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Théme 1 — Réseaux et systémes
Projet Mistral
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Abstract: The main property of a (hard) real-time system is feasibility. It is the guarantee that
tasks do always meet their deadlines, when the system is running under a given scheduling policy.
An optimal policy produces a feasible schedule whenever a feasible schedule exists. It is therefore
the most appropriate choice if feasibility is the only matter of concern. However, if a set of tasks
is feasible under several policies, it is possible to impose additional constraints, which improve in a
certain way the quality of a system. A refined choice is only possible if feasibility tests or, more
broadly, timing analysis is available for other policies than the optimal ones. In this document we
derive timing analysis for policies obtained by combining known policies in hierarchical layers. These
layered priorities are motivated by the Posix 1003.1c standard, which allows such a combination of
Fixed Preemptive Priorities and the Round Robin scheduling policy. In this context we extend the
trajectory based model developed in [8] for systems scheduled under real-time constraints to account
for non-preemptive resources and the associated priority ceiling protocol. Furthermore, timing analysis
of the Round Robin policy is derived.
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Ordonnancement Temps Réel: Non-Préemption, Sections Critiques et
Round Robin

Résumé : La propriété principale d’un systéme temps réel est la faisabilité. C’est la garantie que
les taches respectent toujours leurs dates d’échéance lorsque le systéme fonctionne avec une certaine
politique d’ordonnancement. Une politique optimale produit un ordonnancement faisable si un or-
donnancement faisable existe. Pour cette raison une politique optimale est la plus appropriée si la
faisabilité est le seul objectif. Mais si un ensemble de taches est faisable sous plusieurs politiques, il
est possible d’ajouter d’autres contraintes que la faisabilité afin d’améliorer la qualité du systéme selon
des critéres négligés auparavant. Cependant, un choix plus raffiné n’est possible que si des analyses
de faisabilité sont aussi connues pour d’autres politiques que les politiques optimales. Dans ce do-
cument nous développons des analyses de faisabilité pour des politiques d’ordonnancement obtenues
par combinaison en couches hiérarchiques. Ces priorités en couches sont motivées par le standard
POSIX 1003.1c, qui prévoit notamment la combinaison en couches de priorités préemptives fixes et
Round Robin. Dans ce contexte nous étendons le modele a base de trajectoires développé dans [8]
pour les systémes de taches sous contraintes temps réels sur un processeur. Nous élaborons une repré-
sentation des ressources non-préemptables et du protocole a plafond de priorité associé. De plus, nous
développons une analyse d’ordonnancabilité pour la politique Round Robin.

Mots-clés : ordonnancement, temps-réel, priorités en couches, Round Robin
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1 Introduction

The main property of a real-time system is feasibility. It is the guarantee that task always meet their
deadlines, when scheduled according to the chosen policy. The earliest deadline first policy (EDF) is
known to be optimal, for obtaining a feasible schedule. If a set of tasks is not feasible under EDF, then
it is not feasible under any other scheduling policy. Feasibility may however not be the only desired
property. For example, low (average) response time jitter may improve the quality of the system. If the
task set is feasible under several scheduling policies, then a more refined choice should be possible. But
since feasibility is the basic property, other policies can only be chosen if a corresponding feasibility
test or more generally response time bounds are known. The purpose of this study is to enlarge the
spectrum of analyzable scheduling policies. On one hand we derive response time bounds for the Round
Robin scheduling policy. On the other hand, we propose layered priorities as a mean for combining
known policies. Under POSIX 1003.1b for example, a combination through preemptive layers of fixed
preemptive priorities (FPP), first in first out (FIFO) and Round Robin are allowed. We show how to
derive response time bounds under layered priorities in order to enable their use in real-time systems.

An important issue besides feasibility is the appropriate handling of critical sections. A task is
said to execute a critical section when it is using a non-preemptable resource. During such a period
no other instance should start to use the same resource. Usually, semaphores are used to control
the access to non-preemptable resources, but without an additional mechanism such as the priority
ceiling protocol, nested critical section can result in deadlocks. For this reason, we will present the
priority ceiling protocol in a generic in terms of priority functions. Under this form it can be applied
to any preemptive policy, in order to guarantee that no deadlocks occur. We apply it to Round Robin
and layered priorities. Furthermore, we show the link between critical sections and non-preemptable
resources and use it to define non-preemptive Round Robin.

To define layered priorities formally and to derive response time bounds, we will use the trajectory
based model and the concept of priority function introduced in [8]. We will see that Round Robin
and non-preemptive versions of preemptive policy can be realized through time dependent priority
functions, in opposition to FPP and EDF which are based on time independent priority functions [8].
Furthermore, we extend the model by functions that express the resource requirements of tasks. We
use it in particular for non-preemptive resources and the associated priority ceiling protocol.

2 Framework

This section describes the mathematical model which has been introduced in [8] to represent a processor
that executes recurrent task under real-time constraints. For further details, and the omitted proofs,
the reader is referred to [8].

2.1 The task process

In this section we define the concept of task process. Its purpose is to describe the possible evolution
of the demands of tasks that are to be scheduled. We also introduce the concept of work arrival
function to formalize these demands. The scheduling itself is represented by the concept of scheduled
task process, defined in the subsequent Section 2.2.

