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Abstract: This report approaches the question of multi-objective optimization for
optimum shape design in aerodynamics. The employed optimizer is a semi-stochastic
method, more precisely a Genetic Algorithm (GA). GAs are very robust optimization
algorithms particularly well suited for problems in which (1) the initialization is not
intuitive, (2) the parameters to be optimized are not all of the same type (boolean,
integer, real, functionnal), (3) the cost functional may present several local minima, (4)
several criteria should be accounted for simultaneously (multiphysics, efficiency, cost,
quality, ...). In a multi-objective optimization problem, there is no unique optimal
solution but a whole set of potential solutions since in general no solution is optimal
w.r.t. all criteria simultaneously ; instead, one identifies a set of non-dominated so-
lutions, referred to as the Pareto optimal front. After making these concepts precise,
genetic algorithms are implemented and first tested on academic examples ; then a
numerical experimentation is conducted to solve a multi-objective shape optimization
problem for the design of an airfoil in Eulerian flow.
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Optimisation multicritére en mécanique des fluides
numérique par Algorithmes Génétiques

Résumé : Ce rapport traite d’optimisation multicritére pour la conception optimale
de forme en aérodynamique. L’optimiseur utilisé est une méthode semi-stochastique,
plus précisément un Algorithme Génétique (AG). Les AG sont des algorithmes d’optim-
isation trés robustes particuliérement adaptés aux problémes ou (1) I'initialisation n’est
pas intuitive, (2) les parameétres a optimiser ne sont pas tous du méme type (booléen,
entier, réel, fonctionnel), (3) la fonctionnelle colt peut présenter plusieurs minima lo-
caux, (4) plusieurs critéres sont a prendre en considération (multiphysique, qualité,
efficacité, coftit, ...). Dans un probléme d’optimisation multicritére, il n’y a pas une
solution optimale unique, mais un ensemble de solutions potentielles car en général au-
cune solution n’est la meilleure vis-a-vis de tous les critéres simultanément ; on identifie
alors un ensemble de solutions non dominées qui définissent un front optimal de Pareto.
Apreés avoir précisé ces concepts, on met en ceuvre des algorithmes génétiques et on
les teste d’abord sur des exemples académiques ; puis on conduit une expérimentation
numérique dans le cas de 'optimisation multicritére d’un profil d’aile plongé dans un
écoulement eulérien.

Mots-clés : Optimisation - Optimisation multicritére - Front de Pareto - Critére de
non-dominance - Algorithme génétique - Equations d’Euler - Paramétrisation de forme
- Calcul paralléle
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1 Introduction

In everyday’s life, we commonly face multi-objective optimization problems such as
buying a new television set compromising quality and low cost, or electing the optimal
way to go to work minimizing both time spent and distance. In the aerospace engineer-
ing community, scientists try to build performant aircraft (minimal weight, maximal
security, ...) at low cost. In economics, economists try to conciliate the utilities and
the consumption of commodities to maximize the social welfare of each individual. The
common part of these optimization problems is that they require several criteria to be
taken into consideration simultaneously. In these cases, methods of single objective
optimization are no more suitable. Multi-objective optimization should be considered
instead. A large number of application areas of multi-objective optimization have been
presented in the literature. The book of Cohon [1] is a good reference for a theoretical
background on this subject.

In a simple optimization problem, the notion of optimality is straightforward. We
seek for the best (the minimum or the maximum) value of an objective function. In
a multi-objective optimization problem, the notion of optimality is not so obvious. If
we agree in advance that we cannot link the values of the different objectives (i.e. if
we refuse to compare apples and oranges), we must find a new definition of optimality,
a definition that accounts for all the criteria. Then, the concept of Pareto optimality
arises : although, in general, no solution is best w.r.t. all the criteria simultaneously,
there exist a set of solutions that are strictly better than the remaining ones in the
whole search space when considering all the objectives simultaneously. This set of
solutions is known as the Pareto optimal set or set of the non-dominated solutions .
The complementary set of solutions is called the dominated solutions set. A solution
belonging to the Pareto set is not better than another one belonging to the same set,
they are not comparable. Each of them is called a feasible solution (see for example
[1]). The choice of a solution rather than another requires a thorough knowledge on the
problem to be solved and a good knowledge of a lot of factors linked to the problem.
Then, a solution chosen by a decision maker may be different from another decision
maker’s choice.

There are two different ways to solve a mutli-objective optimization problem. The
first one is to make a linear combination of the different criteria with different weights
and to minimize the resulting function. There are two main drawbacks with this
method : (1) not all the solutions are found, (2) in a “penalty-function” approach,

INRIA
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the weights assigned to some criteria may not be suitable and the resulting function
may lack significance. On the other hand, Genetic Algorithms (GAs) operate on an
entire population of potential solutions (potential, because they belong to the feasible
space). Then, during the optimization, GAs explore the whole feasible space and build
a database of solutions determining a cloud. Convergence occurs when the cloud no
more evolves; then, its convex hull defines the optimal Pareto set.

In this paper, we present in Section 2 a brief presentation of GAs (there are lot of
references on GAs : D. Goldberg in [6], Z. Michalewicz in [11], ...). In Section 3, we give
a general definition of a multi-objective optimization problem and its implementation
by GAs. In Section 4, we apply GAs to three academic multi-objective optimization
problems defined by analytical functions. Finally, in Section 5, we demonstrate the
use of GAs for solving a multi-objective optimization problem in CFD (Computational
Fluid Dynamics).

