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Abstract: In this paper we address the issues of modelling and verification of concurrent
systems subject to dynamic changes using Petri net formalisms. As far as the expressivity
of the model is concerned a built-in and decentralized mechanism for handling changes is
looked for. At the same time the basic decidable properties of Petri nets (Place Bounded-
ness, Reachability, Deadlock, and Liveness) should remain decidable for the extended model.
The gain in terms of modelling power is usually paid by a loss of decidable properties. A
trade-off needs to be found between expressivity and computability. In a previous study
we have introduced a class of high level Petri nets, called reconfigurable nets, that can dy-
namically modify their own structure by rewriting some of their components. These nets
were used for modelling computer supported cooperative work (cscw) and more precisely
workflow systems. In this study we restrict our attention to the subclass of reconfigurable
nets, termed reversible, whose structure modifying rules are formally inversible. Such a
net may be viewed as the cascaded composition of an automaton with a parametric Petri
net; and under some additional assumption it is equivalent to a stratified Petri net. Place
boundedness, reachability, deadlock, and liveness are decidable properties of reversible re-
configurable nets. From a practical point of view however the choice of a particular model
(Petri nets, selfmodifying or stratified Petri nets, reconfigurable nets ...) depends strongly
on the nature of the problem to be modelized.
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Changements dynamiques dans les systémes
concurrents : modélisation et vérification

Résumé : Nous nous intéressons dans cette étude au probleme de la modélisation et de la
vérification de systémes concurrents sujets & des changements dynamiques. Le formalisme
de base est celui des réseaux de Petri. En ce qui concerne son expressivité on souhaiterait
un modele ayant un mécanisme de prise en compte des changements dynamiques qui soit &
la fois interne et local. Par ailleurs les propriétés de base —telles ’accessibilité, le caractere
borné d’une place, le blocage, la vivacité— devraient continuer & étre des propriétés décidables
pour cette classe étendue de réseaux de Petri. D’ordinaire le gain en terme d’expressivité
se traduit par une perte en terme de propriété décidable et un compromis doit étre trouvé
entre expressivité et calculabilité. Dans une étude précédente, nous avons introduit une
classe de réseaux de Petri de haut niveau, appelés réseaux reconfigurables, qui peuvent
changer dynamiquement leur propre structure en réécrivant certain de leur composants. Ces
réseaux peuvent servir & modéliser les changements de modes opératoires dans les systémes
de travail coopératif et plus spécifiquement dans les systemes a flots de tdches. Dans la
présente étude on se restreint & la sous classe des réseaux reconfigurables, dits réversibles,
pour lesquels chaque regle de modification structurelle peut étre formellement inversée. Un
tel réseau peut étre vu comme une composition en cascade d’un automate et d’un réseau de
Petri paramétré, et sous certaines hypotheses est équivalent & un réseau de Petri stratifié.
Par ailleurs toutes les propriétés mentionnées ci-dessus sont décidables pour les réseaux
reconfigurables réversibles. D’un point de vue pratique cependant c’est la nature particuliere
de chaque probleme qui détermine le choix d’un modgle particulier (réseaux de Petri, réseaux
automodifiants ou stratifies, réseaux reconfigurables ...).

Mots-clé : Réseaux reconfigurables, changements dynamiques, CSCW, systemes a flot de
taches, caractere borné, réseaux de Petri automodifiants
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1 Introduction

In recent years many studies have considered using Petri nets for modelling Computer Sup-
ported Cooperative Work (cscw) [12, 8]. These applications, also called groupware applica-
tions, concern distributed activities. They involve systems of agents (computer systems or
humans) which cooperate within an heterogeneous and geographically distributed environ-
ment. The simplest instances of cooperative work are the Workflow Management Systems.
These systems support the realization of work procedures by groups of collaborating agents
by coordinating the flow of tasks within the distributed system.

The design of CSCW systems raises some important modelling issues like dynamic changes
of activities, task migration, superimposition of different levels of activities and the notion
of multiple operating modes. The Petri net formalism does not offer a direct way to address
these features and for that reason modelling any realistic cSCW system directly with Petri
net may be a difficult task! It is therefore tempting to introduce extensions of Petri nets
especially designed so as to allow for an easy formalization of such or such feature. The
gain in term of modelling power is usually paid by a loss of decidable properties. A trade-off
needs to be found between expressivity and computability.

In this paper we address the issues of modelling and wverification of concurrent systems
subject to dynamic changes.

As already mentionned, making concurrent systems adaptable to changes is one of the
main challenge in CSCW systems design. It is important that the mechanism for change be
explicitly represented into the model so that at each stage of product development, designers
can experiment the effect of structural changes, e.g. by using prototypes. This means that
structural changes are taken into account from the very begining of the design process rather
than handled by an external and global system, e.g. some exception handling mechanism,
designed and added to the model describing the system normal behaviour. Thus we favour
an internal and incremental over an external and uniform description of changes, and a local
over a global handling of changes. This approach is compatible with the bottom-up modular
synthesis of Petri nets where a complex system is derived from successive refinements of
places or transitions by sub-systems.

Valk’ self-modifying nets [15, 16| is an early attempt of an extension of Petri net model
with a built-in mechanism for handling changes. It is moreover quite a natural generalization
of Petri nets. In contrast with Petri net, the pre-condition and post-condition of a transition
t are not given as vectors but as matrices *¢,¢* : P x P — IN. Transition ¢ is then enabled in
marking M € IN* if and only if for each place p; the condition M (p;) > >, t(pi, pj) M (p;)
is satisfied. When enabled this transition can fire and produce the new marking M’ such
that M'(p;) = M(pi) =32, *t(pi, p) M (p;) + 32, t*(pi, p;) M (p;), that is to say M’ = A(t)- M
where the transfert matrix A is given by A(p;, p;) = 6;; — *t(pi, pj) +t* (ps, p;) with §; ; = 1if
i =j and 6; ; = 0 if ¢ # j. The notion of systems of replacement/multiplication of matrices
takes the place of the notion of systems of replacement/addition of vectors that characterize
Petri nets.

Usually flow relations depends only upon a limited number of places that we shall term
control places. The content of these places in turn are affected only by certain transitions
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4 E. Badouel € J. Oliver

termed changes of configuration by contrast to the other ordinary transitions. With every
marking M is associated a Petri net Ny = (P, T,°(),,,()*,,) obtained by evaluation of the
flow relations in marking M: *tpr(pi) = *t(pi, —) - M and *tp(p;) = *t(pi,—) - M. This
Petri net Ny is the configuration of the self-modifying net N in marking M. As long as no
control places are modified the self-modifying net behaves as its current configuration. Self-
modifying nets are therefore well adapted for situations in which several modes of operation
coexist.

Asindicated in Fig. 1 Petri net with inhibitors arcs can be implemented by self-modifying
nets. This formalism is thus Turing powerful and there is no hope to obtain general automatic
verification tools for the full class of self-modifying nets. Moreover it seems difficult to
find interesting sub-classes of self-modifying nets with decidable properties (boundedness,
liveness, reachability, ...) except for Post self-modifying nets [15] where all preconditions
are constant. Indeed, Dufourd et al. [10] prove that boundedness is already undecidable
for Petri nets with reset arcs [1], which is a simple case of self-modification (see Fig. 1).
Another simple case of self-modification is related to transfert arcs [7]. In [10] Dufourd
et al. prove that place-boundedness is undecidable for Petri nets with transfert arcs even
though boundedness is decidable for that class. However, in order to lessen our previous
assertion, one should mention that Coverability and Termination which are both undecidable
properties of self-modifying nets are decidable both for Petri nets with reset arcs and for
Petri nets with transfert arcs.

Inhibitor arcs Reset arcs Transfert arcs
P P Or P rO  Oag rO Og
2p p p p
[t ] [t ]
M[t>M' = M(p)=0 M[t>M' = M'(p)=0 M[t>M' = M'(q) = M(q) + M(p)

Figure 1: implementation of inhibitor, reset, and transfert arcs in self-modifying nets

There is however a gap between what is theoretically expressible in terms of self-modifying
Petri nets and the manner in which we intend to use this model for modelling concurrent
systems adaptable to changing situations. Even though the use of reset arcs and transfert
arcs arises quite naturally in that context it is possible as we shall see shortly to obtain
much more tractable models with very similar features. As stated above, we intend to use
self-modifying nets for modelling a system consisting of a bunch of Petri nets, called its
configuration, together with some mechanism (using the so-called control places and the
changes of configuration) allowing the system to evolve from one configuration to another
one under certain circumstances. In order to fit in more straightforwardly with this manner
of describing such systems we introduce the model of Automaton controlled Petri Nets (ACPN
in short). An ACPN is a parametric family of Petri nets, which means a Petri net whose
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Dynamic Changes in Concurrent Systems 5

flow arc inscriptions are linear functions of certain parameters, together with some control
given by a finite automaton whose states determine the current values of these parameters.
It is therefore the cascaded composition (or semi direct product) of a (control) automaton
with a parametric Petri net. In that respect it is quite similar to a Vector Addition System
with States (vAsS) which is a direct product of an automaton with a Petri net. We shall
indeed be able to associate each ACPN with some weakly equivalent vAss. This notion of
weak equivalence is enough to ensure that both models are equivalent with respect to some
fundamental properties as Place Boundedness, Reachability, and Liveness. Since all these
properties are decidable for vass they are also decidable for ACPN.