2.1.1 Recurrent tasks

The system to be modeled consists in a finite set of recurrent tasks T = {r1,... ,7n} and a processing
unit that executes the successive instances or invocations of these tasks. We denote by 7%, the nth
instance of task 7, and by Ay, € Ry, with n € N, the corresponding activation or release time. For

RR n° 3678
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each task 7y, the arrivals are assumed to be indexed such that:
0< Ao S Ap1 <o S A1 S Appn S Agng1 <.t (2.1)

i.e. in the order of their occurrence, with some given order among synchronous arrivals. The time

between two successive arrivals, the inter arrival time or cycle time is denoted T} , def Ag 1 — Ag -
We assume that the sequence of invocations of a task has no point of accumulation, i.e. for each 7, € T
there are a finite number of activations in any interval of finite length.

Vi) <t Ry Z ]I[tléAk,n<t2] < o0. (2.2)
neN

Since each task has by definition infinitely many instances, (2.2) implies that tasks really are recurrent
in the sense that for any time ¢ € Ry there exists a release of each task after ¢.

Let us denote A C (R )™ the m-dimensional set of sequences satisfying (2.1) and (2.2). With a
release Ay, is associated its ezecution time Cy,, € Ry, the amount of work to be done to complete the
instance and its absolute deadline Dy, ,,, the time before which the task should complete its execution.
It is related to the activation time by the relative deadline denoted Ek,n:

def

Dk,n = Ak:,'n +Ek,n

It is reasonable to assume that Ek,n > 0 because otherwise, a task may be activated after its deadline.

We call T % Ax (RY)™ x (RY )™ the set of task sequences. The elements of T represent all possible
ways in which instances of m recurrent tasks can be activated and request the processing unit in the
time interval [0, col.

The behavior of a real-world task set is modeled by a subset of T, i.e. a certain set of task sequences
that represent all possible behaviors of the tasks. To be able to identify in T the task sequences that
correspond to the modeled system, we introduce an index-set 2, which might be countable or not. We
use a mapping

(A,C,D): Q—T: w+— (a,c,d) (2.3)

to pick out the concerned task sequences from T. Notice that we denote the function by (A, C, D), to
remind that it is composed of three components "activation sequences", "execution time sequences"
and "deadline sequences". An element w € € is called trajectory or history of the system. In a similar
way as a random variable represents the different possible outcomes of a random experiment, (A4, C, D)
represents the different possible evolutions that correspond to the modeled system.

Definition 2.1 A mapping (A,C, D) from a set Q into the set of task sequences T is called a task
process.

Notice that in the terminology of point processes, activation times are the points and execution times
and deadlines are marks.

We should for example write Ay, ,(w) for the n'" release of task 7 on trajectory w, but in order to
avoid cumbersome notations, we will simply write Ay, ,,, unless making appear w explicitly is needed.

As with random variables we write in small letters a particular realization of the task process. A
task sequence in T, that is an arrival time sequence together with an execution time sequence will
be denoted (a,c,d). In order to keep notations sparse, we will avoid as far as possible to address
particular realizations. Definitions and properties are stated in terms of task processes - written with
capital letters - under the convention that they are meant for all trajectories. But trajectories are
explicitly written where this convention leads to ambiguities or if this is required for any other reason.

INRIA
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2.1.2 Work arrival functions (WAF)

The response time of an instance of a task depends on the concurrent demands of other instances,
belonging to the same task or not. Demands become effective after the corresponding release time
Ay n, meaning that an instance can not be executed before that time. To represent the amount of
requested execution time of an instance 7y ,, if there is an effective demand, we introduce

def
Sk,n(t17t2) = Ck,’fl : ]I[tlgAk,n<t2] (24)

for any interval [t1,t3[. We call S, the work arrival function (WAF for short) of an instance. It
measures the amount of work due to instance 7, and arriving during the interval [ti,3]. It is a very
simple function, that is of minor interest as such, but it serves as building brick for other functions.

Let Z be a set of instances (not necessarily belonging to the same task). The corresponding WAF is
defined by

def
Sz(t1,t2) = Z Sij(t1,t2). (2.5)
Ti,jEI

An example is the WAF of a given task 74, which corresponds to Z = {7, | n € N}:

Si(tr, 1) € > Skaltita) =Y Crn - Tgay <tal- (2.6)
neN neN

Notice that this function is piecewise constant, meaning that any interval of finite length can be
subdivided into a finite number of subintervals on which the function is constant. This is partially
due to the fact that the sequence of activation times is assumed to have no points of accumulation,
see (2.2). We will call a piecewise constant function also a step-function. A WAF is in particular an
increasing step-function in its second variable. Notice that these functions are left-continuous in their
second variable which means that an arrival at ¢ is not taken into account by Skyn(tl, t2). In order to
have possible releases at t9 taken into account, we do not need to introduce a new function. We can use
the right-hand side limits in the second variable. To see this, notice first that [t1, 2] = (.5 ¢[t1,t2 +¢[-
Thus,

Crn - Wity cag sta] = EEI(I)I+ Skn(ti,ta +€) = Spn(ti,t3). (2.7)