2 A brief presentation of GAs

2.1 A definition

Genetic Algorithms (GAs) rely on the analogy with the laws of natural selection and
Darwin’s most famous principle of survival of the fittest. GAs are different from classical
optimization methods in the following ways :

e GAs operate simultaneously on an entire population of potential solutions (also
called chromosomes or individuals) instead of producing successive iterates of a
single element (as do gradient-based methods such as steepest descent or one-shot
methods) ;

e the chromosomes are coded in binary strings ;
e the evolution operators make use of probabilistic rules ;
e the computation of the gradient of the cost functional is not necessary ;

e GAs have a greater potential to explore the whole search space and to climb the
local maxima and to converge to the global optimum (a “point to point” method
will generally stall in a local optimum) ;

o (GAs, as semi-stochastic methods, are frequently found more robust in the case
of non differentiable, multi-modal or non convex functions.

RR n°® 3686
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2.2 How do they work ?

A population of chromosomes evolves in the course of successive generations toward
the best individual, solution of the optimization problem. The population is submitted
to three genetic operators : selection, crossover and mutation. The individuals can
either survive, reproduce or die, according to their fitness value which is related to the
value of the cost functional to be optimized.

2.3 The genetic operators

Selection operator — According to its fitness value, a chromosome may either re-
produce, survive or die. There are two types of selection :

e Roulette-wheel : a fitness value is assigned to each individual. A biased roulette-
wheel is simulated. Each current string in the population has a roulette wheel
slot sized in proportion to its fitness. In order to create a new population, the
weighted roulette-wheel is spun n times, where n is the population size. In the
case of a maximization problem, it is clear that the individual associated with
greater roulette-wheel slot size will have more chances to survive or reproduce
than others (see Fig. 1).

o Tournament : the most popular strategy is the binary tournament, also called
two-point tournament. It consists in picking at random two individuals in the
population and in comparing them. The best one is stored and both are re-
introduced in the population. This procedure is started again until a new popu-
lation of appropriate size has been obtained.

Crossover operator — As selection does not create new individuals, crossover is
needed to increase diversity among the population. It is applied with a probability p.,
close to 1. Two individuals are selected at random for crossing over. Then, an integer
k is chosen at random, between 1 and [ — 1 (I is the string length of the chromosomes)
and k is the position of crossover. Two new strings (called the offsprings) are created
by swapping all bits between positions k£ + 1 and [ inclusively (see Fig. 2).

Mutation operator — A mutation operator is needed because important genetic
information (1’s or 0’s at special locations) may occasionaly be lost as a result of
selection and crossover. It is introduced with a very small probability p,, (close to
0.001) and applied at the bit level ; it consists in changing a 1 (resp. 0) into a 0 (resp.
al).

INRIA
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Figure 1: Example of the roulette-wheel selection in the case of 4 individuals
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@ @ @

Figure 2: Crossing over of two chromosomes
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3 Multi-objective optimization problem

3.1 A general multi-objective problem

A general multi-objective optimization problem consists of a number of objectives to
be optimized simultaneously and is associated with a number of inequality and equality
constraints (for a theoretical background, see for example the book of Cohon [1]). Such
a problem can be stated as follows :

Minimize (or Maximize) fi(z) i=1,---,N

- ) gi(@) =
subject to { he(z) <

The f; are the objective functions, N is the number of objectives, x is a vector whose
p components are the design or decision variables.

In a minimization problem, a vector z' is said to be partially less than another
vector 22 when :

Vi fi(z') < fi(z*) (i=1,---,N
and there exists at least one 7 such that fi(g;l) < fi(xQ)

We then say that solution ' dominates solution z?.

For example, in the case of minimization of 2 criteria,
Minimize  f(z) = (fi(z), fa(2))
such that 2z € X (the feasible region)

a potential solution ! is said to dominate z? iff :
filzh) < fi(@®) and fo(z!) < fo(2®) or fi(z!) < fi(z?) and fy(z') < fo(z?)

3.2 A classical method to solve a multi-objective problem

A common difficulty with a multi-objective optimization problem is the conflict be-
tween the objectives : in general, none of the feasible solutions is optimal w.r.t. all the
objectives. Then, a solution of the Pareto set is a solution which offers the least objec-
tive conflict. One of the most classical methods is the method of objective weighting,

INRIA
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used in the 1900’s by the welfare economists (see Cohon [1]). The multiple objective
functions f;(z) are combined in one function F(z) such that :

F(z) = ;w fi(x)

¢ where z € X, X is the feasible region

N
0<w; <1 and > w;=1

\ =1

It is clear that the preference given to one objective can be modified by changing
the corresponding weight. On the other hand, the fact that we weight all the objectives
implies the waste of a lot of informations. The only advantage of such a method is that
an objective can be controlled by comparing it to another one and that the obtained
optimum belongs to the optimal Pareto set. The main drawbacks are that we do not
find all the solutions, and that it is possible to give some weights that are totally
illogical with the studied optimization problem.

Other classical methods where the objectives are weighted are described, for exam-
ple, by Srinivas and Deb [20].

3.3 Implementation by Genetic Algorithms
3.3.1 Ranking by fronts

GAs select individuals according to the values of the fitness function. However, in a
multi-objective optimization problem, several criteria being considered, the evaluation
of the individuals requires that a unique fitness value, referred to as a dummy fitness
be defined in some appropriate way. To achieve this, by application of the definition
of non-dominance, the chromosomes are first classified by fronts. The non-dominated
individuals of the entire population define front 1 ; in the subset of remaining individ-
uals, the non-dominated ones define front 2, and so on ; the worst individuals define
front f, where f is the number of fronts.