Even though ACPN have a definite advantage over the self-modifying nets in terms of
validation of properties they have serious drawbacks from a modelling standpoint. Actually
the handling of changes of configurations is described globally and externally by the control
automaton where on the contrary it was given locally and internally in self-modifying nets
where control places and changes of configurations (which are respectively places and tran-
sitions of the system) are used. This means that modelling with ACPN cannot allow for
the modular bottom-up synthesis technique. This model will therefore be inadequate for
modelling large systems, but may be used as a target formalism on which verification may
be performed. This situation is quite similar to Petri nets where a Petri net is used for the
modular synthesis of a concurrent system while verification is performed on its state graph.

In order to obtain a local description of the changes of configurations one may consider
modelling the control automaton itself as a (say one-safe) Petri net thus obtaining a two-level
stratified Petri net. Stratified Petri nets [4] are self-modifying nets whose places p1,...,pn
may be given in an order such that the flow relation inscriptions of the arcs connected to
place p; involve only the places p; (j < ¢) which appear strictly before p;. This means that
the transfert matrix of a stratified Petri net is a lower triangular matrix with 1 coefficients
on the diagonal. A stratified Petri net can be viewed as the cascaded composition of Petri
nets; and actually the marking graph of a stratified Petri net is the cascaded composition
of the marking graphs of Petri nets. It was shown in [4] that stratified Petri nets may be
synthesized from their marking graph using the region technique. As far as verification is
concerned however stratified Petri nets suffer from the same limitations as the whole class
of self-modifying Petri nets.

In a previous study [5] we have introduced a class of high level Petri nets, called recon-
figurable nets, that can dynamically modify their own structure by rewriting some of their
components. A reconfigurable Petri net is a Petri net with local structural modifying rules
performing the replacement of one of its subnets by another subnet. The tokens in a deleted
place are transfered to a created one. These nets were used for modelling dynamic changes
within workflow systems as in [11]. It was shown that boundedness of a reconfigurable net
can be decided by constructing a simplified form of Karp and Miller’s coverability tree,
however this construction did not allow to decide whether a given place of the net is boun-
ded. The technique used by van der Aalst [2] for verifying soundness of workflow nets can
be generalized to reconfigurable nets. Finally a translation of a reconfigurable net into an
equivalent self-modifying net was also presented. The class of reconfigurable nets therefore
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6 E. Badouel € J. Oliver

appears as a subclass of self-modifying nets for which boundedness can be decided. However
this translation uses features like reset arcs whereas boundedness of the class of Petri nets
with reset arcs is undecidable. This suggests that a simpler translation might be possible at
least for particular subclasses of reconfigurable nets.

In this study we restrict our attention to the subclass of reconfigurable nets, termed
reversible, whose structure modifying rules are formally inversible. This assumption is quite
natural since the system that we intend to modelize is supposed to run forever and thus
should not have degraded behaviour. Such a net may be viewed as the cascaded com-
position of an automaton with a parametric Petri net, i.e. as an ACPN, thus Boundedness,
Reachability and Liveness are decidable for reversible reconfigurable net. Finally under some
additional assumption a reversible reconfigurable net is shown equivalent to a stratified Petri
net.

The remainder of the paper is organized as follows. In Section 2 we introduce the model
of Automaton Controlled Petri Nets (ACPN). We show that any ACPN may be associated with
some weakly equivalent Vector Addition System with States (VAss) and that consequently
place-boundedness, reachability, deadlock and liveness are decidable properties of ACPN. In
Section 3 we recall the definition of Reconfigurable Nets and consider its subclass of Reversible
Reconfigurable Nets for which a fundamental property is established. This fundamental
property is used in Section 4 to prove that the marking graph of a reversible reconfigurable
net is equivalent to the marking graph of some ACPN. Thus place-boundedness, reachability,
deadlock and liveness are also decidable properties of reversible reconfigurable nets. The
fundamental property of reversible reconfigurable nets is used in Section 5 to establish a
translation of some reversible reconfigurable nets into stratified Petri nets. In Section 6 we
give some examples of concurrent systems subject to dynamic changes. They are respectively
modelized using reversible reconfigurable nets, Petri nets, and stratified Petri nets showing
that the choice of a particular model much depends on the nature of the problem to be
modelized.

2 Automaton Controlled Petri Nets

In this Section the notion of Automaton Controlled Petri Net (ACPN) is introduced. A
weak equivalence between ACPNs and Vector Addition Systems with States (VASS [14]) is
indicated from which it follows that Place-boundedness, Reachability, Deadlock and Liveness
are decidable properties of ACPNs. We indicate in particular a definition of the coverability
tree of an ACPN which is the counterpart of the coverability tree of the associated VASS.

Definition 1 (Parametric Petri Net) A parametric Petri net is a structure (II, P, E,
Pre, Post, My) where II, P, and E are pairwise disjoint finite sets whose elements are
respectively termed parameters, places, and events. Pre, Post : PxE — INY are respectively
termed the preset matriz and postset matriz. Mo € IN* the initial marking. If we let *A, A® :
N — (P x E — IN) be given by *A(a)(p,e) = Pre(p,e) -a and A*(a)(p,e) = Post(p,e) - a
for a € IN', e € E and p € P; then a parametric Petri net amounts to a family of Petri
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Dynamic Changes in Concurrent Systems 7

nets Ny = (P, E,*A(a), A*(a)) indexed by o € IN'. The firing relation in N, is given by

/ (i) M(p) > Pre(p,e) -
Mle/a) M' < VpEP{(;Z.) M’(p):]\:fczp)fP?e(p,e)-a-l—Post(p,e)-a

Definition 2 (Automaton Controlled Petri Net) An automaton controlled Petri net
is a triple N = (A, A,N) where A = (S, E,T,so) is a finite deterministic automaton with
set of states S, set of events E, transition relation T C S x E x S, and initial state sg € S.
N = (I, P, E, Pre, Post, My) is a parametric Petri net with the same set of events as the
automaton. A : S — INY, termed the state encoding function, gives the interface between
the control part (the automaton) and the controlled part (the parametric Petri net). Actually
N can be construed as the family of nets N, controlled by the automaton A. The markings
of N are the pairs (M,s) € IN* x S and its transition relation between markings is given by

(M,s) 5 (M',s") & s5s AN Me/A(s)) M’

Its marking graph is the automaton, denoted N xa A, obtained by restricting its transition
relation to the set of markings reachable from the initial marking (Mo, so).

An automaton controlled Petri net then consists of two systems composed in cascade: an
automaton A and a parametric Petri net N. The interface between the two systems is given
by the state encoding function that may be presented in matrix form A : S x II — IN. We
abbreviate N xa A to N X A when A is a trivial state encoding, i.e. when S =1II and A is
the identity matrix. Automaton Controlled Petri nets are very similar to Vector Addition
System with States.

Definition 3 (Vector Addition System with States (VASS)) A Vector Addition Sys-
tem with States (V, Arcs,£) consists of a finite oriented graph G = (V, Arcs), an integer
m > 1 and a map £ : Arcs — Z™, i.e. a VASS is an oriented graph labelled in Z'™. A
marking is a pair (M,v) made of a vector with non-negative entries M € IN™ and a vertex
v € V. The notation (M,v) % (M',v') means that a is an arc from v tov' and M' = M+{(a).
The marking (M',v') is said to be reachable from marking (M,v) if (M,v) 3 (M’ ,v') where
2 s the reflexive and transitive closure of the relation of one-step reachability given by :
(M,v) > (M',v') & da € A (M,v) S (M',v"). If the VASS comes equipped with some
initial marking (Mo, vo) its marking graph is the graph whose labelled arcs are the triples
(M,v) = (M',v'") where (M,v) (and thus (M',v')) are markings reachable from the initial
marking.

Clearly an ACPN N = (A4, A, N) where N is a pure Petri net is equivalent to the VASS
N° = (V, Arcs, £) whose vertices are the states of A: V = S and one has one arc in Arcs
from s to s’ labelled by the vector V (e, s) € Z" given by

Ve, s)(i) = [Post(p;, e) — Pre(pi,e)] - A(s)
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S s

+
- viet,s)
V(eT

(e

y P

Figure 2: from impure net to pure net

where P = {p1,...,pn} is some fixed enumeration of the set of places of N. Actually N and
N° have the same markings and (M, s) = (M',s’) in the marking graph of A if and only if
(M, s) VS (M, ¢') in the marking graph of A°.