In a similar way, the right-hand side limits in the first variable implies that possible arrivals at ¢; are
not taken into account: Skyn(tf',tg). Which of the variants is needed, depends on the context. Notice
that on contiguous intervals, for example [t1, t2[U][t2, t3[, WAF’s are additive:

Sk(tl,tg) + Sk(tg,tg) = Sk(tl,tg) Vit <ty <ts. (28)

In connection with feasibility it is useful to consider sets of instances Z that are determined
by a deadline d. The deadline based work arrival function a given task 7, which corresponds to
I ={mkn|n €N, Dy, <d} is defined by:

def
Sk(t1,t2,d) = Z Crn - My ay, o <to] * Aipy  <d)- (2.9)
n€eN

For the analysis of other scheduling policies than those considered in this document, it might be
necessary to introduce further kinds of WAF, based on other sets of instances.

2.2 The scheduled task process

The processing capacity or speed of the processing unit is shared by the instances according to a given
scheduling policy. In this section we introduce the scheduling function, which is an exact representation
of the way in which the policy attributes the processing unit to tasks. We also define the resulting
responses times of instances of a task.

RR n° 3678
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2.2.1 The scheduling function

Since we only consider one processing unit at the same time, we can choose a unit capacity and assume
that execution times and other characteristics are expressed in the corresponding time unit, to simplify
the notations. The effect of the policy is "materialized" by the scheduling function II that gives for
every instance 7y, the part

Hk,n(t) S [0, 1]

of the processor capacity that the scheduler attributes to 7 .

Several assumptions have to be made about II. Each function IIj, , is assumed to be right-continuous
in ¢ which implies that the Il , are Lebesgue-measurable. The following assumptions have interpre-
tations in terms of the system to be modeled. The first is:

Vi< Ak,n Hk,n(t) =0, (2.10)

which means that an invocation can not use the processor before its activation date. Furthermore

t2
/ M n(t)dt < Ckn Vit ER, (2.11)
¢

1

which means that an invocation can not use the processor for longer than its nominal execution time,
given unit processor speed. And finally

VEeR: 3 kli 2inen Min(t) <1, (2.12)

meaning that the tasks can not use more capacity than available at time ¢. Let us denote F the set
of functions IT satisfying (2.12). To represent the effect of a scheduling policy, we introduce the set
T C T x F of scheduled tasks sequences, satisfying (2.10) and (2.11).

Definition 2.2 A mapping (A, C, D,II) from Q into TV is called scheduled task process.

A scheduled task process can represent random scheduling policies which take their decisions "by
tossing a dice", but we will not consider such policies here. We are only interested in policies that
apply a fixed rule. These policies are deterministic in the sense that the same task sequence (a, ¢, d) can
be scheduled in only one way, i.e. is transformed into exactly one scheduled task sequence (a,c,d, )
and hence the abstract concept "deterministic policy" can be represented as a function from T into
T,

Definition 2.3 A mapping v from a T into TV is called a deterministic scheduling policy.
With this definition, a task process is said to be scheduled according to policy v if
(4,€,D,TI) = v((A, C, D)). (2.13)

The scheduling function II of a task process does depend on w because the task process is a function
of w, but not because of the scheduling policy. For random policies it would be necessary to introduce
a "stochastic driver", that is a random variable which represents the random part of the scheduling
policy.

INRIA



Non-r'reemption, Critical Sections ana Lound 1ooin 9

2.2.2 Response times

The basic structure being settled, we can define the quantities we are interested in, such as response
times, execution beginnings and execution ends. ends. A very useful tool for their analysis are workload
functions, defined by: workload function

t
Win(t) % Sn(0,4) / e () du. (2.14)
0

For each instance 7y, it represents the amount of work which has arrived before ¢ and which is still
waiting for execution. Notice that Wy ,(Akn) = 0 because Sk, (0, Agn) does not account for the
arrival at Ay ,. This property corresponds to the left-continuity of Wy ,(t), which is induced by the
continuity of the integral of Il ,, and the left-continuity of Sk,n((), t). Taking the right-hand side limit
in t gives:

t
Win(tT) = Skn(0,t7) — / Iy, (w)du. (2.15)
0
It represents the pending work at ¢ whether it arrives before or at ¢.

Definition 2.4 An instance 7, is said to be pending at a time t if Wy ,(t*) > 0.

Notice that a task can only be executed if it is pending:
Hk’n(t) >0= Wk,n(t) > 0. (2.16)
It is implied by assumptions (2.10) and (2.11). Notice also the following property:

Lemma 2.5 The number of pending instances is finite on any interval of finite length:

V tl < t2 S R+ Z ]I[Wk,n(t+)>0] . ]I[t1 <t<t2] < Q. (217)

Tk,n
It is sometimes necessary to consider only instances that have deadlines earlier than some deadline
d. For this purpose we define deadline based version of the involved functions:

e e def
Win(t,d) € Wi(t) - Ip, .<a Skn(0,t,d) & Sn(0,1) - Ip,..<a Wkn(t,d) = Hgn(t) - Lp,  <a-

