The Gaussian-BGK Model of Boltzmann Equation with Small Prandtl Number

Abstract : In this paper we prove the entropy inequality for the Gaussian-BGK model of Boltzmann equation. This model, also called ellipsoidal statistical model, was introduced in order to fit realistic values of the transport coefficients (Prandtl number, second viscosity) in the Navier-Stokes approxima- tion, which cannot be achieved by the usual relaxation towards isotropic Maxwellians introduced in standard BGK models. Moreover, we introduce new entropic kinetic models for polyatomic gases which suppress the internal energy variable in the phase space by using two distribution functions (one for particles mass and one for their internal energy). This reduces the cost of their numerical solution while keeping a kinetic description well adapted to desequilibrium regions.
Type de document :
Rapport
[Research Report] RR-3716, INRIA. 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00072951
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:26:14
Dernière modification le : mercredi 20 juin 2018 - 14:20:08
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:29:10

Fichiers

Identifiants

  • HAL Id : inria-00072951, version 1

Collections

Citation

Pierre Andries, Patrick Le Tallec, Jean-Philippe Perlat, Benoît Perthame. The Gaussian-BGK Model of Boltzmann Equation with Small Prandtl Number. [Research Report] RR-3716, INRIA. 1999. 〈inria-00072951〉

Partager

Métriques

Consultations de la notice

383

Téléchargements de fichiers

611