Suppose that net N is impure which means that both Pre(p, e)-A(s) and Post(p, e)-A(s)
are non zero for some place p, event e and state s, otherwise stated the configuration of N
associated with state s (Na(s)) is an impure Petri net. Now one can easily transform any
Petri net into a pure Petri net by splitting its events. This transformation which is illustrated
in the left of Fig. 2 consists in splitting each event e into two events, the “begining of e”
denoted et, and the “end of ¢” denoted e~. Each input place of event e in the original
net is an input place of eT with the same weight. Similarly each output place of event e
in the original net is an output place of e~ with the same weight. Finally we have in the
split net an extra place for each event of the original net (bearing for simplicity the name
of that event) this place is an output place for et and an input place for e~ with single
weights, its content gives the number of instances of event e that are currently executed. The
split net gives a finer description of the phenomenon being modelized in that by breaking
the atomicity of events it allows for an explicit description of the co-occurrence of events.
However if one is not interested in the independence of events, which is the case when one
want to check properties like reachability, boundedness, liveness or deadlock, then the split
net is equivalent to the original net (see [3]). One may think to apply this operation for
each configuration of N and to use the construction given above for pure ACPN. However
the atomicity of events require that each firing of an event takes place in some particular
configuration of the system, and this property is not preserved by splitting of events, since
e~ can occur in a different configuration than the corresponding e. In order to escape this
problem we shall enforce event et to occur immediately after e~. In this way we totally
loose any information about the concurrency of events, but as we already mentionned this
has no effect on the properties we are interested in. Thus each ACPN N = (4,A,N) is
associated with a VASS N° = (V, Arcs, ) with components as follows. Vertices are either
states of the ACPN or pairs (s,e) made of a state and of an event enabled in this state:
V=8SU{(s,e)e SxE|3s'" €S s>s'}. Foreach transition s > s’ we have two arcs in
the VASS: one from vertex s to vertex (s, e) labelled V(e™, s) and another one from vertex
(s,e) to vertex s’ labelled V (e, s) where V(eT,s) and V(e™,s) are the vectors of Z"*
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Dynamic Changes in Concurrent Systems 9

given by
—Pre(pj,e)-A(s) if 1<i<n
V(et,s)(i) = 1 if i>n and e=e;_,
0 if ¢i>n and e#ei_,
and
Post(pi,e)-A(s) if 1<i<n
Ve ,s)(i) = -1 if ¢i>n and e=¢;_,
0 if i>n and e#ei_,
where P = {p1,...,pn} and E = {ey,...,er} are some fixed enumerations of the set of

places and events of the ACPN. Then the markings of A/ are also markings of A° and

(M, s) = (M',s') in the marking graph of AV if and only if we have the sequence of transitions
et

(M, s) VS (M7 U e}, s) VS (M, ¢') in the marking graph of A’° where M” : P — IN.
€+ 8 . o, . .
Moreover (M, s) Vi) (M" U {e}, s) is the only transition leading to marking (M" U {e}, s)

and (M" U {e},s) * ¥ (M, ') is the only transition from this marking because V (e*, s)
which add one token to place e and V(e™,s) which remove one token from this place are
the only vectors that modify the value of place e. If we restrict attention to the markings
reachable from some initial marking (My, so) € IN* xS it follows that the reachable markings
of N'° are the reachable markings of A" together with some marking of the form (M"”U{e}, s)
where M"” : P — IN, e € E, and s € S. Thus the ACPN and its associated VASS
are equivalent with respect to the following properties: Place-Boundedness, Reachability,
Deadlock and Liveness, since these properties are decidable for VASS (see [14]).

Proposition 4 Place-Boundedness, Reachability, Deadlock and Liveness are decidable pro-
perties for ACPN.

In particular one can decide place boundedness of an ACPN by constructing the coverability
tree of its associated VASS. We can simplify the construction of this coverability tree by
amalgamating the successive arcs associated with V (e, s) and V (e, s). We conclude this
section by a description of this coverability tree.

We define an order relation between markings of an ACPN by letting

(M,s) C (M',s') & (s=s") A (Vp€ P M(p) < M'(p))

Similar to what is done for Petri nets, a finite approximation of the reachability tree called
the coverability tree can be constructed. For that purpose a new value denoted w and
representing “an arbitrary large” integer is added to the set of IV of non-negative integers;
with the order relation and the addition and substraction operation extended by letting
VnelN, n<w w+n=n4+w=wt+w=w, w—n=w, and n —w is undefined.

Definition 5 (Generalized markings) A generalized marking of an ACPN N is a pair

(M, s) where M is a map M : P — INU {w} and s € S is a state.

RR n3708



10 E. Badouel € J. Oliver

The previous order relation is then extended to generalized markings :
(M,s)C (M',s") & (s=4¢') A (¥p€ P M(p) < M'(p))

Definition 6 (Coverability tree of an ACPN) The coverability tree of an ACPN N is
constructed by the following algorithm:

o Initially the tree is reduced to its root labelled (Mo, so) and tagged as “new” vertez.
o While “new” vertices exist, do the following:

— Select a new vertex V, let (M, s) be its label.
— If the label is distinct from all the labels of the nodes on the path from the root to
vertex V' then for every firing (M, s) < (M’,s') do the following:
x Create a new vertex V' and an arc from V to V' labelled e and tag this vertex
V' “new”,

% Label vertex V' with generalized configuration (M’,s') defined as follows. If
there exists some node V" on the path from the root to vertex V whose label
(M",s") is such that (M",s") C (M',s") and M"(p) < M'(p), then we let

M'(p) = w. Otherwise, we let M'(p) = M'(p).

— Withdraw V from the set of “new” vertices.

Proposition 7 The coverability tree of an Automaton Controlled Petri Net is finite. An
Automaton Controlled Petri Net is bounded if and only if no vertex of its coverability tree
is labeled by (M, s) in which M contains an w component. More precisely if (M,s) is some
generalized marking labelling a node of the coverability tree, then for all integer N there

exists a reachable marking associated with the same state: (M',s) (i.e. M': P — IN has no
w component) such that:

1. M(p;)=w = M'(p;) > N;

Proof: Follows from the analogous result for VASS [14]. [ |

3 Reversible Reconfigurable Nets

Let us recall from [5] the definition of a reconfigurable net.

Definition 8 A reconfigurable net is o structure N = (P,T,F,R) where P = {p1,...,pm}
is a non empty and finite set of places, T = {t1,...,tn} is a non empty and finite set
of transitions disjoint from P (PNT =), F : (P xT)U (T x P) — IN is a weighted
flow relation, and R = {ry,...,ry} is a finite set of structure modifying rules. A structure
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modifying rule is @ map r : P — P, whose domain and codomain are disjoint subsets of
places (P, Py, C P and PLNP> =0). A marking of net N is a map M : P — INU{a} where
a & IN, when M(p) = a place p is said not to exists in marking M whereas M (p) =n € IN
erpresses that p exists in marking M and has value n. We let E = T U R denote the set
of events of the reconfigurable net. We let M [e) M’ denote the fact that event e is enabled
in marking M and that the net reaches marking M' when firing this event. This transition
relation is defined as follows. A transition t € T is enabled in marking M if:

Vpe P  M(p)#a= M(p) > F(p,t)

When transition t is fired in marking M, the resulting transition M [t) M’ is such that
VpeP

Mp)=a = M(p) =«

M(p)#a = M'(p)=M(p)—F(pt)+ F(t,p)

A structure modifying rule r € R is enabled in marking M if:

VpePL M(p)#a
VpeP, Mp) =«

The firing of this enabled Tule r produces the new marking M' defined as:

vaPl M'(p):a
Vp € P, M'(p) =>{M(q) | g€ P, A r(q) =p}
Vpe P\(PLUP,) M'(p)= M(p)

A marked reconfigurable net is a reconfigurable net together with an initial marking.

The firing policy of transitions is like in the Petri net obtained by discarding the non existing
places. This Petri net is called a configuration of the reconfigurable net. As long as no
structure modifying rule take place, the reconfigurable net behaves exactly like this Petri
net. Structure modifying rules produce a structure change in the net by removing existing
places and creating new ones, thus moving the system from one configuration to another
one. When a place is removed, the tokens of this place do not disappear, but they are
moved to other places of the net. Hence, the number of tokens remains constant through
the application of structure modifying rules. The set of places that exists in a marking M,
let D(M) = {p € P| M(p) # a}, is termed the domain of M. Two markings are said
to be equivalent when they have the same domain: M; = M, < D(M;) = D(M,). A
mode of operation is an equivalence class for =, it can be identify with a subset D C P of
places. We let O(N, M) denote the set of modes of operation of (reachable markings of) the
marked reconfigurable net (N, M). Roughly speaking a reversible reconfigurable net can be
seen as a bunch of Petri nets: its configurations. The configurations of a reconfigurable net
correspond to the various modes of operation of the system. The structure modifying rules
allow to switch from one mode of operation to another one while it modifies the current
marking accordingly by displacing the tokens from the vanishing places to the created ones.
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+parallel mode

. region

Inventory Check
Credit Check
Billing

Shipping
Archiving

P13

Do go =
[T I T

Figure 3: a reversible reconfigurable net

This reconfigurable net of Fig. 3 describes how to proceed an order request from a
customer, there are two modes of operation corresponding to distinct regions in the graphical
representation of the net, one in which the Billing and Shipping operations are processed
sequentially and the other in which they are processed in parallel. The structure modifying
rule r : {psg;p2} — {p3;p5} given by r(ps) = ps and r(p2) = ps permit to switch from the
sequential mode of operation to the parallel mode of operation. Conversely the structure
modifying rule r~! realizes the switching in the converse direction. Fig. 4 represents a
fragment of the marking graph of this reconfigurable net, a place is graphically represented
in a given state if and only if that place exists in the current marking (i.e. its value is
different from «). The reconfigurable net of Fig. 3 is reversible in that all of its structure
modifying rules are bijections.

