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Abstract: This paper presents a method for coding 7-calculus in the COQ proof assistant, in
order to use this environment to formalize properties of the pi-calculus. This method consists in
making a syntactic discrimination between free names (then called parameters) and bound names
(then called variables) of the processes, so that implicit renamings of bound names are avoided
in the substitution operation. This technique has been used by J.McKinna and R.Pollack in an
extensive study of PTS [5]. We use this coding here to prove subject reduction property for a type
system of a monadic 7-calculus.
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Preuve de la préservation des types pour un mw-calcul codé en

CcoQ

Résumé : Ce rapport présente une formalisation du 7-calcul dans le systéme d’aide & la preuve
COQ, point de depart vers des preuves de propriétés du m-calcul. La méthode employée pour
coder les noms consiste en la séparation syntaxique des noms libres (paramétres) et des noms liés
(variables), en vue d’éviter les renommages implicites dans les substitutions, technique proposée et
intensivement utilisee par J. McKinna et R. Pollack [5] pour la formalisation des PTS. La preuve
effectuée ici est celle de la propriété de conservation des types (subject reduction) d’un w-calcul
monadique typé.

Mots-clés : m-calcul, COQ, préservation des types
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1 Introduction

1.1 A typed monadic 7-calculus

The 7-calculus has been introduced in 1989 by Robin Milner, Joachim Parrow and David Walker [8],
as an extension of the CCS process algebra, and extends CCS’s process synchronization expressivity
with mobility of names, in order to have a complete formalization of concurrent processes. A precise
description of w-calculus fundations can be found in [8]. A natural extension of the monadic -
calculus consists in considering name tuples as the values that can be passed between processes ,
instead of just names : the polyadic w-calculus. This version of w-calculus, described by R.Milner in
[7], allows the introduction of a first notion of discipline on the use of names, since a reduction can
be incorrect because of an arity mismatch. An other constraint on the use of names is introduced
by D. Sangiorgi [9] [10] and concerns the directionality of names, that is, their ability to be used
as emitters, receivers or both (or none). This name usage discipline is implemented by associating
types to names, and by defining a predicate that states that the name that appears in a given
process complies with the capacity they are given by an environment.

The proofs presented here as an application of the coding of the 7-calculus is in this context the
subject reduction property, which states that this correction predicate is preserved by the various
kinds of reductions in a labelled transition semantics.

1.2 Coding name abstraction

The main difficulty in coding process algebras is in representing the binding of names in terms. In
the m-calculus (of which the syntax is described below), name binding exists in two varieties:

Receivers: In the process p(x).Q, the name z is bound in the continuation process @, waiting to
be substituted by an other name before @ can be executed itself (Q is said to be “guarded”
by p(z)). This abstraction is similar to A-calculus abstraction (except for the guarding role
of the input).

Scope restriction: In the process (vx : t)Q), the name x is only bound by a scope constraint. Its
occurences in () are not to be substituted, and the binder can be extruded, that is extended to
processes that would come to receive z. This construction is what gives to the m-calculus all
its expressivity. In fact, if the calculus is restricted to finite terms, that is, terms without the
bang (!) operator, the scope restriction can be statically replaced by renamings of restricted
names by fresh names, preserving the semantics:

a(z).P | (vx : t)(alx].Q | (vz : t')R,)

being replaced by:
a(x).P | a[b].Q | R.

The name restriction is needed to express that !(vz : t)a[z] always sends a fresh name to
processes that listen to channel a.

The coding of these abstractions must meet several criterias: to allow a simple definition of the
substitution operation avoiding variables captures, and thus implicit renamings, allow a natural
coding of the semantics relation, and avoid to have to consider a-conversion in proofs, that is to
allow the manipulation of terms that will represent their whole a-equivalence class.

A direct coding of names by a set with decidable equality, a solution used by T. Melham using
HOL [6], implies a difficult definition of the substitution operation, even just for substituting names
for names. (vz)P{y/z} is simply defined for z = z and for z # 2, y # =, but implies a renaming
forx £z, y=ux.

In D. Hirschkoff [3], the coding uses de Bruijn indices, that is, replace bound names by pointers
to their binder, coded by the number of binders one has to cross to find a given name’s binder. This
method allows to be sure to manipulate processes modulo a-equivalence, since two a-equivalent
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4 Henry-Gréard

terms are not syntactically discernable in this coding, but formalizing the semantics relation be-
comes complicated, because manipulation of these indices do not match our intuitive representation
of terms.