To illustrate this, consider a situation where a population of 30 individuals is sorted
according to two criteria (Ji, J2). To be specific, randomly-drawn values for the criteria
J1 and J; have been assigned to the 30 individuals. The resulting fronts have then been
identified and are shown on Fig. 3. In this example, the points belonging to fronts
I1,11,111,1V have greater chances to be reproduced than points belonging to fronts
VII,VIII.

RR n°® 3686
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Figure 3: Ranking of a population by fronts
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Once the individuals have been ranked by fronts, they are assigned the following
dummy fitness values :

fi= 1/r in case of a minimization
ol or in case of a maximization

where 7 is the rank of the front.

3.3.2 An early experiment of application of GAs to a multi-objective prob-
lem

Because GAs use a population of individuals, their framework permits to identify a
whole set of optimal, or more precisely non dominated solutions that define the Pareto
set. To our knowledge, a first application of GAs to multi-objective optimization
problems has been reported by Schaffer in 1984 in his dissertation [18]. Later, Horn
and Nafpliotis [9], Srinivas and Deb [20] and Goldberg [6] made reference to the Schaffer
method, called Vector Evaluated GA (VEGA). Schaffer’s objective was to minimize a
cost and maximize a reliability. In order to perform this, he separated the original
population into two sub-populations of equal size and distributed the optimization of
the two objectives on these sub-populations. After numerous generations, both sub-
populations converged towards one optimum. This strategy opened a new avenue in the
research of a method to solve a multi-objective problem. The results were encouraging
but the obtained solutions had converged to only the extreme points of the Pareto set.
Each of these two points corresponds to the optimum of a given criterion regardless
of the other. Thus, the results by VEGA provided an evidence that the population
should be characterized by species in order to obtain a whole set of trade-offs among
the objectives. In order to get diversity (i.e. maintain individuals all along the Pareto
front), a non dominated sorting procedure in conjunction with a sharing technique
has been implemented, first by Goldberg in [6] and more recently by Horn in [9], and
Srinivas in [20]. Then, the objective is to find a representative sampling of solutions
all along the Pareto front.

Our results on multi-objective optimization are based on the algorithm of Srinivas
and Deb [20], called the Nondominated Sorting Genetic Algorithm (NSGA). In the
next paragraph we describe the NSGA method.

3.4 Nondominated Sorting Genetic Algorithms

The nondominated sorting procedure makes use of a selection method by ranking which
emphasizes the optimal points. The sharing technique or niche method is used to

RR n°® 3686
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stablilize the sub-populations of the “good” points. We use such a strategy because one
of the main defects of GAs in a multi-objective optimization problem is the possible
premature convergence. In some cases, GAs may converge very quickly to a point of
the optimal Pareto set and as the associated solution is better than the others (it is
called a “super individual”), it breeds in the population and, after a certain number
of generations, a population composed by copies of this solution only is obtained!
Likewise, it is possible to obtain a Pareto set composed only of a few elements (as in
the case of the VEGA method which yielded only two points). It is to avoid such a
situation that the nondominated sorting technique is combined with the niche method
anytime a solution is found in multiple copies ; then, its fitness value is decreased
and, in the next generation, new different solutions appear, even if they are not so
performant. The fitness values decrease because the different niches to which belong
the different optimal solutions have been identified and treated.

The various steps of the method are the following :

e Before performing the selection step on the available population of solutions,
we first identify the non dominated individuals (according to the criteria) as
explained in paragraph 3.1. These individuals define front 1. The probability of
reproduction of these individuals is very high.

e We then assign the same dummy fitness f; to the non dominated individuals 7 of
front 1 (generally, the dummy fitness f; is equal to 1).

e To maintain the diversity, the dummy fitness of the individuals is then shared :
it is divided by a quantity proportional to the number of individuals around it,
according to a given radius. If the individual has numerous neighbours, a large
number of similar solutions exist and the fitness value is split in order to favor
diversity in the next generation. We call this phenomenon a niche and it is
quantified as follows :

m; = ;Sh(d(i,j))

where 7 is the index of the individual, M is the number of individuals belonging
to the current front; Sh(d) is the sharing function which is a linear decreasing
function of d defined by :

INRIA
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Sh(0) — 1

| dli.g)
Sh(d(l,j)) = Oshare
0 if d(la]) 2 O share

if d(zﬂj) < Oshare

where :

— Oshare 18 the maximum phenotypic distance allowed between any two individ-
uals to become members of a niche. Its value is problem-dependent and must
be assigned by the user. In [8], Goldberg proposes to implement an adaptive
niching scheme to overcome the limitations of fixed sharing schemes.

— d(i,7) is the distance between two individuals ¢ and j. In some multi-
objective optimization problems, the Hamming distance is used. It is a
genotypic (at the string level) distance and it consists in counting the num-
ber of different bits in the two strings, divided by the string length. Such a
distance has beem used in electromagnetic system design optimization (see
[12]) and in problems of finding an optimal distribution of active control
elements in order to minimize the backscattering of a reflector in compu-
tationnal electromagnetics (see [5]). In this case, the Hamming distance
has an actual significance because the bits 1 and 0 do not correspond to
a real coding but to the fact that the control elements are active or not.
When working with binary-coded real-values, the Hamming distance may
be biased because two neighbouring solutions may have a very important
Hamming distance (e.g : 0111 and 1000 correspond to 7 and 8, which are
neighbours but their Hamming distance is maximal !). Then, in these cases,
a phenotypic (at the real parameter level) distance is used, the Fuclidian
distance, of the form :

d(i, j) = J Z(mam(% - iﬁm(k) y

k=1

np is the number of parameters defining the chromosomes ¢ and j; x}c is
the real value of parameter k of chromosome i; max(k) = _max x;, and

min(k) = ,_minM zj, M is the number of individuals belonging to the

current front.