Definition 9 A reversible reconfigurable net is a reconfigurable net all of whose structure
modifying rules are bijections.

The first property trivially verified by reversible reconfigurable nets, and which justify the
chosen terminology, is the co-determinism of their marking graphs:

Observation 10 Reversible reconfigurable nets have co-deterministic marking graphs:
M ey M ANM'[ey M = M =M"

Every (bijective) structure modifying rule r : P, — P» induces a permutation ¢, of the set
of places given by:
r(p) if peh
erp) =1 7' (p) if peP

Every sequence of events u € E* induces also a permutation ¢, given by:

_[idp i weT
Pu = prowy, if u=wvr, veEFE* and r € R

INRIA
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sequential mode

parallel mode

O/D*@*D*@-D-Oﬂ

Mm

O/D*@*D*O*Eh@ﬂ

\/\/

=

Figure 4: (part of) the marking graph of the reconfigurable net of Fig. 3
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Proposition 11 (Fundamental Property of Reversible Reconfigurable Nets) Let
N = (P,T,F,R) be a reversible reconfigurable net and u € E* a sequence of events. Let
D..D2CP,0,:P— INand A, : P — Z be given by:

0 if weT*
Dl=¢ P if u=r€R r:P— P
Dlue;Y(DY) if u=ve, veEE* and e€ E
0 if weT*
DZ: Py Zf u=r€eR r:P - P
D2up;Y(D?) if u=ve, vEE* and e€ E
0 if uwé€R*
ou(p) =4 Fl(p,t) if u=teT
maz{o,(p);oe(py(®)) — Ay(P)} if u=wve, vEE* and e€ E
0 if ueR*

Ay (p) + Ae(pu(p)) if u=wve, vE€ E* and e€ E.
For markings M and M' one has

(i) DLCD(M) and D(M)ND2 =0
, (i) Vpe D(M) M(p) > ou(p)
Mlu) M™ <9 (i) D(M') = g (D(M))
(iv) Vpe D(M) M(pu®)=M®)+Aup)

Proof: Let M % M' when conditions (i) to (iv) are satisfied. This set of transitions is
deterministic. More precisely, we write M = M'<& M 3 AM' = M - u where M 5 &
(i) A (43) and M' = M -u & (ii3) A (iv). The ternary relation R(M,u, M') & [M' = M -u]
is, as suggested by its notation, functional: given M and u, the conditions (i) and (iv)
completely caracterize the element M’. In particular such an M’ always exists, and thus
M 5 islogically equivalent to AM’ M =% M’'. We prove M [u) M’ <& M =% M’ by induction
on the length of u. The base cases are when |u| < 1:

e Let u = € be the empty word. Then by convention € is enabled in every marking M
and M [e) M' = M' = M. Since D! = D? ={) and o.(p) = 0, we deduce that M >
always holds. Since . = idp and A.(p) =0, we deduce M -e = M.

e Let u =t € T be a transition. Since D} = D? =0, and o4(p) = F(p,t), M 5 < Vp €
D(M) M(p) > F(p,t). Since Ai(p) = F(t,p) — F(p,t) and ¢ = idp, M' =
M-t < D(M') = D(M) N Vp € DIM) M'(p) = M(p) + A¢(p). Altogether

ML M < MIt)y M'.
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e Let u =r € R be a structure modifying rule which is a bijection r : P, — P,. Since
Dl =P,D?="P,ando,(p) =0, M5 & P, CDM) A D(M)N P, = {). Since

Ar(p) =0, M"=M-r & D(M') = ¢,(D(M)) A Vp€ D(M) M'(pr(p)) = M(p),
ie. M'=M-r & M = M oyp,. Altogether M 5 M’ < M [r) M'.

We assume M [u) M' < M = M’ for |u] <n with n > 1. Let u = v.e be a word of length
n, wherev € E* ande € E. M [u) M' & 3IM" M [v) M" AN M" [e) M'. By inductive
assumption M [u) is therefore equivalent to M = A M -v =, i.e. to the following conditions

D! CD(M) and D(M)ND2=0
) VpeD(M) M(p) 2 o.(p)
' D'CD(M") and D(M")ND? =
)’ Vpe D(M") M"(p) > o.(p)
where marking M" is given by:
(iti) D(M") = py(D(M))
(iv) Vpe D(M) M"(py(p)) = M(p) + Au(p)

Since D(M") = @, (D(M)), (i) A (i) ¢ DiUpy (DY) € D(M) A [D2Ugy {(D2)IND(M) =
(), it is therefore equivalent to

(i) DL CD(M) and D(M)ND?=§

(i) A (i) < [by (iii) and (iv)] Vp € D(M) M(p) > ou(p) A M(p) + Au(p) 2>
oe(pu(p)) & Vp € D(M) M(p) = maz{oy(p);oe(pu(p)) — Auv(p)} = ou(p). Thus
(ii) A (i) < (ii)" where:

(i4)" Vpe€ D(M) M(p) > ou(p)

Thus M [u) if and only if M %. Now both transition systems are deterministic, and by the
base cases M [e) M' < M = M’ for every e € E, thus M [u) M’ & M 2% M’ as required.
i

We use the fundamental property of reversible reconfigurable nets in Section 4 and in Sec-
tion 5. In the first one, we show that any reversible reconfigurable net is equivalent to some
automaton controlled Petri net and we derive therefrom a definition of coverability trees for
reversible reconfigurable nets. This definition improves the coverability tree construction in-
troduced in [5] for reconfigurable nets in that it not only allows to decide on boundedness but
also on place-boundedness. In Section 5, we identify a subclass of reversible reconfigurable
nets that can be simulated by a stratified Petri net [4], that is to say by a self-modifying
Petri net for which a stratification of the set of places into layers exists so that the flow re-
lations attached to a place involve only the content of places of lower layers. The modifying
Petri nets that we have used to simulate reconfigurable nets in [5] are not stratified. This
feature was essential since reconfigurable nets unlike stratified Petri nets are in general not
co-deterministic in the sense that we cannot for each firing M [e) M’ deduce marking M
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5t B—0O
Py P13
o T
P1 t3 P8 te P11
—{B—O

r3

Figure 5: the reversible reconfigurable net of Fig. 3 as an automaton controlled Petri net

from the data of event e and marking M’. As we noticed already, reconfigurable nets are
co-deterministic however if all structure modifying rules are assumed to be bijective, i.e. if
it is a reversible reconfigurable net.

4 Reversible Reconfigurable Net and Automaton Control-
led Petri Nets

It is only for convenience that we have assumed that the automaton and the parametric Petri
Net have the same set of events. This is usually not the case, but can safely be assumed
up to the adjunction of idle events. An idle event of the control part (automaton) is an
e € E such that Vs € S s 5 s. An idle event of the controlled part (parametric Petri net)
is an e € E such that Vp € P Pre(p,e) = Post(p,e) = 0. Fig. 5 gives the automaton
controlled Petri net corresponding to the reversible reconfigurable net of Fig. 3, notice that
the idle events are not represented as it will always be the case. If A and B are deterministic
automata with the same alphabet of events we let A < B and say that A is covered by B
when there exists a saturating morphism of automata from B to A, i.e. a map o from the
set of states of B to the set of states of A which relates the corresponding initial states and
such that s;1 5 52 = 0(s1) = o(s2) and o(s1) > sh = Jss 51 = 52 A o(s2) = sh. If every state
is accessible from the initial state in both automata, then such a morphism when it exists is
unique and it is a surjection. Moreover the equivalence generated by the covering relation
(i-e. the least equivalence relation that contains <) identifies exactly those automata having
the same language (where every state is a terminal state).