The method used here is a transposition to the 7-calculus syntax and semantics to the one used
in [5] to PTS. The idea is to distinguish by two different constructors, the free and bound names
in a process.

1.3 COQ

COQ (]2]) is a proof assistant based on the Calculus of Inductive Constructions (CIC). It allows
interactive manipulation of CIC terms representing proofs of assertions, and to the building of such
terms by mean of tactics that reflect intuitive mathematical reasoning. COQ is also able to extract
algorithm from constructive proofs of their specification. This feature will not be used here.

Outline of the paper. The proofs of the subject reduction property is very simple, after many
technical lemmas are defined, giving COQ’s user the basic tools to manipulate terms as one would
naturally do on a paper and pencil proof. Part of these lemmas are given in section 4, as well as
some steps of the proof of subject reducton property, for each kind of transition.

Before that, the reference semantics for the w-calculus (section 2.2), and the encoding method
for this semantic (section 2.3) will be presented. A formal argument for the compliance of the coding
with respect to the reference semantics will also be given. The type system will be introduced in
section 3.

2 Semantics

This section presents the typed, monadic 7-calculus, beginning by reference semantics, as used for
informal reasoning, before the coding used in COQ for mechanized reasoning.

2.1 Syntax of a typed, monadic 7-calculus
2.1.1 Reference syntax

The formalization work has been done for a classical monadic n-calculus, extended with an explicit
type declaration for restricted names:

P == am.P|n(m).P|(vn:t)P|(P|Q)|'P|P+Q|[n=m]P|0

where P, (Q,...represent processes, n, m,...an infinite set of names, supposed enumerable. ¢, ¢,
...represent, types, associated with names. The various constructors that are introduced in this
monadic version of w-calculus are those of [8]. The INPUT operator n(m).P expresses an agent
that is waiting on a chanel named n, a piece of data that will be subsituted for m in its continuation
P. The OUTPUT operator aim.P allows to transmit as data the name m on the chanel named n.
The (vn : t)P, RESTRICTION operator, restricts the visibility of the name n to its body P. !P
denotes an process with infinite behavior (cf. [7]). We call Pr; the set of processes syntactically
defined this way.

2.1.2 Syntax in the COQ proof assistant

The system used here is an alternative to the use of de Bruijn indices [3]. The names are coded by
a different constructor depending on the fact that they are in a bound position or in a free position
in the process. Free names are called parameters, while bound names are called variables. We note
Prp the set of terms of the m-calculus syntactically defined this way. The concrete type for Prp
in COQ is called proc.

In the rest of the report, COQ expressions are translated in more commonly used mathemat-
ical notations. For exemple, a set of inference rules that caracterize a predicate will denode an

INRIA
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inductively defined predicate in COQ. Parts of COQ code will be typed with a typewriter-like
font.

Parameters are noted p, ¢, r, variables z, ¥, z, names n, m and processes P, (), R. According
to notations in [5], parameters and variables set are respectively noted PP and VV. The definition
of names in COQ follows:

Inductive name : Set :=
pname : PP -> name |
vname : VV -> name.

A predicate:
fresh: PP -> proc -> Prop

is also defined, noted p ¢ P(P), which states that a given parameter p does not appear in a given
process P. Similarly, x ¢ V(P) denotes the fact that the variable z does not appear in process P.
Decidability of the equality for the sets PP and VV is given by two axioms PP_decidable and
VV_decidable, and the facts that one can always find fresh parameters satisifying a number of
conditions (PP is an infinite set), by axioms in the file exists.v.
The definition of processes in COQ follows:

Inductive proc : Set :=
nil : proc |
inp : name -> VV -> proc -> proc |
out : name -> name -> proc -> proc |
par : proc -> proc -> proc |
res : VV -> type -> proc -> proc |
ban : proc -> proc |
sum : proc -> proc -> proc |
mat : name -> name -> proc -> proc.

For example, the process (vz : t)(px | (y)) will be represented by the term:

(res x t (par (out (pname p) (vname x) nil)
(inp (vname x) y nil)))

given of course that x and y are declared to have types VV and p to have type PP.

The main technical justification for this distinction between variables and parameters is that
there is no need for renamings when a parameter is substituted for another in a process. A
parameter cannot be captured, because binder can only point to variables, which have a different
constructor.