The sum over all instances of a task gives Wy (t,d), Sk(0,¢,d) and II(¢,d). It can easily be seen that

t
Wk,n(t7 d) = Sk,n(oata d) _/ Hk,n(uad)du
0

A pending instance completes its execution as soon as its workload vanishes. Thus, the execution end
or completion time of an instance can be defined by

Erp & min{t > A, | Win(t) = 0}, (2.18)

if it exists, that is if the set on which the definition is based on is not empty. Notice that between Ay ,
and Ej ,, the execution of 74, could be interrupted if the scheduling policy is preemptive and thus,
the response time, defined by

Rin ® By — An (2.19)

3

can be longer than the execution time Cj .
The ezecution begin of an instance can be defined as the first time after its activation, where its
scheduling function becomes positive:

Bip € inf{t > Ap, | i (t) > 0} (2.20)

RR n° 3678
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Tk,n

Figure 1: Times and functions associated with the instance of a task 7.

2.2.3 Feasibility

Under real-time constraints, tasks must complete their execution within their relative deadline Ek,n;
i.e. before their absolute deadline Dy, = Ay, + Dy . If all instances meet their deadlines then the
task set is feasible. In our model feasibility is defined a follows:

Definition 2.6 A set of tasks is feasible under a certain scheduling policy, if in the corresponding
scheduled task process (A, C, D,1I), all task instances finish before their deadline:

Epn(w) < Dgp(w) Yw € Q,Vk =1..m,Vn € N.

Notice that feasibility only concerns the property that response times are shorter than relative dead-
lines. On the other hand, maximal response times or bounds on response times, provide additional
information. They tell how close to the deadline response times could come. Close could be below or
above. If a task is not feasible, it allows to know by how much a deadline is not met and if it is feasible
it gives an idea about the safety margin. These are useful informations for the design of a system. If
the relative deadlines of the instances of a task are all equal, Dy, = Dy, Vn € N, then the maximal
response times of a task allows to say if the task is feasible or not. A task is then feasible if and only if

def —_—
R = max Ry,(w) < Dyg.
k weN,nEN k,n( ) N Tk

2.3 Basic assumptions

As said above, execution ends or even beginnings might be undefined. This can happen if the schedule
does not allow an instance of a task to execute. In the context of real-time system where feasibility
is the seeked property, such behaviors are of course undesired. If the used scheduling is non-idling,
meaning that the processing unit does not idle if work is pending, then the existence or non-existence of
execution ends or beginnings is related to the long term load on the processing unit by task’s demands.
Since we are only interested in non-idling scheduling policies, we will impose a deterministic stability
condition, that guarantees together with the non-idling assumption that all execution ends are defined.
In this section we express these properties in the model of scheduled task processes and show which
kind of basic properties they induce.

INRIA
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2.3.1 Deterministic stability

The aim of introducing this stability condition is to ensure that response times are finite. It does
not imply feasibility but it is a necessary condition. If response times are not finite, then there is no
use in trying to derive response time bounds. Furthermore, the commonly used iterative algorithm to
compute response time bounds numerically is only valid if the stability condition is satisfied.

Stability can be interpreted as the guarantee that the processing unit is not overloaded by task
demands in the long run. To determine if a set of tasks does or does not overload the processing
unit on the long run the tasks demands must be estimated. For this purpose, (o,p)-bounds [3] are
appropriate. They are based on a slope p; € R, and constant o, € Ry that satisfy

Skt taiw) = Y Skt to;w) Kokt pe-(to—t) Vi <heER, Vwe (2.21)
neN

It means that the task’s WAF’s are uniformly bounded by one affine function on all intervals of all

trajectories. The sums o1, def ", o and prm def >t pi give a (o,p)-bound for the whole task

set.

Definition 2.7 A task process is said to be stable if there exist (o,p)-bounds such that py ., < 1.
The subset of stable task sequences is denoted Ty.

Notice that this property is independent of the used scheduling policy. Together with the non-idling
assumption this implies policy independent properties, which are presented in Section 3.1.3.

2.3.2 Non-idling

In order to state this property of scheduling policies, we introduce

m m m

S1.m(t1,t2) = Z Si(t1,t2) Wi m(t) = Z Wi(t) Iy (t) = Zﬂi(t) (2.22)

=1 i=1 i=1

that are, respectively, the total amount of work arriving on [t1,t2[, the total pending work from the
past and the total use of the processing time at time ¢. Notice that the considered sums potentially
concern infinite numbers of terms, but since an arrival process is assumed to have no points of accumu-
lation (2.2), S1.., is finite and piecewise constant in ¢s, for a fixed w, implying that its left-continuity
is preserved.

Definition 2.8 A scheduled task process is said to be non-idling if
Wim() >0 = Thin(t)=1 (2.23)

The subset of scheduled task sequences satisfying (2.23) is denoted T}

It means that the processing unit is fully used if work is pending. As counter example, consider a
task that has to do some pre-processing, acquisition of data (say, from a buffer) and finally the actual
processing. If the task has to wait before the data is available, then an interval could occur where the
processor is idling although work is pending - the work that corresponds to the actual processing. This
work has to be considered as pending because the definition of the task comprises all three steps and
by the definition of activation dates, the entire amount of work is considered as pending as soon as the
task is activated. In such a case, the initial task would have to be subdivided into two tasks with a
precedence relation.
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2.3.3 Majorizing work arrival functions (MWAF)

In order to derive response time bounds and to test feasibility, it is necessary to be able to bound the
demands of each task. An example are the (o,p)-bounds introduced in Section 2.3.1. In a more general
way, we give in this section the definition of families of majorizing work arrival function, a concept
that allows to express these bounds appropriately in our model. We discussed in [8] the connections
with the well known concept of critical instant.