Then after a niche has been isolated and treated for each individual of the current

. (2
front, we assign a new dummy fitness value, namely —.
m;

RR n°® 3686
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e After the above sharing has been performed, the non dominated individuals are
temporarily ignored from the population. For the new current front, we first
assign to the each individual belonging to this front the same dummy fitness

which is the minimum of the -~ found in the previous front.
m;

e We iterate this process until all the population has been visited.
e As a dummy fitness value has now been assigned to each individual in the popula-
tion, selection, crossover and mutation can be applied in the usual manner. The

corresponding flowchart of the method is presented in Fig. 4 (closely inspired
from [20]).

Remark : In the case of a minimization problem, the population is sorted by assigning
a greater dummy fitness to the best individuals : the individuals of front 1 have a
greater fitness than the individuals of front 2 that, in turns, have a greater fitness than
the individuals of front 3, and so on ; as a result, the Pareto optimization becomes a
mazimization.

4 Multi-objective optimization of analytical functions

4.1 Optimization problem from Schaffer’s doctoral dissertation
The objective is to minimize a function f depending on one real variable x and defined
by :
Minimize f(z) = (fi(2), fa(2))
such that x € [—6,0]
with fi(z) =2° and fy(z) = (z —2)°
Analytical solution — The technique consists in minimizing the function f(z) = A fi(z)+

(1 — A)fa(x) in which A € [0,1] is a parameter. Thus, a parametric representation of
the optimal Pareto set is obtained by solving :

%:f’(x):2)\334-2(1—)\)(33_2):2$_4+4)‘:0

giving x = 2 — 2\ ; thus, z € [0,2] , f; €[0,4] and f, € [0, 4].

INRIA
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Figure 4: Flow-chart of the Nondominated Sorting GA
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Solution by GA — The decision variable x has been coded in a binary string of length
equal to 24 (the accuracy is then equal to 107%). Working with a population of 20
chromosomes, setting the probability of crossover to p. = 0.9, the probability of muta-
tion to p,, = 0.05 and ospee = 0.2, an elitist strategy and a 2-point tournament have
been employed.

Fig. 5 represents the two objectives in the decision space (function of the variable z)
after the first generation. The Pareto front takes place in the interval z € [0, 2] : while
J is decreasing to its minimal value, J; is increasing from its minimal value (a certain
number of trade-off points appear between the two extreme optima). Fig. 6 depicts the
evolution of the population in the objectives plane from the first generation to the last
one. It is clear that the optimal Pareto set is located between f; € [0,4] and f; € [0, 4].
So, after 30 generations, all the individuals have converged in the region z € [0, 2] (see
Fig. 7). The optimal Pareto set is shown in Fig. 8.

70 First generation
? JU(X) -
60 [+ 2(x) « |
51
g .
8 40t
o 4
% @ N 'S
< 30} & A
;T % ++ |
L] + o
20} ° +, § &
@ +
'S tthr o - +
10+ o% ey 0 +
%o : o o° #
0 oo % ih . 2 i+ ’
-6 -4 -2 0 2 4 6
X

Figure 5: Objectives f; and f; in the decision space at the first generation.

4.2 A two-objective optimization problem

We now consider two academic analytical functions depending on two parameters. We
seek for the solutions minimizing simultaneously f; and f5 :

{hen

(=14 (y -
(z—4)" + (y — 2)?

3)?

with (z,y) € [-5,5] x [-5, 5]
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10}, . o ]
o ® 0%
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Figure 6: Evolution of the population in the objectives plane from the first generation
to the last one.
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15} R s 1
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Figure 7: Convergence of the population after 30 generations to the region where there
exist trade-offs between the two objectives (z € [0, 2]).
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éptimal Pareto front o
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Figure 8: Optimal Pareto set after 30 generations. There are 473 individuals on the
Pareto front. Note that individuals are rather uniformely distributed on the Pareto
front.

Analytical solution — As previously, the technique is to minimize f(z,y) = A fi(z,y)+
(1= X)fo(z,y) in which X € [0,1] is a parameter. Thus, the parametric representation
of the optimal Pareto front is obtained by solving :

of(w,

%ﬂ) Az —1)+2(1=N)(z—4)=0 z=4-3\

0f(z,y) _ :>{2)\(y—3)+2(1—)\)(y—2):0 {y=2—|—)\
oy

As ) varies in [0,1], z varies in [1,4] and y varies in [2,3]. Then, f; and f; vary in
[0,10].

Solution by GA — The decision variables z and y have both been coded in a binary
string of length equal to 27 (the accuracy is then equal to 10°7). Working with a
population of 26 chromosomes, setting the probability of crossover to p. = 0.9, the
probability of mutation to p,, = 0.08 and g4 = 0.8, an elitist strategy and a selection
by 2-point tournament have been used.