Proposition 12 The marking graph of a marked reversible reconfigurable net is covered by
(and thus equivalent to) the marking graph of an automaton controlled Petri net with trivial
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state encoding:
mg(N, My) < N(®) x A(®)

If N =(P,T,F,R), then A(®) = (S,E,T’,s0) and N(®) = (II, P', E, Pre, Post, M) where
S = 1II is the group ® of permutations generated by the permutations p, associated with some
structure modifying rule r € R, and sq is the neutral element of that group. E =T UR is
the set of events of N. P' = D(My) = {p € P|Moy(p) # a} is the domain of marking My,
and MY is the restriction of My to its domain: ¥p € P' = D(My) M{(p) = Mo(p). The
non idle events of the control part are the structure modifying rules r € R with

go—r)cpl & PP AP CoP)ANPNP)Y=0A¢ =¢p,00p

The non idle events of the controlled part are the transitions t € T of the reconfigurable net
with Pre(p,t) = 3> F(¢(p),t) - ¢ and Post(p,t) = 3 F(t, ¢(p)) - ¢, i-e.

, ;] (B)  M(p) > F(e(p),t)
Mltjey M < VpeP { (ii) M'(p) = M(p) — F(o(p),1) + F(t,0(p))

Proof: By Prop. 11 the transition relation of N is given by
i) DLCD(M) and DM)ND?2=1)

i) VpeD(M) M(p) > ou(p)

iii) D(M') = o, (D(M))

w) VpeDM) M'(pu(p)) = M(p) + Au(p)

Suppose M is a reachable marking, i.e. My [u) M for some firing sequence u € E*. The
marking M/u = M o ¢, is such that D(M/u) = D(My), and marking M can be retrieved
from M/u and ¢, using the identity M = M/uo ¢,'. Let us therefore consider the pairs
(M, ) in which ¢ belongs to the group ® generated by the permutations ¢, for r a structure
modifying rule, and M is a marking with domain P’ = D(Mj). And we associate such a
pair (M, ) with the marking M o ¢~ 1. Now

Muy M' &

P

i) Dy CoP) and @(P)ND;=0

(
Mop™ [u) M'og'™" & E”). vpe P’ M) 2 ou(e(p))
(

i) VpeP M (¢ opuopp)=Mp)+Aulep))

i) ' (P') = pu(p(P))

Notice that M o ¢~ [u) M’ o ¢'~1 does not entail that ¢’ = ¢, 0 ¢. Let (M, p) % (M’,¢)
when M o~ [u) M' o ¢/~ and ¢’ = ¢, o . Thus

i) D,C@(P) and @P')ND%=10
it) VpeP' M(p) > ou(p(p))
iii) @' =@puop

iv) VpeP' M'(p)=M(p)+ Aulp(p))

(M,p) = (M',¢) &

.~~~ A~
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r1: {p2} — {ps}
ra: {pa} — {p1}
ra : {p1;p3} — {p2;pa}

Figure 6: a reversible reconfigurable net

When u =t € T is a transition of N these conditions reduces to
(1) O
(i) Vpe P M(p) > F(e(p),t)
(M,0) 5 (M, ¢') & (i) ¢ =¢
(iv) Vpe P M'(p)=M(p)— F(e(p),t)
+F(t, ¢(p))

When u = r € R is a structure modifying rule, the above reduces to

(1)) PLCe(P) and PoNe(P)=10
r T (ZZ) O
(M, ) = (M',¢') & i) o' = or 0
(Z’U) M/ =M

Therefore the restriction of the set of transitions (M, p) = (M’, ¢') to the set of configurations
(M, ) reachable from the initial configuration (Mp, id) is the automaton controlled Petri net
N(®)xA(®). Now the mapping f : N(®)xA(®) — mg(N, My) given by f(M,p) = Mop~!
is, by definition of M o ¢~ [u) M’ o ¢'~!, a morphism of automata. It is a saturating
morphism, because M o =1 [e) M’, which is the conjunction of the following conditions

i) D!C@(P') and @(P')ND:=10

i) Vp€ P M(p)>o.(p(p)

iii) D(M') = pe(p(P"))

i) Vpe P M'(p.op(p))=M(@p)+ Ao(p))

means that one has the transition (M, ¢) 5 (M’ o . o ¢, p. 0 p) whose target is sent to M':
F(M'ope0p,pc0p) =M. |
Fig. 6 represents a reversible reconfigurable net with three structure modifying rules. Let

o; be the permutation of {1;2;3} associated with the permutation @, , i.e. @, (Pi) = P, (i)-
Then o1 = (2,3), 02 = (1,4), and o3 = (1,2)(3,4) and ® is isomorphic to the group with
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©j(Pi) =Poj(i) where
/1234/
/1324/
/4231/
/2143/
/4321/
/2413/
/3142/
/3412/

id

(2,3)
(1,4)
(1,2)(3,4)
(1,4)(2,3)
(1,2,4,3)
(1,8,4,2)
(1,3)(2,4)

®0000000

PO _¥1 P2 ¥3 P4 ¥5 Y6 PT

ap =92 + 93+ s+ s

ap® =¢o +¢1 + w6 + 7

*bp = o + ¥1

bp® =2 + 93 +va+ws + 96+ e
cp =90+ w1 +e3s+es+eester
gp' = w2+ 94

ag = 9o +v2 +vs + o7
l.lq':v1+<p3+<p4+tpe

bg =3 + ve
be® = o+ 1+ w2 +eastes+er
®cqg =wot+ w1 +2+wst+estes
cq® =95 + o7

Figure 7: the net of Fig. 6 as an automaton controlled Petri net

generators o1, 09, 03 and with relators oy -0y, 02-02, 03-03, 01-02-01-09, and 01 -03-02-03.
Thus the generators are involutive, o1 and os commutes (o1 - 02 = 02 -01) and o3 exchanges
o1 and oy (01 - 03 = 03 - 02 and 02 - 03 = 03 - 01). The group ® is thus isomorphic to
the semi-direct product (Zz x Z») X¢ Z2 where action 0 : Zs — Aut(Z- x Z») is given
by 6(1)(¢,7) = (4,7) and where the generators o1, o2 and o3 are respectively mapped to
(1,0,0), (0,1,0) and (0,0,1). The Cayley graph of & is represented on the right-hand side
of Fig. 6. The automaton A(®) is obtained by keeping those transitions ¢ = ¢’ of the Cayley
graph of ® (i.e. ¢ = ¢, 0 ) such that P, C ¢(P') and P, Np(P') = § where r: P, — P»
and P' = D(M,). Fig. 7 represents the net of Fig. 6 as an automaton controlled Petri net.
It can equivalently be represented (see Fig. 8) as the automaton A(®) where each node of
this automaton is labelled by the corresponding configuration of the net N(®). A reversible
reconfigurable net and its associated are equivalent with respect to the following properties:
Place-boundedness, reachability, liveness, and deadlock. Thus,

Proposition 13 Place-boundedness, reachability, liveness, and deadlock are decidable pro-
perties of reversible reconfigurable nets.

The only point in the above statement that is not immediately clear is about the place-
boundedness property. Indeed different places of the reversible reconfigurable net are repre-
sented by the same place in the associated automaton controlled Petri net. However the
state component raises the ambiguity: by Prop. 7 the place p of a reversible reconfigurable
net is bounded if and only if for each vertex of the coverability tree of the associated ACPN
it is the case that, if (M, ) is the label of this vertex, M(o~(p)) # w.
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Figure 8: another representation of the cascade of Fig. 7
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In order to conclude this section we rephrase the definition of the coverability tree of
the ACPN associated with a reversible reconfigurable net. We recall that the order between
(generalized) markings is given by

(M) C(M',¢') & ¢=¢ and VYpeQy M(p) <M

Thus a component w is added in the coverability construction when one reaches a vertex
V' associated with generalized marking (M’, ') such that there exists some vertex V on
the path from the root to V' labelled with generalized marking (M, ¢) such that (M, p) C
(M',¢") and M(p) < M'(p) for some p. Thus ¢ = ¢' and ¢,, = id where u is the label of the
path from V to V'. The algorithm is then as follows where a sequence is termed iterating
when the induced permutation is the identity mapping.

Definition 14 The coverability tree of a marked reversible reconfigurable net (N, M) is
constructed by the following algorithm:

o Initially the tree is reduced to its root labelled My and tagged as a “new” vertex.
o While “new” vertices exist, do the following:

— Select a new vertex V, let M be its label.
— If M is distinct from all the labels of the nodes on the path from the root to vertex
V then for every firing M [e) M' do the following:
x Create a new vertex V' and an arc from 'V to V' labelled e and tag this vertex
V' “new”.

% Label vertex V' with generalized marking M' defined as follows. If there
exists some node V' on the path from the root to vertex V whose label M" is
such that M" T M' and M"(p) < M'(p) and such that the label of the path
from V" to V' is an iterating sequence of events, then we let M'(p) = w.
Otherwise, we let M'(p) = M'(p).

— Withdraw V from the set of “new” vertices.

5 Reversible Reconfigurable Nets and Stratified Petri Nets

In [5] a translation of a reconfigurable net into an equivalent self-modifying net was repre-
sented. Self-modifying nets [15, 16] are generalizations of place/transition nets where the
flow relation between a place and a transition depends on the marking.