We'll see however that translating the reference semantics leads to substituting variables for
names, which in principle entails captures (for example in (p(z).gr){z/q}). This difficulty is linked
to the OPEN/CLOSE system of the semantics, that creates an abstraction when the scope of a
name is extruded. It does not appear in [5].

2.2 Reference Semantics

The terms are considered modulo a-equivalence, the binding operators being INPUT and RE-
STRICTION. The transition relation is considered as a relation between Pry/ ~, and Prr/ ~,,
parameterized by names.

The formalization is based on a structural operational semantics described in fig. 1, that de-
fines a labeled transitions system. The symmetric couterparts of rules PARI, SUMI, COMI and
CLOSEI have not been represented. The choice of a labeled transitions systems allows us to take
into consideration not only internal reductions, but also the interaction of processes with their
environment. We will have different subject reduction properties for each kind of transition in
order to reflect the relationship between conditions on the typing environment and conditions on
the context in which the process is running.
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INPUT

OUTPUT

COMI

OPEN

CLOSEI

RES

PARI

BANG

PLUSI

MATCH

z(y). X = X{z/y}

Ty. X 2, x

PZp QL

PlQ — P'|Q’

P2 pr
(vy : t)P ") pr

pp Qi

PlQ — (vy : )(P'|Q")

pP-L p

(va : t)P L5 (vx - t)P'

P p
PIQ 5 P'|Q

IP|P £ P
P £, p

pP-L p
P+Q -5 P

P p

[x = x]P £ p

Figure 1: Semantics for a monadic 7-calculus
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The actions characterizing the transitions are the same than in [§]:
pon= zylzy|T(y:t) [T

that is, respectively, input, output, bound output and the silent action. The bound output action
represents the emission of a name that is new to its receiver, and thus the action must carry the
type of the exported name, as well as the name that extends its scope by scope extrusion.

The side conditions of the inference rules deal with the scope extrusion problem. The x # y
condition on the OPEN rule denotes that a process cannot emit on a private channel, which makes
for example the process (vx : t)Z[y], equivalent to 0 in terms of behavior (bisimilarity). The
condition on the CLOSE rules indicates that a process that receives an exported name receives a
name that is new to it. This condition is intended to avoid a capture and can lead to a renaming.
The side condition for the rule RES states that a name restricted to a process being “invisible
for the outside”, it cannot emit, nor receive, nor use this name as a communication channel. The
side condition for the rule PAR avoids capture of a name in @ : a bound output action acts as a
binder of the exported name on the resulting process. The PAR rule corresponds to a structural
augmentation of the resulting process, where the names in @ can be binded.

2.3 Parameterized semantics

We build the labeled transitions relation in COQ from the reference semantics described above.
The actions are the same, the names appearing in the actions are parameters:

Inductive act : Set :=
aout : PP -> PP -> act |
ainp : PP -> PP -> act |
about : PP -> PP -> type -> act |
tau : act.

We keep, as in [5], as an invariant the property closed of fully parameterized processes on both
sides of the reduction arrow. This predicate checks that the process does not contain any variable
in place of free names (as for example x in p(y).P,|Zq). These processes represent the “well-formed”
processes.

We build an inductive property in COQ, each constructor being described by an inference rule
that is a variant of an rule of the reference semantics.

sem : proc -> act -> proc -> Prop

scope extrusion The OPEN rule replaces the variable whose binder has disappeared by a fresh
parameter. When the scope restriction is created again (CLOSE rule), these parameters are
replaced by the bound variable, checking that no capture is possible, that is, that the variable
is “new” (side condition). Because of this side condition, we cannot have the property

L) [e] Zazi)

any more, because for example:

(v - )plz] | p(y)-gld] | (vz : )P — (vy:t)(0|gla] | (v : t)P)
~, (vz:t)(0]|Z[q]]| (vx :t)P)

while we cannot obtain:
(v : )p[e] | p(y)-gld] | (vz : )P — (va : t)(0] z[q] | (va : t)P)
restrictions The semantics of the w-calculus express by the RES rule the same thing than the £

rule of the A-calculus, that [5] deals with. It is based on a coding of abstraction by the set
of possible subsitutions of the bound variable, explicit in [1]. We must note that this rule is
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INPUT -
p(z).P — P{q/r}
OUTPUT -
pq.P 2 P
Pq ' pq '
CcoMI P—F Q—Q
PlQ N PllQ/
Pq 12
OPEN P{q/x} Tt) q iP(P)
(vx : t)P Y pr P74
p 2, pr Q1 q ¢ P(P)
CLOSEI . f ,
PlQ = (va : t)(P'{z/q}|Q'{z/r}) z ¢ V(P)uV(Q')
H !
RES Yq P{q/x}#—> P'{q/y}
(vz : t)P—(vy : t)P’
M ! = N
PARI P—P p=7pg:t)=
PlQ % P'|Q ¢ ¢ P(Q)
! s /
BANG M
Pt p
M !
PLUSI P—P
P+Q -5 P
[t !
MATCH P—r

Figure 2: parameterized monadic m-calculus
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the same than the PR1-BIND from [5], and that a transition relation, that is extensionally
equivalent, can be obtained with a weaker induction principle by using the inference rule
with a side condition instead of quantifying in the rule’s premise:

P{p/z} — P'{p/y}
(ve : t)P L5 (vy : t)P’
The formalization for the proof of this equivalence, done in [5] by induction on the length of
the terms, has not been done in this study.

p¢P(P)Ap ¢ P(u)

2.4 Adequacy of the encoding

The encoding of the 7-calculus in COQ is justified by formalizing the correspondance between the
reference semantics of the calculus and our inductive predicate. The goal of this formalization is
to justify the choice of the side-conditions and quantifications on parameters that have been added
in the inference rules. We denote by NN the set of names used in the informal notation (figure 1).
The PP, VV and NN sets are supposed to be enumerable, and we choose bp : NN — PP a bijection
from the set of names to the set of parameters. Let by = bp'.

We can now build a one-one mapping between the a-equivalence classes of the processes de-
scribed by the usual syntax (Pr;) and the processes described by the parameterized syntax (Prp).
Let Tp : Pr; — Prp be this correspondance. The u actions involved in the semantics relation of
figure 1 can also be translated in the parameterized actions of figure 2. This translation is noted
bp(p).

To establish the translation function T'p, we first define a series (z,)nen of pairwise distinct
elements of VV.

Then we define:

Tp(n(m).Q,N) bp(n)(zn).(Tp(Q, N + 1){zn/br(m)})
Tp(am.Q,N) bp(n)bp(m).Tp(Q,N)
Tp((vn:t)Q,N) = (von:t)Tp(Q,N + 1){zn/by(n)}
TP(P|Q7N) TP(P7N)|TP(Q7N)

Lemma 2.4.1 For every process P € Pry, and for every integer N and M, we have the following:
TP(PvM) o TP(PvN)

In order to define the inverse function of Tp, Tr : Prp — Pry, we take a series (pn)nem of
pairwise distinct elements of PP. As the terms are syntactically defined, the set Pars(P) = {N €
N |pn € fn(P)} is always finite. We note NI’ = max Pars(P) + 1, and (ny the series of (br(pn))-
We define the function 77 as follows:

Tr (p(2).Q, N

) br(p)(nn)-T1(Q{pn/x}, N +1)
)

br(p)br(q).T1(Q, N)
= (V’nN : t)TI(Q{pN/:c},N+ ].)
Ti(P,N) | Ti(Q,N)

Tr ((vx : t)Q,N
TI (P | QvN

Property 2.4.1 If P, P’ are two processes of Pry, and pu is an action, and if we have the P - P’

b
transition in the usual semantics, then we can build o transition Q gaty Q' in the parameterized

semantics such that Q ~, Tp(P,0) and Q' ~, Tp(P’,0).

RR n° 3698
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The proof is done by induction on the derivation of the transition in the semantics of figure 1. For
the INPUT rule we have:

n(m).Q =& Q{k/m}

Where Tp(n(m).Q,0) = bp(n)(xo).(Tp(Q,1){zo/bp(m)}), which, according to the semantics coded
in COQ), reduces to:

bp(n)(@o)-(Tr(Q, D{zo/bp(m)}) ** 25 Tp(Q, 1){ao /bp (m)}{bp (k) 20 }-

Since z¢ does not appear in Tp(Q, 1), we have the right term of this derivation syntactically equal
to Tp(Q,1){bp(k)/bp(m)}, so with lemma 2.4.1, this term is also a-equivalent to the expected
translation.