Fig. 9 represents the two objectives f; and f, in the decision space (z,y). Fig. 10
depicts the evolution of the population in the objectives plane from the first generation
to the last one. It is clear that the optimal Pareto set is located between f; € [0, 10]
and f, € [0,10]. After 100 generations, we obtain the optimal Pareto set shown on Fig.
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11. There are 218 individuals on the set. The optimal individuals, functions of f; and
f2, are shown on Fig. 12-a and 12-b. The GAs solution is the same as the analytical
solution : z varies in [1,4] and y varies in [2, 3].

Remarks

1. If we do not apply the non dominated sorting GA technique (see section 3.4)
i.e. if the fitness values of the individuals are of the form f; = ﬁ, the
population converges towards only two solutions of the Pareto front. Thls result

is presented on Fig. 13.

2. The notion of Pareto equilibrium originates from game theory, originally intro-
duced in economics. Games are usually classified in two types : cooperative
games and non-cooperative games. Pareto games are cooperative, which means
that the players co-operate in the evolution process. Inversely, Nash and Stack-
elberg games are non-cooperative which means that there is no communication
between the players, although each player’s strategy depends on the others. In his
interesting thesis, Sefrioui [19] illustrated the three different types of equilibrium
(Pareto, Nash and Stackelberg) by means of academic examples.

4.3 A three-objective optimization problem

Now, we consider three academic analytical functions depending on two parameters.
The objective is to minimize simultaneously the following three functions :

filz,y) = 2+ (y—1)°
folzyy) = 22+ (y+1)?+1  with (z,y) € [-2,2] x [-2,2]
falz,y) = (z-1)+y*+2

Analytical solution — Here, the technique is to minimize f(z,y) = afi(z, y)+Lfo(x, y)+
vf3(z,y) in which «, 3,7 € [0, 1] are parameters such that a4+ 3+~ = 1. The optimal
Pareto front is thus obtained by solving :

of (z,y) _ 0
P 20 + 20+ 2y(z —1)=0 T ="
0f(z,y) _ 20(y — 1) +2B(y + 1) + 27y =0 y=a-0
oy
then, z°* € [0, 1] and y°* € [-1,1], that means, f{** € [0,5], f5** € [1,6], f5*' € [2,4].
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Function f1(x,y)
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Figure 9: Objectives f; and fy in the decision space (z,y).
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Figure 10: Evolution of the population in the objectives plane from the first generation
to the last one (100 generations).
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Figure 11: Optimal Pareto set after 100 generations. There are 218 individuals fairly
uniformely distributed on the front.
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Optimal solutions for fl(x,y) = (x—1)2+(y—3)2 Optimal solutions for fz(x,y) = (x—4)2+(y—2.)2
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Figure 12: The optimal individuals are plotted for f; and f, (after 100 generations).
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Figure 13: Pareto set without sharing. There are only two solutions.
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Solution by GA — The decision variables z and y have both been coded in a binary
string of length equal to 26 (the accuracy is then equal to 10~7). Working with a
population of 40 chromosomes, setting the probability of crossover to p. = 0.9, the
probability of mutation to p,, = 0.05 and o4 = 12., an elitist strategy and a selection
by 2-point tournament have been used.

Fig. 14 depicts the evolution of the population in the objectives space from the
first generation to the last one. We note that the optimal Pareto set is bounded by the
intervals f; € [0,5], fo € [1,6] and f; € [2,4]. Fig. 15 provides the representation of
f1, fo and f3 for the optimal solutions as well as the Pareto set as obtained after 100
generations ; this set is made of 1692 individuals. Finally, Fig. 16 depicts the optimal
individuals (z°* , y°P").

Evolution of the population in the criteria set

14
12
10

1,0)

AN A O @

12

f,(x.y) 0o o f,(xy)

Figure 14: Evolution of the population from the first to the 100" generation.
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Optimal solution for f1 Optimal solutions for f2

y -2 -1 X y -1 -1 X

Optimal solutions for f3

y -2 -2 X f,(x.y) 0o f (xy)

Figure 15: The optimal individuals for each criterion and the Pareto set in the space
of the objectives.
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Figure 16: The optimal individuals.

5 Multi-objective optimization for Shape Optimum
Design

We consider here the application of GAs to the multi-objective optimization of airfoil
profiles. The objective functions involve aerodynamic coefficients that are deduced
from the numerical simulation of the compressible flow around an airfoil geometry. We
first describe the main ingredients of the underlying flow solver restricting ourselves to
inviscid flows modelled by the Euler equations.

5.1 The 2D Euler flow solver

The underlying flow solver solves the 2D Euler equations :

W | o= N e (0 9)
TR 0w (o0 B) L V=(2. )
where F(W) = (Fy(W), F,(W))" is the vector of convective fluxes whose components
are given by :

pu pv
2
pu”+p puv
Fi(W) = (W) =
1( ) puv ’ 2( ) p’U2 +p
u(E + p) v(E + p)
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—

In the above expressions, p is the density, U = (u,v)” is the velocity vector, FE is
the total energy per unit of volume and p denotes the pressure which is obtained using
the perfect gas state equation p = (v, — 1)(E — 3p || U ||?) where 7, = 1.4 is the ratio
of specific heats. The flow domain {2 is assumed to be a polygonal bounded region of
IR?. Let 73, be a standard triangulation of Q. A vertex of the mesh is denoted by S;,
and the set of its neighboring vertices by N(S;). At each vertex S;, a control volume
C; is constructed by joining the middle of the edges {S;, S;} for S; € N(S;) with the
centroids of the triangles sharing S; as a common vertex ; see Fig. 17. The boundary
of C; is denoted by 0C;, and the unit vector of the outward normal to dC; by r;. The
union of all these control volumes constitutes a dual discretization of (2.