To bound the response time of an instance or to check feasibility, it is necessary to bound the
concurrent demands from other tasks. To formalize this, we use the concept of majorizing work arrival
function [8].

Definition 2.9 A family of majorizing work arrival functions for a set of tasks is a set of functions
8 = {Sk(z,q) |k = 1..m, ¢ € Q} such that for any time u and trajectory w, there exists an index q € Q
such that the WAF of each task is bounded by the corresponding MWAF:

Vu e Ry, VweQ JgeQ Sk(u,u + x; w)ggk(m,q) Ve>0,k=1,... ,m.

Definition 2.10 A family of majorizing deadline based work arrival functions for a set of tasks is a
set of functions 8§ = {Sk(x,d,q) | k = 1..m, ¢ € Q} such that for any time u and trajectory w, there
exists an index q € Q such that the WAF of each task is bounded by the corresponding MWAEF':

VueR,, VweQ JgeQ Sp(u,u+ 2, u+d; w) < Sp(x,d,¢) Vo >0,k=1,...,m.

2.4 Highest Priority First Scheduling

So far we have only considered the effects of scheduling policies via the scheduling function II. In
this section we do a first step in the direction of defining concrete policies by introducing the class
of policies that allows only one task to use the processing unit at the same time. Such policies can
be described within the highest priority first paradigm (HPF). A straightforward example is the fixed
(or static) priority preemptive scheduling policy. There are many other policy where the processing
unit can be used by only one task at the same time: earliest deadline first (EDF), first in first out
(FIFO), Round Robin (RR), etc. To allow all these policies to be described within HPF, we introduce
a concept priority assignment, which gives to each instance of a task a multidimensional priority. This
priority assignment enables us to write general properties, which are valid for every scheduling policy
of the class.

2.4.1 Motivation and definition

Consider a processing unit that can be used by only one instance at the same time, i.e. such that

T o (t) € {0,1} and > Tia(t) €{0,1}. (2.24)
k.n

In this case, the scheduling policy could be based on a mechanism that designates at each time exactly
one instance among those which are active. For this purpose we introduce a priority assignment T,
that gives the priority of every instance at any time ¢:

Ty.n(t) € P. (2.25)

To promote flexibility, the priority space (P,=<) may be any set of totally ordered elements. For the
policies studied in this document we choose as priority space the set of multidimensional R-valued
vectors P = {(p1,--- ,pn) € R" | n € N}. Two vectors are equal if they have the same size and if the
components are equal one by one:

P15+ »0n) = (P1s---»Pp) <= n=n'andp;=p;, j=1,...,n (2.26)
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We write p < p’ to say that priority p is smaller than or equal to priority p’ and p < p’ to say that p
is strictly smaller than p’. The relation "p < p’", that is "p < p’ and p # p'" is defined by

34 < min(n,n') = p; =pj, j <iand p; > p}
(P1---5pn) < (Phy- oy p) = | or (2.27)
n' <nand p; =p}, j=1,...,n"
For example: (1,1,4,9,2) < (1,1,3,5,6) and (1,1,4,9,2) < (1,1,4), but (1,1,3,9,2) = (1,1,4).
We allow vectors with different lengths, because it can not be foreseen how many coordinates will
actually be needed in a specific context. Notice that (2.27) defines a total order P.
A priority assignment must be decidable that is such that at any time there is exactly one instance
with maximal priority among the currently active instances. This implies that they have to be different:

Definition 2.11 A priority assignment is said to be decidable, if
te Ry, Tk #* Tk! n! such that Wk,n(t+) > 0 and Wkl’nl (t+) >0 = Fk,n(t) #* Fk’,n’ (t) (2.28)

Definition 2.12 A non-idling scheduled task process is said to satisfy the highest priority first rule
(HPF, for short) for a priority assignment I if for all Ty ;0 # Tgn, and ¥V w € Q

Hk,n(t) =1 and Wklml(t) >0 = Fk,n(t) - Fk’,n’ (t) (229)

The question that arises now, is under which assumptions about priority assignments the HPF-rule
determines a scheduling policy. This question is not only motivated by theoretical considerations. The
answer tells how a policy can be defined that will always work properly, meaning in this context that
the processing unit neither idles, i.e. does not execute any instance although tasks are pending, nor
tries to execute two instances at the same time, although it should not, see assumption (2.24). We do
not know which conditions are necessary, but we know a reasonable sufficient condition:

Definition 2.13 A priority assignment I' is said to be piecewise order preserving if for any finite
interval [to,t;] there is a finite partition ty < t1 < ... < tr such that for all Ty, Tp nr, % € {1,... , I}

Fk,n(tz‘—l) - Fklynl(tl‘_l) = Vxe [ti_1,ti[ ka(:l?) - I‘klynl (l‘) (2.30)

Consequently, if a priority assignment does not satisfy this definition, then there exists an interval of
finite length where the priority order changes infinitely often. No physical processing unit can realize
such a scheduling and thus requiring the assignment to be piecewise order preserving is not restrictive
for applications. Thus, although this property is probably not necessary and only sufficient it is not a
loss of generality to consider only such assignments. Furthermore, the scheduling can be constructed
step by step, as a real-world scheduler would. This appears in the proof of Theorem 2.15, stated below.
The proof can be found in [8].