For the RES rule : if P -5 P’ then by the induction hypothesis, there exists Q and Q' € Prp

b
such that Q 2 k) Q'. Let m be the name whose scope is to be restricted to P, and p = bp(m),

we have from the hypotheses p ¢ P(bp(p)), so Q{q/p} br ) Q'{q/p} for every parameter ¢q. But

Q{q/p} = Q{zn/p}{g/xn} for every integer N big enough to avoid captures. The same reasoning
applies to Q'. We can then apply the RES rule of figure 2:

Vo Qfzn/pHa/an} "2 Q{an /p}a/on)

vy : )Q{an /p} 2 way : Q' {2 /p}

However we have T'((vm : t)P,N) = (van : t)T(P,N + 1){zn/p}, so as Q ~, T(P,N + 1), we
have processes in the same a-class than their expected translations.

P p
(vm:t)P M) pr
p = bp(n), and ¢ = bp(m). From the induction hypothesis, we also have Q =% Q' with Q

and Q" a-convertible with the translations of P and P'. The hypothesis p # ¢ holds because bp

is a bijection. Taking N big enough to avoid captures, we have Q{zn/q}{q/xn} 2= Q'. The

condition ¢ ¢ P(Q{xn/q}) being always respected, we can apply the transition rule and obtain

that (vey : 6)Q{zn/q} Ale:t) @', which allows us to conclude. For the CLOSE rule: if we have:

pImp Q"W
P|Q— (vm:t)(P'| Q")
We note p = bp(n) and ¢ = bp(m). By the induction hypothesis Rp 2, Rp: and Rg #a) Ry
The hypothesis ¢ ¢ P(Qp) holds because m ¢ fv(P). Let N be big enough for the hypothesis
xn ¢ V(Rp) UV(Rg) to hold. We have, according to the CLOSE rule:

For the OPEN rule, we have from the hypotheses : n#m. Let

Rp|Rq — (vzn : t)(Rp{zn/q} | Ro{zn/q}).

We can then verify that both members of the transition are a-equivalent to the expected transla-
tions.

Property 2.4.2 Whenever we have a transition P - P’ of the parameterized semantics, there
exist Q and Q' processes in Pry such that

Q@)
is a valid transition according to the rules of figure 1 and Q ~, Tr(P,N{&) and Q' ~,, Tr(P', N{ ').

The proof is again done by induction, with for example the rule INPUT: Let n = bi(p),
k =bs(q) and N = max NZ™-P N1/} WWe have:

Ti(p(x).P,N) = n(ny).Ti(P{pn/x}, N + 1)

INRIA
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Which reduces according to the rules of figure 2 to:
n(ny) Ti(P{pn [z}, N + 1) 25 Ty(P{pn 2}, N + 1) {k/nn}.
But T7(P{pn/z}, N + 1){k/nn} = T1(P{pn/z}{q/pn}, N + 1), and also pny ¢ P(P), so we get:
Ty(p(x).P,N) =5 Tr(P{q/x},N +1)

Vg P{q/z} = P'{a/y}
(v : t)P L5 (vy - t) P’

For the RES rule: By the induction hypothesis, for every param-

eter ¢, we have:
Ti(P{a/a}, N) & T1(P'{a/y},N),
so as py ¢ P(P), for a go such that gy ¢ n(p) we have:

Ti(P{pn /2 Hao /on }, N) " To(P{pn /u} a0 /ow }, ).
If n = br(qo), then the hypothesis n ¢ n(br(u)) holds, so we have:

(vn = )TH(P{pw /2}, N){n/nx} " (vn : )T (P'{pn [y}, N){n/nn}.

The left and right members of this relation are a-equivalent to the expected translations.

3 The type system

This section presents the specifications of the type system. The type system can be implemented
in several ways, allowing or not to build for every process a suitable typing environment.

3.1 Types

The type system used in our monadic 7-calculus carries for every name two informations:

e A directionnality information noted (t), and called the capacity of ¢. This information ex-
presses the capacity of the name to be used as a channel for a communication. The R (Read),
W (Write), B (Both) and N (Nil) capacitie form a small lattice with a subtyping relation

/\
\/

The names that have a R capacity can be used as receivers, like p in p(z).P, those of capacity
W can be emitters, as p in p[g]. P, those of capacity B can be both, and finaly those of capacity
N cannot be receivers nor emitters, but can still appear in a term, like ¢ in pq].P.

e An information about the type of the names that can transit by a given channel This type is
denoted [t]. For our monadic 7-calculus, [t] represents itself a type since the only objects that
can be transmitted are names. If we extend the calculus to polyadic 7-calculus for example, [¢]
will be a set of types denoting the constraints on the set of names simultaneously transmitted
by a channel (including an arity information).