The spatial discretization method adopted here uses a finite volume upwind formu-
lation. Briefly speaking, for each control volume C; associated with a vertex S;, one
has to solve for n; one-dimensional Riemann problems at the control volume boundary,
n; being the number of neighbors of 5;. The spatial accuracy of the Riemann solver
depends on the accuracy of the interpolation of the physical quantities at the control
volume boundary. For first order accuracy, the values of the physical quantities at the
control volume boundary are set equal to the values in the control volume itself. An
extension to second order accuracy can be performed via a “Monotonic Upwind Scheme
for Conservative Laws” (MUSCL) technique of Van Leer [21] . It consists in providing
the Riemann solver with an interpolated value, taking into account some gradient of
the physical quantities. One can use a finite element gradient (P;-Galerkin) computed
on a particular triangle, or an averaged nodal gradient, which is taken as a particular
average of the finite element gradients on the set of triangles sharing a given vertex.

@

<
s

Figure 17: A 2D control volume C;

Integrating Eq. (1) over C; yields :
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/ =7+ /F(W).u}do <1>
]EN(S) ac (2)
+ / F ) do + / F(W).7do =0 <2 >
OC; NIy, 0C; NI

where 0C;; = 0C; N 0C};; T'y, and 'y, respectively denote the wall boundary and the
downstream /upstream boundary. A first order finite volume discretisation of < 1 >
is :

<1>= W —Wr+At Y Qp(W, W/, 05) (3)
JEN(S;)

where ® denotes a numerical flux function such that :
O (Wi, W, 7)) ~ / FW).ido |, vjj= / vido (4)
80,;]' 60,;]'

Upwinding is introduced here in the computation of Eq. (4) by using Roe’s [17]
approximate Riemann solver thus computing ® as follows:

L. FW)+FWw,) | W —W
Sp(Wi, Wy, vi5) = (W) 5 ( J)-Vij— | Ar(Wi, Wi, v55) | (]27) (5)
OF (W)

where Ap is Roe’s mean value of the flux Jacobian matrix .U. Following the

ow
MUSCL technique [21] , second order accuracy is achieved in Eq. (4) via a piecewise
linear interpolation of the states W;; and W, at the interface 0C;; (see Fig. 18) :
~ ~ 1 =~ - ~ ~ 1 -~ -

where W = (p .U, p)T. An averaged nodal gradient (VW); is obtained by averaging
the P;-Galerkin gradients computed on each triangle of C;. Finally, the Van Albada
limitation procedure [4] is introduced in the interpolation (6) in order to preserve the
monotony of the approximation .

5.2 Time integration

As stated earlier, we are only interested here in steady solutions to the Euler equations.
Therefore, time integration is only introduced as an artifice to set up an iterative
solution algorithm and it must be as efficient as possible regardless of time accuracy.
For this purpose, an implicit formulation that allows the use of large pseudo-time steps
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W, Wi

Figure 18: Interpolated physical states W;; and Wj; on an edge {S;,S;}

is adopted. Assuming that W (Z,t) is constant over C; (in other words, a mass lumping
technique is applied to the temporal term), we obtain :

dw, |
vol(ci)d—vy+\1;(W)i:o Ci=1,---N, (7)

where W, = W(z},t), N, is the number of control volumes, and :
VW)= > Op(Wiy, Wi, vij) + / F(W).ido (8)
jEN(Si) ac;NI

where I' = '), UT.. Applying a first order linearization to the flux ¥(W"*!) yields
the Newton-like formulation [4] :

Atn

where J(W") denotes the associated Jacobian matrix. At each time step, the above
linear system is approximately solved using Jacobi relaxations.

<V01(Cz) + J(Wn)> (Wn—l—l _ Wn) — _\I;(W”) (9)

5.3 Shape parametrization

The population of individuals represent airfoil shapes. Following a strategy already
adopted by several authors [10]-[14]-[15]-[16], the shape parametrization procedure is
based on Bézier curves. A few control points are enough to represent the whole shape
and the smoothness properties of Bézier curves permits to avoid non feasible shapes
by the crossover operator. A Bézier curve of order n is defined by the Bernstein
polynomials B, ; :

~ . i 4i n—i i n
B(t) =Y. BuP with Bay=Cit(1=0"" , Ci= ey
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where t € [0,1], P, = (z;,y;) are the coordinates of the control points. In this work,
a Bézier representation of order 8 has been used : 2 fixed points, P, and F;, and 7
control points.

8
z(t) = Y Cit'(1—1t)*"
=0

8
y(t) = Y Cgt'(1—1)" "y,
i=0

Two Bézier curves are defined for the upper and lower surfaces respectively ; the
points Py = (0,0) and Py = (1,0) corresponding to the leading and trailing edges of the
airfoil are fixed. All the values z; € [0, 1] are fixed, and only the ordinates y1,-- -, ys
(upper surface) and yq, - - -, y15 (lower surface) are allowed to vary (see Fig. 19). Before
coding a chromosome in a binary string, it is defined by a vector in IR :

chromosome = (yla ) y7j y9) T y15)

upper lower

Moreover, we have used a geometrical constraint on the ordinates : the y;’s vary
on intervals of the form [min;, max;] ; this has a direct implication on the search
space. The parameters constituting the chromosomes are then coded as binary strings
(for decoding a binary string into the real parameters see, for example, the book of
Michalewicz [11] pp. 18-20).