Definition 15 A self-modifying net is a structure N = (P,T,F) where P = {p1,...,pm}
is a non empty and finite set of places, T = {t1,...,t,} is a non empty and finite set
of transitions disjoint from P, and F : (P x T) U (T x P) — IN™ is the flow relation
where P, = P U {x} and x ¢ P. A wvector ¢ € IN™* can be represented by a formal sum
© = Ao+ io, Ni-pi where the constant coefficient is the entry corresponding to the fictituous
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3?1 _‘3p2 r1
T P1 — P2
p1 € P
1,/ 5{p| 7(p) = p2} p2 € P>

—3p, Ipy P2

Figure 9: translating a reconfigurable net into an equivalent self-modifying net

Pyq

Figure 10: a stratified Petri net equivalent to the reconfigurable net of Fig. 3

place: Ao = () and \; = p(p;). A marking of net N is a map M : P — IN. If M € IN* is
a marking and p € IN™*, we let p(M) = Ao + Y10, \i - M(pi) denote the evaluation of the
affine function ¢ in marking M. We let M [ty M' when transition t is enabled in marking
M and leads to marking M'. This transition relation is given by:

Mty M' <VpeP M(p)>F(p,t)(M) A M' =M —F(p,t)(M)+ F(t,p)(M)
A marked self-modifying net is a self-modifying net together with an initial marking.

The translation that is sketched in Fig. 9 involves reset arcs. This fact may surprise in
view of Dufourd’s result according to which the boundedness of Petri nets with reset arcs
is undecidable. In many cases however such reset arcs are not needed, for instance Fig. 10
shows a self-modifying net equivalent to the reversible reconfigurable net of Fig. 3. The net
of Fig. 10 is even stratified [4] which means there exists a stratification of the set of places
into layers so that the flow relations attached to a place involve only the content of places
of lower layers.

Definition 16 A stratified Petri net is a self-modifying net N = (P,T,F) whose set of
places P can be partially ordered so that if F(p,t) or F(t,p) is of the form Mo+ > ", i - ps,
then A\; = 0 for every indices i such that p < p;.

More precisely, since each structure modifying rule is a bijection, the number of places that
exists in a current mode of operation of a reversible reconfigurable net remains unchanged
when a structure modifying rule occurs. Therefore a place p that exists in the initial marking
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can represent the set of places ¢(p) for ¢ ranging in the group of permutations of the set
of places generated by the permutations ¢, associated with some structure modifying rule
r. For instance the place ph (respectively the place pj) in Fig. 10 stands for the place po
(resp. the place py) of Fig. 3 when the system is in the sequential mode of operation; and
it stands for the place ps (resp. ps) when the system is in the parallel mode of operation.
The flow relations attached to that place are no longer constant but depend on the current
mode of operation. A reversible reconfigurable net can roughly be viewed as a parametric
Petri net, whose instances are its configurations, controlled by an automaton that describes
how to switch from one configuration to another one.

Observation 17 An automaton A = (S, E, T, sq) is isomorphic to the marking graph of a
stratified Petri net if and only if

A= N X (Ng—1 X...Nax(Ny XBg)...)
where Bg = ({x}, E,{x} x E x {x}, ) is a bouquet and Ny to N}, are parametric Petri nets.

In particular the marking graph of a Petri net is of the form N x Bg, i.e. a Petri net can
be construed as N, for a parametric Petri Net N with one parameter (I = {*}) where
a(x) = 1. The meaning of symbol X was introduced in Def. 2.

In Prop. 12 we fail to have an isomorphism because the domain of the initial marking
may be mapped to the same set by different permutations of ®. If we exclude nets for
which this phenomenon occurs we actually have an isomorphism as shown by the following
proposition.

Definition 18 A reversible reconfigurable net is termed simple if the only permutation of ®
(the group generated by the permutations @, associated with structure modifying rule r € R)
that maps the domain of the initial marking to itself is the identity.

Let Q9 = D(My) be the domain of the initial marking, then equivalently the net is simple if
Vo, € @ (o) =9(0) = ¢ =9

Proposition 19 The marking graph of a marked simple reversible reconfigurable net is iso-
morphic to the marking graph of an automaton controlled Petri net:

mg(N, My) = N(®) x A(P)
Moreover, in that case one has also an isomorphism
N(®) x A(P) =2 N(®) xa A(O)

where A(Q) = (S,E,T',s0) is the automaton whose states are the modes of operations
of the marked net: S = O(N, M), whose initial state so = Qo is the mode of operation
Qo = D(My) of the initial marking. The non idle events of A(O) are the structure modifying
rules r € R with

NS & r:PLoP APLCOQARNLA=0AQ=¢.(Q)
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The state encoding function matriz A : O(N, M) X ® — IN is given by
A(Q,p) = if Q@ =p(Qg) then 1 else 0

Proof: We saw that the map f : N(®) x A(®) — mg(N, My) given by f(M,p) = M o p~!
is a saturating morphism of automata. Since the corresponding automata are deterministic
and accessible the saturating morphism is surjective and it is an isomorphism if and only if
it is injective. Suppose f(M, ) = f(M',¢'), let Q be the domain of M o o=t = M’ o 'L
Then Q = (o) = ¢'(Qo) where Qo = D(My) is the domain of the initial marking and it
follows by simplicity that ¢ = ¢’ and thus M = M’ which shows that f is injective. Hence

mg(N, Mo) = N (@) » A(®)

Now, one has a bijective correspondance between the reachable configurations of N(®) %
A(®) and the reachable configurations of N(®) xa A(O) taking (M, ) to (M, p(Qp)) and
conversely (M, Q) to (M, A(2)). This correspondance is an isomorphism of automata, since
if o = A(Q) and ¢’ = A(f)') one has

(M, Q) S (M',Q) in N(®) xa AO)
& life=t M[E/AR) M in N(@) A
[ife:r] M =M /\Png/\Pzﬁﬂz
& Jife=t] Mt/e) M in N(®) A ¢ =9
ife=r] M=M A P, Cp( ) A n
& (M,p) S (M) in N(@)xA®)

The advantage of this second presentation (see Fig. 11) is that the automaton A(Q) is
isomorphic to the marking graph of a 1-safe Petri net. In this manner one has a distributed
representation of the control. More precisely two structural modification rules are inde-
pendent if they are concerned with disjoint subsets of places of the controlled parametric
Petri net.

Because of the presence of a non trivial state encoding function, the automaton controlled
Petri net N(®) xa A(O) does not lead directly to a representation by a stratified Petri net.
It is necessary to encode the parameters ¢ € ® of net N(®) by places of a stratified Petri
net with marking graph isomorphic to A(O).

Proposition 20 Let N' = (P, T, F, M) be a 1-safe marked Petri net and X C 2¥ a set o
‘properties’ of N'. There exists a 1-safe marked stratified Petri net N(X) = (P,T,F, M,
such that (i) N(X) is a conservative extension of N in the sense that P C P, F(p,t) =
F(p,t) and My(p) = Mo(p) for every p € P and the mapping (M C P) — (M NP C P)
induces an isomorphism between the respective marking graphs of N and N (X), and (i)
each property of X is represented in N'(X): for each x € X there exists a place p, € P such
that for every reachable marking M of N'(X) one has M(p,) = 1 if and only if  C M N P.

|v\
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w

P p1 32

TF(e(p),t) - 4

O\ /O
mg(N,Mo) < XA
TF(t, ¢(q) - 4
O 2 )

q ~3p;  3Fpy

P,a € Q0 =D(Mg) r:pP; Py pi €P; py€ Py
@, € group < ¢y | » € R>

Figure 11: a reversible reconfigurable net as a cascade composition of Petri nets

Proof: Let us consider first the case where X = 2P, We let P = X = 2F and we define
F(p,t) and F(t,p) for p € P as follows. The flow relation F is an extension of F, i.e.
F({p},t) = F(p,t) and F(t,{p}) = F(t,p) for p € P. Let z € P with cardinality at least
two, if 3p € z F(p,t) = 1 and Vp € z F(t,p) = 0 then we let F(z,t)={p€ x| F(p,t) =0}
(ie. F(z,t) =y € Pwithy C z) else we let F(z,t) = 0. Symmetrically, if Ip € = F(t,p) =1
and Vp € = F(p,t) = 0 then we let F(t,x) ={pecz| F(t,p) = 0} else we let F(t,z) = 0.
Finally we let Mo(z) = 1 if Vp € x My(p) = 1 else we let My(z) = 0. Let N(X) denote the
stratified Petri net (P, T, F MO) so obtained. If we identify p € P with the one-element set
{p} € P, we have that P C P, and F(p,t) = F(p,t) and Mo(p) = Mo(p) for every p € P.
We shall prove that the map that takes marking M of A/ to marking J\Zf of N(X) given by