The construction is based on an identity (2.31) which induces all the properties that a scheduling
function must have under HPF:

Lemma 2.14 If the scheduling functions Il ,, and a decidable priority assignment I', with right-
continuous Ty, satisfy for all t € [t1,t2[, k =1..m and n € N

INOESS TARCS SR | [ CESS (TARASNED (RO (2.31)
Ti,i FTh,n

then on [t1,ty , each Iy, is right-continuous and satisfies the basic assumptions (2.10), (2.11)
and (2.12), the exclusive use assumption (2.24) and the non-idling assumption (2.23). Furthermore, II
and T satisfy the HPF-rule (2.29).
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Proof: Let ¢ € [t1,t9]:

non-idling: if Wy_,,(t7) > 0, then at least one instance is pending at ¢. By decidability, one of the
pending instances has the highest priority. Suppose it is 7 5, i.e.

Ti,j 7'5 Tk,n and Wiyj(t) >0 = Fi,j(t) < F]C’n(t).
Then, (2.31) implies IIj, ,(t) = 1, since Wy ,(t*) > 0.

exclusive use: since (2.31) is the product of factors with values in {0,1}, also II; ,(t) € {0,1} is
satisfied.

It remains to prove that Y IIj ,(¢) € {0,1}. If an instance is not pending, i.e. Wi ,(t7) = 0,
then (2.31) implies I ,(t) = 0. Among the instances that are pending, one has the highest priority
because I' is assumed to be decidable. Suppose it is 7; ;. For any other pending instance 7y ,,
[';j(t) = Tkn(t) is true and thus one of the factors in (2.31) is equal to zero. Hence at most one
instance can have a scheduling function equal to 1.

(2.12): it is implied by the exclusive use property.
(2.10): is satisfied since Wy, ,,(t7) = 0, for t < Ay, and thus IIj ,,(¢) = 0.

(2.11): Because of (2.14), fot Iy (z)dx = Cy 4, implies Wy, ,(t1) = 0, which induces then with (2.31)
that II, ,(t) = 0.

HPF: If II; ,,(t) = 1 then (2.31) implies for all 7; ; # Ty n, that either W; ;(t7) = 0 or W; ;(t*) > 0
and T'; j(t) < Tk (). Thus (2.29) holds.

right-continuity: we have to prove that for every € > 0 there exists a 4 > 0 such that
r<pu = |Hk7n(t + .’L‘) - Hk,n(t” < €.

First notice that by Lemma 2.5, only a finite number of instances are pending in the interval [¢, 5]
and thus except for a finite number, the factors in the product in the right-hand side of (2.31) are
constant. We will show that for any ¢ € [¢1, 2] there exists for each non-constant term a uj > 0
such that it is (also) constant on [¢,¢ + up[. Taking the minimum p = miny, pp, of the finite number
of up gives an interval [t,¢ + p[ where IIj ,, is constant, which implies right-continuity. The factors
in (2.31) depend on Wijj(t—"), Fm’(t) and Fk’n(t).

1. By definition, W; ;(t1) is right-continuous. Thus, if W, ;(t*) = 0 then W; ;j(z™) = 0 for
z € [t,t + pp[ and some pp > 0. If W;;(tT) > 0 then W, ;(z 1) > 0 for z € [t,t + pp[ and
some pp, > 0. On this interval W; ; will not change the value of IIj ,,.

2. By decidability, for two pending instance 74, 7;, either T'; ;(¢) < T'y,(t) or T ;(t) > Tk ().
Because priority functions are supposed to be right-continuous, there exists a p; > 0 such that
on [t,t+ up| the order remains the same, and thus the priority functions do not provoke a change
of Hk:,n-

Below we give the theorem used in [8] to prove that time independent priority assignments do
indeed define scheduling policies. For the policies considered in this document, the Theorem must be
adapted, see Section 3.1.1 for priorities with promotion at execution beginning (PPEB) and Section 3.3
for Round Robin (RR).
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Theorem 2.15

For any decidable and piecewise priority order preserving assignment I' there exists exactly one non-
idling scheduling function II that satisfies the HPF-rule, i.e I' specifies a non-idling scheduling policy.
The scheduling function and the priority assignment satisfy (2.31).

Examples of policies defined by time independent priority assignments, i.e. that satisfy
I n(t) =T(0) Vit (2.32)

are

fixed preemptive priorities (FPP) Ty ,(t) = (k,n)

earliest deadline first (EDF) Ten(t) = (Dip, k,n)
first in first out (FIFO) Tkn
last in first out (LIFO) Ten(t) = (—Agn, k, —n).