Figure 19: Representation of an airfoil using control points of Bézier (the y;’s).

5.4 The optimization problem

First, we evaluate a subsonic Euler flow at a Mach number equal to 0.2 and an incidence
equal to 10.8° on a “high-lift” profile (see Fig. 20) ; we calculate the pressure, P;.
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Second, we evaluate a transonic Euler flow at a Mach number equal to 0.77 and an
incidence equal to 1° on a “low-drag” profile (see Fig. 20), and we calculate the pressure
P,. The objective is to minimize simultaneously the two following cost functionals :

L(W(>) = / (P(W)— P)?do  at Ma=0.2 and o = 10.8°

B(W(y) = /(P(W) —P)?do at Ma=0.77 and a = 1°

We want to find all the profiles existing between the low-drag profile and the high-
lift profile. For each chromosome determining the profile of an airfoil v, we evaluate
the two Euler flows at the two previously mentioned regimes. On Fig. 21 we visualize
the steady iso-mach lines on the two profiles corresponding to the two flow regimes.

0.1 : : : : 0.08
0.08 | 0061
0.06 |
0.04 |
0.04 |
0.02 i 0.02
0 0

-0.02
-0.02 +

-0.04 -

-0.06 | 0.04)

-0.08 0.2 0.4 06 08 006 02 04 06 08 1

Figure 20: High-lift and low-drag profiles.

5.5 Mesh update procedure

Once a new shape has been determined, the overall computational mesh has to be up-
dated prior to a new flow calculation. In this work, an unstructured dynamic mesh is
represented by a pseudo structural model where a fictitious linear spring is associated
with each edge connecting two vertices S; and S;. The vertices located on the down-
stream and upstream boundaries are held fixed while the new positions of those points
located on the wall boundary are determined from shape parametrization procedure.
Then, the new position of the interior vertices is determined from the solution of a
displacement driven pseudo structural problem via a Jacobi iterative procedure per-
formed on appropriate static equilibrium equations. This procedure is adapted from
the work presented in Farhat and Lanteri [3] for unsteady flow simulation on dynamic
meshes.
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D
|

Figure 21: Steady iso-mach lines on the “highlift” and “lowdrag” profiles.

5.6 Parallelization strategy

One important concern related with the use of GAs in shape optimum design is the
computational effort needed. In hard problems, GAs require large populations and this
translates directly into higher computational effort. In the case of the multi-objective
optimization problem considered here, we have to solve for two Euler flows for each
individual, which means that the computational effort is very high. One of the main
advantages of GAs is that they can easily be parallelized. At each generation, the fitness
values associated with each individual can be evaluated in parallel. We will not go into
the details for the parallelization strategy we have adopted as this is not the major
topic of this report. A complete description can be found in [10]. In brief, we have
employed a two-level parallelization strategy : the first level is the parallelization of
the flow solver, which combines domain partitioning techniques with a message-passing
programming model (where calls to the MPI library are used). The second level is the
parallelization of GAs. We have chosen to exploit the notion of process groups which is
one of the main features of the MPI environment. Two groups are defined, each group
being responsible for the evaluation of the criteria for one individual, and each group
contains the same number of processes. Then, two individuals are taken into account
in parallel.
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5.7 Results

The reference profile is a NACA0012 airfoil. Results have been obtained using a coarse
and a fine mesh of the NACA0012 airfoil. The coarse mesh is composed of 1351 nodes
and the fine one is composed of 14498 nodes. On Fig. 22, we visualize the steady
iso-mach lines at the two different regimes for both meshes.

The flow solver — For each flow simulation, steady-state is assumed to be reached
when the initial normalized density residual has been reduced by a factor 103. At each
pseudo time-step, the linear system solution is interrupted when the residual has been
reduced to one percent of the initial value.

The GA — Results have been obtained with a population of 40 individuals, setting
the probability of crossover to p. = 0.8, the probability of mutation to p,, = 0.007 and
Oshare = 0.7. The selection operator was chosen to be the binary tournament with an
elitist strategy.

5.8 Coarse mesh results
5.8.1 Parallel performance results

Results have been obtained on an SGI Origin 2000 MIMD parallel computing plat-
form equipped with Mips R10000/195 Mhz processors. We compare timing measure-
ments for the overall optimization using one and two process groups. Timings are
given for 100 generations in Tab. 1 and Tab. 2 where N, and N, respectively denote
the number of process groups and the total number of processes (N, = 2 and N, = 4
means 2 processes for each group), “Total” is the total execution time and “Flow” is the
accumulated flow solver time ; finally, S(XV,) is the calculated speed-up. As could be
anticipated, the present mesh is too coarse to demonstrate reasonable parallel speed-up
of the optimization process; this point will be further illustrated later with comparisons
between coarse and fine mesh calculations.