(1 if Ypex M@p =1
M () _{ 0 otherwise

is an isomorphism between their marking graphs. It follows therefrom that the stratified
Petri net N (X) is 1-safe. Moreover the accessible markings of A'(X) are of the form M
for M some accessible marking of A and the inverse isomorphism follows from the identity
M = M N P where markings of 1-safe nets are viewed as sets of places. Thus place x
in N(X) represents z viewed as a property 2 C P of N since M(z) = 1 if and only if
Vpex M(p)=1,ie x C M = MnN P for every accessible marking M. Thus if the map
M + M is an 1somorphlsm the net N (X) is a conservative extension of A in which every
property of X is represented. Since marking graphs of nets are deterministic and reachable,
in order to verify that M + M is an isomorphism it is sufficient to check that (i) a transition
t is enabled in marking M if and only if it is enabled in M and (%) if M [t) N and M [t) N,
then N = N; which amounts to prove that for every transition ¢ € T' and property z C P
one has

(@) M) = F(z,t)- M < M()
= M(z) — F(z,t)- M + F(t,x) - M

(i) M[t) N = N(z)

We proceed by case analysis:
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1. Assume there exists p € = such that F(p,t) = 1 and ¢ € z such that F(t,q) = 1.
Then if M [t) M' we necessarily have M (q) = 0 and M'(p) = 0 and therefore M(z) =
M'(z) = 0. Since F(z,t) = F(t,z) = 0 conditions (i) and (i) are satisfied.

2. Assume for all p € x F(¢,p) = 0 and there exists some ¢ € z such that F(q,t) = 1.
ThenF(a:t)_ywherey_{pEx|F(p,)_O}andﬁ'(tm)—o It M [t) M’
then M (z) = M(y) because every input places of t are marked in M, and M’(z) = 0.
Conditions (%) and (%) are thus satisfied.

3. Assume for all p € z F(p,t) = 0 and there exists some g € z such that F(t,q) = 1.
Then F(t,z) =y where y = {p € z | F(t,p) = 0} and F(x,t) = 0. If M [t) M’ then
M(z) = 0 and M'(z) = M'(y) because every output places of ¢ are marked in M’.
Conditions () and (%) are thus satisfied.

4. Assume for all p € x F(p,t) = F(t,p) = 0, then F(z,t) = F(t,z) = 0 and M(z) =
M'(z) for every pair of markings M and M’ such that M [t) M’'. Conditions (Z) and
(#) are thus satisfied.

Now if X C P, the net previously defined for X = 2, i.e. N'(2F), satisfies the requirements
of the proposition. However another and smaller solution is obtained by the restriction of
N(2F) to the set of places P = {y C P |32z € X y € z} where € is the reflexive and
transitive closure of the relation < given by y K z & It € T -

(Vpezxz F(t,p=0 A dpexF(p,t) =1 ANy={pex]|F(pt)=0}) V
(Vpex F(p,t) =0 A IpexFt,p)=1ANy={pex|F(tp) =0}

i.e. we first let in A/(X) all places of N(2F) that are properties in X and iteratively add all
others places of NV (2F) that appears as flow arc inscriptions of places already incorporated
in V(X). It is in some sense the stratified subnet of AV'(2F) induced by X. [ |

Since N (X) is smaller than AV (Y) when X C Y, there is less ‘loss of concurrency’ when
replacing net A/ by A (X) than when it is replaced by N (Y). Le. the internalization of
more properties is paid by a loss in concurrency. At one extreme if we want all subsets of
places to be represented then the resulting system becomes completely sequential.

From Prop. 19 and Prop. 20 it follows that

Proposition 21 Any marked simple reversible reconfigurable net can be associated with a
marked stratified Petri net with isomorphic marking graph and whose set of transitions is
the set of events of the original reconfigurable net.

The corresponding stratified Petri net is represented in Fig. 12. More precisely if N' =
(P,T,R,F,M,) is a marked simple reversible reconfigurable net, the associated marked
stratified Petri net is NV = (P',T',F’, M{}) defined as follows. P’ = Qo U3P U-3P U
O(N, Myp) | where Qg is the domain of the initial marking, 3P and —3P are disjoint copies
of P whose respective typical elements are noted 3, and -3, for p ranging in P, and
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S5 6 O
N

1
&2

O O

—3pq Ipo wg
Qg = D(M
P.a €90 (Mo) r:Pp — Py pp €Pp p2 € P2
@,¥ € group <ypp | 7 € R> wi K5, w1 wh K5, wa

Figure 12: the stratified Petri net equivalent to a simple reversible reconfigurable net

ON,My) l ={yCP|3IN e OWNN,My) ~ & Q} is the downward closure of the set
O(N, My) of modes of operation for the reflexive and transitive closure € of the relation

<= U, er(Khn U K0yyy) where

V< ye [(PAU-R)NYy#D A (FPAUR)Ny=0 A o' =7\ (PLU-P)]
and

YV Lo ¥ e [(CPAUR)NY#ED A (PAU-P)Ny=0 A 7' =79\ (=P UP)]

T' = T U R is the set of events of A/. The flow relation is given by the following identities
wheret€eT andr: P, - P, € R

F'(p,t) = { Ozsoep F(p(p),t) - p(Qo) if pe

otherwise

F’ <p€<I> F(t’ go(p)) : QO(QO) if pE Q0
otherwise
1 if p € Pl —|P2
F'(r,p)=4 7 if p=7€0O(N,Mo) ! and o' <, v
0 otherwise
1 if pE-PLUP,
F'(pr)={ 7" i p=v€ON,Mo) | and v <G,

otherwise
The initial marking M| is given by
My (p) if peQ

1 if p=43,; where ¢ € Qy or p= -3, where ¢ & Qo
Mi(p)=< 0 if p=3, where ¢ ¢ Qy or p=-3, where g€ Qo

1 if p=y€O(N,My) | and vC My

0 if p=v€O(N,My)| and v ¢Z M,
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6 Some Examples

In this section we give some examples of concurrent systems subject to dynamical changes.
They are respectively modelized by a reversible reconfigurable net (Section 6.1), a Petri net
(Section 6.2), and a stratified Petri net (Section 6.3) thus witnessing that the choice of a
particular model much depends on the nature of the problem to be modelized.

6.1 Sending Information Packages in a Transmission Net

Reversible reconfigurable nets are well adapted to describe large distributed systems where
dynamic changes may occur in different locations and have local effects, even if these changes
may not be totally independent. When on the contrary changes require a global synchro-
nization of the system, as in the example of the following section, then Petri nets will be
better suited. Let us present a small sized example but which hopefully illustrate this kind
of situation. We consider a transmission net that receives from two machines (represented
by transitions ¢; and #g in Fig. 13) blocks of information to be carried to a main building

Figure 13: a marked reversible reconfigurable net

(represented by place p12).

This net has two different parts delimited by places pi, ps, and pi2. In the first part,
there exist four possibilities depending on the decision of an operator. He can decide to send
the packages in ones, in twos, in threes or in fours which are respectively represented by the
paths topsts, tapats, tapsts, tapats. In the second part, the net offers three possibilities for
the forwarding of data in the net:

1. packages follow the normal path through t4pstspiotep11t7pi2;
2. packages avoid transition t5 and follow the path t4potspi1t7p12; finally,

3. packages can go directly through the path t4prt7p12-
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The system is described by the reversible reconfigurable net of Fig. 13 which consists of 14
places, 8 transitions and 6 structure modifying rules R = {ry,rs,r3,74,75,76 } Where

r1={ps} = {p2} 72 ={ps} > {ps}
r3 = {ps} = {p2} r4a={pr,p13} = {ps, P14}
rs = {po} = {pr} 716 = {ps, P14} = {Po, P13}

The initial marking represented in Fig. 13 is
Mo ={1,2,0,0,0,0,0,1,0,0,0,1,,0}

This net has 12 different configurations shown in Fig. 14. The corresponding ACPN is

Figure 14: The 12 configurations of the reversible reconfigurable net of Fig. 13
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Figure 15: ACPN of the reversible reconfigurable net of Fig. 13

shown in Fig. 15. Numbered arc weights in the ACPN of Fig. 15 are:

(1)  So+Se+ 57 (2) 4S50 + 456 + 457
(3) Si+84+8Ss (4)  3S; +35,+3Ss
(5) Sz + S0+ Sn (6) 283+ 2510 + 2511
(7)  Sa+Ss+.Sy (8) Sa 4+ Sg + So

(9)  Si+Se+Ss+Su (10) So+ S1 + Sz + Sio
(11) S35+ S5+ S7 + So (12) Sy + Se + Ss + S
(13) So+S1+S2+ Sio (14) S5+ S5 +57+ Sy
(15) Sy + S+ Ss+ Su1 (16) So + S1 +S2 + Sio
(17) S3 + Sy + S5+ Sg + S7 + Sg + Sg + S11 (18) Ss + S5 + S7 4+ Sy

