorithms to solve semidefinite programs. In L. El Ghaoui
and S-I. Niculescu, editors, Recent Advances on LMI methods in Control, Advances in Design and Control
series. STAM, 1999. To appear.

C. Lemaréchal, F. Oustry, and C. Sagastizabal. The U-Lagrangian of a convex function. Transactions of
the American Mathematical Society, 1997. To appear.

A. S. Lewis and M. L. Overton. Eigenvalue optimization. Acta Numerica, 5:149-190, 1996.

A. Nemirovsky and P. Gahinet. The projective method for solving linear matrix inequalities. Mathematical
Programming, 77:163-190, 1997.

Yu. Nesterov. Interior-point methods: An old and new approach to nonlinear programming. Mathematical
Programming, 79(1-3):285-297, October 1997.

Yu. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE Discussion,
Paper # 9719, 1997.

Yu Nesterov. Private communication. Center of Operations Research and Econometrics, Université Ca-
tholique de Louvain, B-1348 Louvain-La-Neuve, Belgium, May 1998.

Yu. Nesterov and A. Nemirovsky. A general approach to polynomial-time algorithms design for convex
programming. Technical report, Centr. Econ. & Math. Inst., USSR Academy of Sciences, Moscow, USSR,
1988.

INRIA



A secona-oraer bundle methoa for mazrimum eigenvalue problems

[31] Yu. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex programming: Theory and
applications, volume 13 of Studies in Applied Mathematics. STAM, Philadelphia, PA, 1994.

[32] F. Oustry. Vertical developments of a convex function. Journal of Convex Analysis, 5(1):153-170, 1998.

[33] F. Oustry. The U-Lagrangian of the maximum eigenvalue function. SIAM J. Optimization, 9(2):526-549,
1999.

[34] M. L. Overton. Large-scale optimization of eigenvalues. STAM J. Optimization, pages 88-120, 1992.

[35] M. L. Overton and R.S. Womersley. Second derivatives for optimizing eigenvalues of symmetric matrices.
SIAM J. Matriz Anal. Appl., 16(3):667-718, July 1995.

[36] M. L. Overton and X. Ye. Toward second-order methods for structured nonsmooth optimization. In
S. Gomez and J-P. Hennart, editors, Advances in Optimization and Numerical Analysis, pages 97-109.
Kluwer Academic Publishers, 1994.

[37] E. Polak and Y. Wardi. Nondifferentiable optimization algorithm for designing control systems having
singular value inequalities. Automatica, 18:267-283, 1982.

[38] F. A. Potra and R. Sheng. A superlinearly convergent primal-dual infeasible-interior-point algorithm for
semidefinite programming. SIAM J. Optimization, 8(4):1007-1028, 1998.

[39] H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: conceptual
idea, convergence analysis, numerical results. SIAM J. Optimization, 2:121-152, 1992.

[40] L. Schwartz. Cours d’analyse, volume 1. Hermann, Paris, 1967.

[41] A. Shapiro and M. K. H Fan. On eigenvalue optimization. SIAM J. Optimization, 5(3):552-568, 1995.
[42] Lloyd N. Trefethen. Pseudospectra of linear operators. STAM Review, 39(3):383-406, 1997.

[43] Lloyd N. Trefethen and III David Bau. Numerical Linear Algebra. SIAM, April 1997.

[44] D.Y. Ye. Sensitivity analysis of the greatest eigenvalue of a symmetric matrix via the e-subdifferential of
the associated convex quadratic form. Journal of Optimization Theory and Applications, 76(2), February
1993.

RR n"3738



/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhdne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399



