Aggregate and Fractal Tessellations

Abstract : Consider a sequence of stationary tessellations {Theta^n, n=0,1,...} of R^d consisting of cells {C^n(x_i^n)} with the nuclei {x_i^n}. An aggregate cell of level one, C_0^1(x_i^0), is the result of merging the cells of Theta^1 whose nuclei lie in C^0(x_i^0). An aggregate tessellation Theta_0^n consists of the aggregate cells of level n, C_0^n(x_i^0), defined recursively by merging those cells of Theta^n whose nuclei lie in C_0^n-1(x_i^0). We find an expression for the probability for a point to belong to a typical aggregate cell and obtain bounds for the probability of cell's expansion and extinction. We give necessary conditions for the limit tessellation to exist as n to infinity and provide upper bounds for the Hausdorff dimension of its fractal boundary and for the spherical contact distribution function in the case of Poisson-Voronoi tessellations {Theta^n}.
Type de document :
RR-3699, INRIA. 1999
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:29:32
Dernière modification le : jeudi 11 janvier 2018 - 16:30:44
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:29:49



  • HAL Id : inria-00072969, version 1



Konstantin Tchoumatchenko, Sergei Zuyev. Aggregate and Fractal Tessellations. RR-3699, INRIA. 1999. 〈inria-00072969〉



Consultations de la notice


Téléchargements de fichiers