The corresponding automaton not shown here may be calculated from the set of configura-
tions and the set of structure modifying rules.
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6.2 An Assembly Shop with Different Modes of Operations

By contrast with the previous section, the example considered below requires a synchro-
nization of the whole system before any reconfiguration can take place. For that reason
reconfigurable nets are inadapted and a solution using Petri nets will be favoured. The
system is a factory consisting of assembly shops communicating pieces through conveyor
belts. Each assembly shop contains some machines in order to process pieces, some stores
and a robot that takes pieces to and from conveyor belts and loads and unloads machines
and stores. Depending on the product that the factory is currently producing each assembly
shop follows some particular mode of operation. Figure 16 displays an assembly shop with
three different modes of operations. In Mode I, the robot receives a piece on belt A, it
loads machine M; with that piece so that some operation can be processed, then the piece
is temporarily stored until it can be loaded to machine M- for another operation and then
forwarded to another assembly shop via belt B. The places of the associated Petri net, on
the left of Fig. 16, corresponds to the following operations

B Mode I : B Mode II : g Mode III :

Figure 16: an assembly shop with different modes of operations
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21 :  machine M; waits for a piece

Do : the robot loads machine M; with a piece received from belt A
P3 :  machine M; is working

ps : machine M; ready to unload

Ps :  the robot unloads machine M; and store the piece in Store;
Pe :  machine M> is working

pr :  machine M> ready to unload

ps : the robot unloads machine M5 and send the piece to belt B
Po : machine M> waits for a piece

pio : the robot loads machine My with a piece from Store;

A : pieces ready to be taken from belt A

B pieces on belt B

C pieces on belt C'

D number of free slots in Store;

E number of pieces in Store;

F number of free slots in Stores

G number of pieces in Stores

If we forget about the places A, B,C, D, E, F', and G associated with the conveyors belts and
the stores, this Petri net consists of three state machine components associated respectively
with machines M; and M, and the robot, in particular all the places p; are one-safe and
can be interpreted as properties. Then the property stable = p; A p11 A pg which states that
machines M; and M are in their idle state, waiting for a piece to be loaded, and the robot
is available is a stable property meaning that from any accessible marking it is possible to
reach some marking verifying this property. The other two modes of operation, displayed
on the center and right parts of Fig. 16, are similarly defined. In Mode II, pieces arrive from
belt B, they are loaded first on machine M> that perform some transformation on it and then
put into Storey. Four pieces may be picked up, if available, from this store to be assembled
on machine M; in order to form a new piece which is sent to belt A. In Mode III, machine
M can process the same operation as in Mode I on pieces coming from belt A, the resulting
pieces are stored in Store;. Machine M» can process the same operation as in Mode IT on
pieces coming from belt B, the resulting pieces are stored in Stores. Machine M» can also
assemble one piece coming from each of the stores and send the resulting piece on belt C.
Notice that each store always contains the same kind of pieces, that belt C is used only on
Mode III, and that the direction of the conveyor belts may change when swithching from one
mode of operation to another one. Suppose now that a change in the factory requires that
this assembly shop switches from Mode I to Mode II. In order not to confuse different kind
of pieces, and also because the direction of some conveyor belts may change, it is important
that, before the change can actually take place, the system has reached a stable state in
which each machine is idle with no piece loaded and that there is no piece remaining on the
conveyor belts, only the contents of the stores are irrelevant. For that reason the change
requires a synchronisation of the whole system. In order not to complicate too much this
example we shall assume that there is a mechanism for withdrawing pieces from the coveyor
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belts when the system asks for a change (the pieces are put back on the corresponding
belt as soon as the system comes back to an adequate configuration). The change is then
performed in two stages as illustrated in Fig. 17. First the system asks for a change from

Figure 17: changing from mode I to mode II

Mode I to Mode II (transition I/II*) by moving the token from place I to place “I to IT”.
In doing so transitions ¢; and tg9 which test that the system is in Mode I are inhibited, the
machines M; and M- thus refuse to proceed any new piece before the change actually takes
place. The Petri net correponding to Mode I will therefore necessarily reach the stable state
where places p1, p11, and pg contain one token each (the other places p; are empty). The
change can then take place (firing of transition I/II~). Then the Petri net correponding
to Mode I is inactivated since all its places p; are empty while the Petri net correponding
to Mode II becomes active. Of course transitions I/IIT and I/II~ must do the similar
changes for all those assembly shops that are concerned by the change. We think that this
example, even though quite simple, is representative of a some kind of dynamic changes in
distributed systems.

RR n3708



34 E. Badouel € J. Oliver

6.3 Flows in a Network

Our last example is also representative of a whole class of systems where changes arise from
the actions of agents that regulate some distributed system. Stratified Petri nets seem to be a
well-adapted formalism for this kind of situations. We consider a workflow system consisting
of agents exchanging data by asynchronous message passing. The system is described by a
finite acyclic directed graph with one source node and one sink node. Nodes of the graph
represent agents whereas the arcs of the graph represent communication channels between
them. In order to proceed correctly, a task should enter the system at its source and follow
any path to the sink. So different paths correspond to various manners of completing the
task. A flow of this graph gives a repartition of paths from source to sink. For that purpose
it is convenient to add one fictituous arc ¢y from the sink to the source. We recall that a
flow is then a map assigning a non-negative integral weight to each arc so that in each node
the total weight of the entering arcs is equal to the total weight of the exiting arcs. For
instance the flow represented in Fig. 18 corresponds to a certain policy of repartition for the
tasks entering the system: for each six tasks entering the systems two are directed to node
2 and four to node 3; node 5 should receive three tasks from node 3 for each task received
from from node 2, and these four tasks should all be directed to node 8; etc. Each such flow

Figure 18: a flow (on the right-hand side) of the workflow system (on the left-hand side)

determines a load rate for each node, for instance in the example of Fig. 18 the load rate
4 1

of node 8 is 5 = % whereas the load rate of node 7 is . In case there are modifications
in the performance of some nodes one may wish to modify the current flow. For instance
by decreasing of one unit the weights of the arcs ¢4, s, and ¢;;, and at the same time
increasing by one unit the weights of the arcs £3, #7, and /1. The difference between two
flows is a cycle. As it is well-known from graph theory (see [6]) the cycles of a graph form
a Z-module a generating set of which is associated with the chords of some spanning tree.
Figure 19 gives some generating set for the cycles of the graph of Fig. 18. For instance the
cycle o adds one unit to the weight of ¢» and /5 and substracts one unit to the weight of ¢4
and ¢4. The cycles may then be viewed as the transitions of a Petri net whose places are
associated with the arcs of the graph. A marking is thus a non-negative integral weight of
the arcs. Figure 20 shows the Petri net (in bold face and in superimposition with the graph)
resulting from the generating set of Fig. 19. We have added however an extra cycle o¢ and
an extra place £, whose initial content gives an upper bound on the total weight of a flow

(i.e. the value of the fictituous arc £y). One may wish to verify that the set of accessible
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o1 =Lo + Ly — Ly — £1
o2 =1Le +lg —l12 —Llg — {5

o3 = €4 +48+£11 — £10 — £7 — £3
oq4 =£12 +£13 +£14 — £11

op =4£1 +£3 + €7 +£10 + €0

Figure 19: a generating set of cycles

markings of Fig. 20 is the set of the flows of the graph whose total weight does not exceed
the initial value of £y. If that initial value is 10 as indicated in the figure the marking graph

Figure 20: the net associated with the generating set of cycles of Fig. 19

has already 5005 states and 21 164 transitions. Now the whole system can be modelized by
a stratified Petri net consisting of the Petri net of Fig. 20 together with a parametric Petri
net attached to each node of the graph whose parameters are the places associated with the
arcs connected to that node. The Petri net associated with Node n5 is for instance given in
Fig. 21. Tt can be viewed as an assembly shop, similar to the example of Section 6.2, that
receives and sends packages whose sizes are given by the values of parameters. When there
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B

M2
C
— m
@ Store
A
P1 : machine 1 waits for a package
pg,p'z : the robot loads machine 1 with a package from
one of the conveyor belts A or B
p3,p§, : machine 1 unpacks the package
P4, P, : machine 1 ready to unload
P5, Py : the robot unloads machine 1 and puts the pieces
into the store
D6 : machine 2 packs pieces into a new package
p7 : machine 2 ready to send the package
P8 : the robot unloads machine 2 and sends the pa-
ckage to the conveyor belt C
Po : machine 2 waits for new pieces from the store
P10 : the robot loads machine 2 with pieces from the
store
P11 : the robot is available
P12 : number of free slots in the store
P13 : number of pieces in the store
P14 : number of packages on conveyor belt A
P15 : number of packages on conveyor belt B
P16 : number of packages on conveyor belt C

Figure 21: the behaviour of a node of the network

are several outcomming arcs then packages must be sent in turn on each of the outcomming
conveyor belts in order to respect the ratios given by the current flow.
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