Given a certain types set (data of type Set in COQ), and functions (_) and [_], we define axioms
on the subtyping relation, based on the covariance of the receiving types, and countervariance of
the emitting types (fig. 4). We then suppose that the subtyping relation is transitive.

Note that whatever the representation of the types IS, these cannot form an inf-semi lattice,
since for example two types t; and ¢, such that (t1) = (t2) = B and [t;] # [t2] do not have a
minimum (it is impossible to find a type that is at the same time a subtype of one and of the
other).

RR n° 3698
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TypNil

Typlnp

TypOut

TypRes

TypPar

TypBan

TypPlus

TypMatch

T'FO

Vq ¢ P(P)
(T(p)) <c I Ta(g— [I(p))F Plg/z}

Tt p(z).P

(T(p)) <. 0 T(9<[(p] TFHP

'+ plg].P

Vq ¢ P(P)
F®(g—t)F P{q/x}
'k (vz:t)P

TP TFQ
TF P|Q

TP
THP

TP TFQ
TFP+Q

(L) =T(@)=B T'kP
I'tlp=qP

Figure 3: Typing rules for a monadic m-calculus
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STRefl
t<t
STNil {thY=N
t<t
STRead MU ScR (2)=R [t] < [ts]
t1 < to
STWiite () SeW (o) =W [ts] < [t]

t1 <t

Figure 4: Subtyping rules for the names of m-calculus

3.2 Environments

The processes will be typed (fig 3) or not in a environment that gives to each of their free names
(that is of their parameters), a type expressing what they can transmit, as well as the direction in
which they can transmit it. This predicate is noted I' - P ([10]). These environments, noted T,
A, are total functions form the set of parameters to the set of types.

Example: In I" such that (I'(p)) = B, {I'(q)) = N, (I'(r)) = N, the processes plq] and p(x).Z[r]
are correctly typed individually, but in the first case, it takes ([I'(p)]) = N because of contravariance
for typing emitting names, and in the second case {[I'(p)]) <. W because of the typing rule. Thus,
the process plq] | p(z).Z[r] cannot be correctly typed in an environment that forbids emitting to
q. For detailed arguments about the correction of the directionnality information in typing, with
respect to an “incorrect” usage of channels in processes, see [9].

We note @ (binary operator, left associativity), the operation such that T & (p — t) is the
function from parameters to types, that associates ¢ to p and T'(q) to every q # p.

4 Proof for type preservation

The proof for the subject reduction properties are done very simply by an induction on the deriva-
tion of the labeled transitions, after we have defined a number of technical results, the most
significant of which are given in the next subsection. Of course these results are themselves proven
using a number of other lemmas. Thus, proving the subject reduction property for our formaliza-
tion in COQ has been an opportunity to define many technical lemmas corresponding to intuitive
facts a paper and pencil proof would not investigate, that provide a “toolbox” for future proofs.

4.1 Lemmas on substitutions

These lemmas, and those of the next section, are purely technical results and their proof in COQ
is often trivial, by induction on the structure of the processes in most cases, the proof being then
simplified by defining a similar lemma on the set of names, to factorize the verification of the
property on process that include free names (output, input and match).

Lemma 4.1.1 (subs par after subs var)

VP,p,q,x q¢ P(P) = P{q/x}{p/q} = P{p/x}.

Lemma 4.1.2 (subs var after subs par)

VP,p,q,x ¢ V(P) = P{z/p}{q/z}= P{q/p}.
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4.2 Lemmas on parameters

Lemma 4.2.1 (fresh after subs)

VP,p,q,x p¢ P(P)Ap#q=p¢ P(P{q/z}).

Lemma 4.2.2 (fresh before subs)

VP,p,q,xz p¢ P(P{q/r}) = p ¢ P(P).

Lemma 4.2.3 (listening on known name)
VP, P'.p,q P25 P — pe P(P).

Similar properties are of couse true for output and bound output acions.