For further explanations the reader is referred to [8|.
Let us consider a more sophisticated example to illustrate the required properties. Suppose we
would choose

Tpn(t) = fot Oy (x)da.

With this assignment, the priority of an instance 73, changes only while it is executed. If 73, is
executed, then fot [} »(x)dx increases, implying the priority decreases (recall (2.27)). This means that
a scheduling policy based on this assignment would try to share the processor between the pending
instances by reducing the priority of the executing instance, in order to allow other instances to become
in their turn the highest priority instance.

But this assignment is not decidable since for example two instances activated at the same time
t = Agn = A;j, would have equal priorities: T'y,(t) = I'; j(¢) = 0. To achieve decidability, one can
add two further coordinates, as for EDF in [8]:

Lpn(t) = (f(f Iy (z)dx, k,n).

However, a problem remains. Although the priorities are different for 7, , and 7; ; at t = Ay , = A; ;,
it is impossible to schedule the instances under HPF. Indeed, if £ < j, then by (2.31), 7% should be
executed: ITj ,,(¢t) = 1 and II; j(¢) = 0. Recall that Il , is required to be right-continuous and thus for
some € > 0 we must choose Iy ,(x) =1 for = € [t,¢ + €[. But for any € > 0, it would imply

Tpn(t+e) =(e,kn) < (0,k,n)=T5;(t+e¢),

i.e. immediately after ¢, 7; ; would have a higher priority than 7 ,.

Notice that the problem is actually not the lack of right-continuity, but the fact that scheduling 73 ,,
for some time, no matter how short, makes 7; ; immediately become the higher priority instance. A
solution would be to allow tasks to share the processor instantaneously by choosing Il ,(t) = IL; ;(t) =
0.5, but such a policy does not respect the exclusive use assumption.

A solution, within the currently considered class of policies, is to allow 73, to remain the highest
priority task during some minimal time after £. This can be achieved for example by

The parameter ¥y, and the integer part induce that the first priority coordinate remains constant
while [} g n(2)dx € [+ Upp, (b + 1) - Uy ], for some h € N.
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A similar priority assignment will be used to define the Round Robin (RR) scheduling policy. The
difference is that under RR, the processing unit is shared at task level and not at the level of instance
as in this example.

In the examples considered so far, priority functions only depend on the past. One could consider an
EDF policy where the deadline of an instance is equal to the activation time of the following instance:

Fk,n(t) = (Ak,n—|—17 ka n) (233)

This is different from the usual EDF policy if the tasks are not strictly periodic. As can be seen, vk (t)
depends on the future after t. However, this policy would only make sense for a real-world system if
at every release time of an instance the release time of the following instance is known.

2.4.2 Some formulas

Consider the set of instances Hy, ,(t) having a higher priority than 7, at some time ¢ € [Ay ,, B n,
i.e. a time where 7y, is pending:

Hin®) E {7i; | Tij(®) = Ten(®)}- (2.34)

Let the corresponding set of instances with lower priority be

Lin(t) {70 | Tij(t) < Ten(t)}. (2.35)
The only instance being in none of the two is the considered instance itself, because of the decidability
assumption about the priority assignment. Notice that these sets only take the priority structure into
account, independently of activation times. Such a set can contain instances that have already been
executed before ¢t or that will be activated far after ¢.
For a decidable priority assignment, the definition of these sets immediately implies the following
two properties, for 71, , # 7; ;:

Tij € Ek’n(t) & Tenm € Hz'yj(t) (2.36)
Also, if
Wi >0 = Iy, () =1, (2.37)

meaning that any instance outside of a higher priority set is preempted while instances of the set are
pending.

The set Hy, »(t) allows to write By, and E} ,, in a way that shows the reason for which, most of the
time, Ey,, > Agn + Ckp: the preemption from higher priority instances. The defining equation (2.18)
of Ey , is equivalent to

Ek,n = Inll’l{t > Ak,n | Wk,n(t) + W’Hk,n(t) (t) = O}a (238)

by Proposition A.5. Indeed, for t € [Agn, Egn[, Win(t) + Way, | 1)(t) > Win(t) > 0, ie. (A.9) holds,
with x¢ = 29 = Ag. Furthermore

Wity (Br) (Bln) = 0, (2.39)
because otherwise by the left-continuity of workload functions, there would exist ¢ > 0 such that

Wi, .(2)(®) > 0 for x €]ty — €,to]. And then, Iy ,(x) = 0 which would imply Wi ,(to — €) =
Wi n(to) = 0. Thus, (A.10) is satisfied.
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The execution end can also be expressed in terms of scheduling functions:
Ejn=min{t > A | Ckn+ [4, Ty, (@)(@)dz + Apn = t). (2.40)
To prove this, reconsider, the defining equation (2.18) on page 9. For t > Ay, we have
Win(t) = Cn = [4,  Min()da.