5.8.2 Numerical results

Fig. 23 visualizes the evolution of the population until a steady state is reached. We
note the formation of the cloud of points and its convex hull. The optimal Pareto set
is shown on Fig. 24, it describes the convex hull. After 100 generations, there are 131
individuals on the Pareto front. All these individuals correspond to optimal solutions
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N

Figure 22: Top-left : fine mesh - highlift regime. Top-right : fine mesh - lowdrag
regime. Bottom-left : coarse mesh - highlift regime. Bottom-right : coarse mesh -

lowdrag regime.
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Table 1: Parallel perfomance results on the SGI Origin 2000 system
Coarse mesh calculations and one process group

| N, | N, | Total (sec) | Flow (sec) | S(IV,) |
1] 2 | 5h45mn | 5h 20 mn 1.0
1|4 |4h01lmn |3h28mn 14

Table 2: Parallel perfomance results on the SGI Origin 2000 system
Coarse mesh calculations and two process groups

| N, | N, | Total (sec) | Flow (sec) | S(N,) |
2| 2 |4h43mn | 4h 25 mn 1.0
2 |4 |3h34mn |3h13mn 1.3

of the mutli-objective minimization This optimization has required 7730 cost functional
evaluations.
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Figure 23: Evolution of the individuals in the objectives plane, from the first generation
to the last one (100 generations).
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Figure 24: The optimal Pareto set with 131 individuals uniformly distributed, after
100 generations.

5.9 Fine mesh results

5.9.1 Parallel performance results

The complete optimization process required 51 generations and, for N, = 2 groups
and N, = 8 processors, 22 hours on the SGI Origin 2000 system. We have decided
to compare the parallel performances between coarse and fine meshes, for only 10
generations, for the same data. Results are given in Tab. 3.

Table 3: Parallel perfomance results on the SGI Origin 2000 system
Fine and coarse mesh calculations, two process groups

| | N, | Total | Flow | Com |
Coarse mesh | & 18 min 43 sec 13 min 56 sec 5 min 10 sec
Coarse mesh | 16 17 min 26 sec 11 min 50 sec 7 min 10 sec
Fine mesh 8 |3h 58 min 20 sec | 3 h 9 min 46 sec | 17 min 19 sec
Fine mesh 16 | 1Th 50min 5sec | 1h 24 min 56 sec | 13 min 32 sec

RR

The coarse mesh optimization has required 772 cost functional evaluations for the
10 generations, while for the fine mesh, 702 cost functionals have been evaluated. As
previously, we note that on the coarse mesh, it is not worth to use a lot of processors.

n’ 3686



36 Nathalie Marco , Jean-Antoine Désidéri , Stéphane Lanter:

Clearly, the situation is more favorable for the fine mesh calculations; a quasi-ideal
speed-up is obtained when switching from 8 to 16 processors.

5.9.2 Numerical results

Results on the fine mesh are more accurate than the ones obtained on the coarse
one. We illustrate this point by comparing the clouds composed by the different cost
evaluations for both meshes and also by comparing the optimal Pareto fronts for both
meshes (Fig. 25 and 26). When using the finest mesh, the two cost functionals have
been better evaluated and the local optima have been better captured. On Fig. 27 a
sample of different profiles between the high-lift and low-drag profiles is presented. We
note that these profiles are slightly different than those resulting from the coarse mesh
optimization.

0.6 ‘

Pbpulation for the fine ‘mesh °
- PoguLation fer the fine mesh -+

0.5

0.4

0.3

J2

0.2

0.1}

0.6

Figure 25: Evolution of the individuals in the objectives plane, for both runs on the
two meshes (51 generations and 3918 evaluations for the fine mesh and 100 generations
and 7730 evaluations for the coarse one).

6 Concluding remarks
The multi-objective optimization with Genetic Algorithms is independent of the de-

cision makers : GAs work with a population of points, and they are able to find the
Pareto optimal solutions simultaneously ; in effect, they collect a kind of database
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Figure 26: Optimal Pareto sets; the one obtained with the finest mesh (51 genera-
tions and 51 individuals) is dominating the one obtained with the coarse mesh (100
generations and 131 individuals).
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Figure 27: A sample of profiles between high-lift and low-drag, obtained with the fine
mesh.
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informative of the dynamics of the system. Then, whatever option is elected by the
decision maker subsequently to the fabrication of the database, the optimal solution
of the corresponding problem can be found on the Pareto front. Indeed, the common
practice, in multi-objective optimization, is to fix some weights in order to combine lin-
early the objectives and to optimize only one function. Then, a wrong weighting may
drive any optimization process toward wrong answers. Usually, the weights tuning is
an expensive cut-and-try empirical procedure that implies necessarily a large number
of optimization runs before reaching satisfactory results. Identifying the Pareto set
permits to avoid this disadvantage.

In some multi-objective optimization problems, we do not succeed in obtaining all
the feasible optimal solutions. The few points we obtain are optimal solutions but the
trade-offs between the objectives are lacking. A procedure of sharing technique with
a classification by fronts is then necessary to obtain the diversity between the optimal
solutions all along the Pareto front. In our first approach on multi-objective optimiza-
tion, we have studied only one sharing method, inspired by Srinivas and Deb [20]|. But
this technique has been improved, developped in many other optimization problems,
for example by Goldberg and Richardson in [7], Deb and Goldberg in [2] who have
used the tournament selection because it puts more controlled selection pressure and
faster convergence characteristic. Oei and al. propose in [13] another niching tech-
nique. More recently, Goldberg [8] has proposed an adaptive niching scheme whose the
objective is to overcome the limitations of fixed sharing methods. Further investigation
of these tecniques is currently undergone.

The multi-objective optimization is used in optimum design when the problem is
to find the different shapes of airfoils at different speeds. The optimal solutions of the
Pareto front represent a family of shapes for the different mach numbers, corresponding
to different weighted cost functionals. In [15], Poloni gives results concerning to the
geometric transition from low-drag to high-lift airfoils.
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