Lemma 4.2.4 (fresh after trans)

VP,u,P' P %P —pp¢ P(P)Ap¢ Pu) = p¢ P(P).

4.3 Subtyping lemmas

These lemmas allows us to manipulate subtyping on environments, that is, the extension of the
subtyping relation on parameters, to environments that are total functions of parameters to types:

F<cAeVp T(p) <Ap).

Lemma 4.3.1 (subtyping extension)

VO,A pt1,te AL TAt1 <ta=—=AD(pr—t1) <. TP®(pr t2).

Lemma 4.3.2 (subtyping)

VILP TFP=VYAA<.T= AFP.

4.4 Swapping parameters

We introduce the “swap parameters”’ operator on processes, environments, names and parameters
: swap_proc, swap_env, swap_name and swap_par. This operation is in all cases notes X {p <
g} where X is a process, an environment, a name or a parameter. This operation consists in
substituting to every occurenceof p, an occurence of ¢, and to every occurences of ¢, an occurence
of p. In the case of environments, I'{p < ¢} represents the function that associates I'(q) to p, I'(p)
to ¢, and associates I'(r) to every r different of p and ¢ .

A number of properties are proved for this operator, including:

Lemma 4.4.1 (typing after swap)

VI,P T+P=Vp,q T{po g}t P{peq}

INRIA
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4.5 Typing Lemmas

Lemma 4.5.1 (addenv unused name)

VI,P THP=>Vtq¢ P(P) Ta@(g—1t)FP.

Lemma 4.5.2 (redundant addenv)

VI,P THP=VA,ptp¢ (P)AT=. A& (p—1t)=> A+ P.

Lemma 4.5.3 (type with other subs)
VL, Pop gt p¢ PP)ANq¢ P(P)AT @ (p— ) P{p/z} = T'® (¢ 1) F Plg/a}.

Proof The proof of this lemma uses parameter swapping in terms. We consider the non-trivial
case where p # ¢q. From
Fe(p—t) - P{p/z}

we deduce (4.4.1)
T@®(—t){peqF P{p/a{p < q}.
As we have
To@—t{preg=Ta(g—1t)o(@—T(g)

We get the conclusion since p does not appear in P{q/z}.
Lemma 4.5.4 (subs typing)

VI,P THP=Vpq T(p) <T(q) =TF P{p/q}

4.6 INPUT transitions
The property proved for INPUT transitions is the following;:

PP =TFP=T(q) <[[(p) =TFP.

The proof is done by induction on the transition relation. In each case, the typing predicate is
inverted according to the syntax of the processes involved in a given transition rule.

4.6.1 The INPUT rule

We have I' I p(x).Q, so for every s ¢ P(Q),

L' (s [D(p)]) - Q{s/z}.

We also deduce from the hypothesis:

I'e (s — @) <T & (s~ [L(p)])(s)

(To simplify the proof in COQ, we also make the assumption that s is different from g).
Thus we can substitute the paramater ¢ for the parameter s in the typing relation (lemma
4.5.4):

e (s — L)) - Qfs/x}{q/s}.

We know that s does not appear in the typed term, so we can omit to add it to the environment
(lemma 4.5.2):

I'FQ{s/z}{a/s}-
The fact that Q{q/z} = Q{s/x}{q/s} allows us to conclude (lemma 4.1.1).
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4.6.2 The RES rule

The proof is the same for the RES rule whatever the transition kind is, so we will only describe it
for the INPUT case.
If T+ (vx : t)P, we want to obtain for any r ¢ P(P'),

L (re—t)FP{r/y}.
Let s ¢ P(P), with s different from p, ¢ and r. s ¢ P(P{r/z}) (lemme 4.2.1) = s ¢ P(P'{r/y})
(lemme 4.2.4), => s ¢ P(P') (lemme 4.2.2). So we can apply the lemma 4.5.3 and conclude if we
have:
Te(s—t)F P{s/y}
The induction hypothesis is:
Vr AF P{r/r} = Alg) < [A()] = A F P'{r/y}.

We replace in this proposition, A by T' & (s — t) and r by s. The first condition is true because
T+ (vz : t)P, the second condition is true because s # p and s # q.

4.7 OUTPUT transitions
The result for OUTPUT transitions has two parts:
¢ A type preservation result:
PP —=T+HP=TFP,
e A constraint on the environment that stems from the initial typing correction:

PIL P —TFP=T(q) < [T(p)]-

4.8 Bound OUTPUT transitions

We proove as for OUTPUT the following properties:
e A type preservation property:

PR p TP —=Ta(—t)F P,

¢ a bout transition exports a type that is compatible with the typing environment:
PR p T+ P =t < [(p)].
4.8.1 The case of the OPEN rule
From the hypothesis:
P{g/z} = P'
(vx : t)P 2l pr
Type preservation. The type preservation property directly follows from the similar property for

OUTPUT transitions: I' F (vz : t) P, so for all r that does not appear in P,T" & (r — t) b P{r/x}
(from the TypRes typing rule), so in particular for g. Thus by applying the subject reduction

property for OUTPUT transitions to the P{q/2} = P’ transition we obtain:
T@ (g t)F P

for ¢ ¢ P(P) and p#¢q. and also T+ (vz : t)P.

Exporting a correct type. We also use the similar property for OUTPUT:
Te(@—1) (@ <[Tel—1)®)

As we have p # ¢, we can conclude that:

t < [[(p)]-
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4.8.2 PAR rule

p(q:t)

PP

We need our side condition on the inference rule: taking for example the PARI rule: ——
PIQ ™™ PI|Q

with the supplementary condition: ¢ ¢ P(Q). The expected result is T & (¢ — t) - P’ | Q.

e ' (g t)F P is given directly by the induction hypothesis.

e I'd (¢ +—t)F Q follows from the fact that ¢ ¢ P(Q), as well as from the hypothesis T' - Q:
we modify in a typing environment the type of a name that is not used in the typed process
(lemma 4.5.1).

4.9 Internal transitions

We prove the following property:
P L P—=TFHP=T}P.

4.9.1 COM rule

Let’s consider the COMI rule. The derivation of the transition ends with:
pPXE.p Q5
P|Q — P'|Q
So we have T'+ P | Q, and we want to obtain '+ P’ | Q'.
To proove I' - P’ from T' I P, we use the subject reduction property for the INPUT transitions.
To validate the side condition I'(g) < [['(p)] of this property, we use the type correction property

for the emission of a name by the transition Q 2% Q.
The fact the we can deduce I' - Q' from T' F @ simply stems from the subject reduction

property for the transition Q 25 Q'.

4.9.2 CLOSE rule
We take the CLOSEI rule as example. The derivation of the transition ends with:
P AN P Q ﬁﬂ) QI
P|Q — (v : t)(P'{z/q}|Q'{z/r})

We know on one hand that ¢ ¢ P(P), i.e. that P actually receives a name that is unknown to
it, and on a second hand that z ¢ V(P') U V(Q'), i.e. that there is no risk of capture of the new
binding that is created by this rule.

From @ Pry) Q' and T' F @ we deduce t < [['(p)]; thus (T' & (¢ — t))(q) < [['(p)]- Also, ¢ not

appearing in P,

FrFP=T&(¢g—t)FP
by the subject reduction property on the INPUTs:
F'e(g—t)FP.
we have P' = P'{z/q}{q/z} since x does not appear in P’. So for every s free in P'{z/q} (lemma

4.5.3) we have:
I (s—t)FP{x/q}{s/x}.

On the other hand, r not appearing in @, we have I' ® (r — t) F @', by the subject reduction
property on bounded emissions, so

Vs ¢ P(Q{z/r}) T®(s—t)F Q{z/r}{s/z}.
We can then conclude:

TE(vo: t)(P'{z/q}|Qz/r}).
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Conclusion

We have presented here a encoding of the 7-calculus and used it to do a proof in the COQ theorem
proover. The various lemmas that were needed to perform basic manipulations on 7-terms can be
reused for proofs of other properties. This coding has allowed a almost direct transcription of the
usual semantics into COQ, and to code a proof that is close to the intuitive informal proof. Some
initial mistakes in the transcription of the semantics have been uncovered during the proof process
by encontering unsolvable or inconsistent goals, which is an argument in favor of mecanizing proofs
and having formal methods to help believing in proofs on mathematical objects. But the COQ
system also allows to exploit the prooving-is-computing principle and extract algorithms from
proofs.

A natural extension of this work, besides extending the calculus to being able to transport
name tuples instead of just name, would use this capability to generate, for example type checking
algorithms for 7-terms
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