For all t € [Agn, Bk n[, Win(t) > 0, implying Wy (t) > 0 and thus II; () = 1. On the other hand,
ka(t) > 0 implies Hﬁk,n(t)(t) = 0. Thus Hkyn(t) =1- HHk,n(t)(t)'

The execution begin formula can also be expressed using Hy, ,,(¢). From (2.20) on page 9 and (2.31)
on page 13 it follows that

By = min{t > Ay, | Wiy, 0y(t7) = 0}. (2.41)

It means that the execution begin is the first time after Ay, where the workload of pending instances
having currently a higher priority becomes zero.

These equations will serve as starting points for deriving response time bounds under different
scheduling policies.

2.4.3 Properties of priority assignments

A priority assignment which realizes FPP is for example 'y ,(t) = (k,n). If we would choose I'y ,,(¢) =
k4 1,n + 13 instead, the resulting schedule would be the same. More generally, different assignments
can be equivalent in the sense that they produce the same schedule.

1 2
Definition 2.16 Two priority assignments I' and I', with values in priority spaces (P1,>) and (Pq, =)
respectively, are said to be equivalent if any pair of task 7y, # 7; j have at any time t the same priority
order:

1 2
Lpn(t) = Ti;t) < Fﬁg,n(t) - F;,j(t). (2.42)

Proposition 2.17 For a given task process, two equivalent priority assignments produce the same
scheduled task process.

Proof: By contradiction, using Lemma 2.15 and (2.31). W
The fact that two different assignments can implement the same policy is actually a very useful fact
for the construction and analysis of complex policies.

It is sometimes useful to be able to derive a response time bound by using a lower bound on the
priority function of an instance. The following Proposition states that this possible.

Proposition 2.18 Let (A, C, D,II) be a task process, scheduled HPF according to a priority assign-
ment ['. Let I be the scheduling function corresponding to a second assignment I, which is the same,
except for one instance Ty ,,, for which the priority function is smaller at any time:

Din(t) = T n(t) V. (2.43)
Then, the response time of Ty ,, is larger in the second case:

Rin < Ry,
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Proof: Relation (2.43) implies that at any moment ¢, the set of instances with higher priorities contains
more elements under T":

Hin(t) C Hy o(t) V.
First, we prove that the scheduling function associated with H, ,,(t) is the same under both assignments:
HHk,n(t) (t) - H{Hk,n(t) (t) Vt

By contradiction: suppose the equality where wrong. Since IT and IT' are right continuous, there exists then
a first time o where I3, (10)(t0) # Iy, (to)(tO)' Notice that Wy, (t) = Wy, (t)(t) for all ¢ < .
Two cases arise: ’ ’
(i) M, . (t0)(to) = 1 and HIHk,n(to)(tO) = 0: then, since Wy, (4,)(to) > 0 also W’;{k,n(to)(to) > 0. But
then 1T (to)(to) = 0 is a contradiction with the non-idling assumption (2.23) on page 11.

(ii) Iy, ,.(t0)(to) = 0 and HIHk,n(to)(tO) = 1: then, since Wy, (4,)(to) = 0 also W,’I"k,n(to)(to) = 0. But
then IT}, (to)(to) =1, is a contradiction with the basic assumptions (2.10) or (2.11) on page 8.

Now, recall the execution end formula (2.40), which is based on scheduling functions of higher priority
instances. Since scheduling functions are positive, Tl () (¢) < I, (t)(t). The same relation being true
[ k,n

for the integrals of these functions, Proposition A.4 applies when replacing I1y;, (m)(az) by HQ{, ( )(a:) and
m k,n r
thus By, < Ej,,. B
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3 Time dependent priority assignments

We define in this section several priority assignments and discuss their applications. On one hand
we consider non-preemptive scheduling policies and the priority ceiling protocol, which is used with
semaphores to protect non-preemptive resources. On the other hand, we introduce layered priorities and
derive timing analysis for the Round Robin policy, which allows to analyze Posix compliant scheduling
policies. As pointed out before, we have to verify that in each case the assignments do indeed define
scheduling policies, recall Definition 2.3 on page 8. We prove this in Section 3.6.

3.1 Priority promotion

In this section we define priority functions with increase at execution beginning from one constant
level to an other. A typical application are the non-preemptive versions of preemptive policies, treated
in Section 3.4. These almost time independent priority assignments are characterized by a particular
state of the system at a time of priority increase, since an instance only starts to execute, i.e. a priority
changes, only if no instance with currently higher priority is pending. This is a difference with dual
priorities [4] where the promotion dates are fixed off-line at a certain time before the deadline. It is
also different from Round Robin (Section 3.3), where dates of priority change are related to the amount
of time the considered task has been running. This has an impact on the way response times bounds
can be derived.

The idea of priority promotion does not only apply to non-preemptive scheduling policies, but
also to critical sections. These are sections of the code of a task where a resource is needed in an
exclusive manner. Critical sections are usually protected by semaphores and managed according to a
protocol that ensures a correct functioning. An example is the Priority Ceiling Protocol [9] (PCP). In
Section 3.1.3 we show how the PCP can be obtained in our model by extending the notion of priority
promotion at execution beginning.

3.1.1 Priority functions with promotion at execution beginning (PPEB)

The promotion of the priority of an instance 73, occurs at its execution beginning By, ,,. The priority
before the promotion is denoted Py, and Qy,, afterwards:

ﬁk n ift < Bgn
F t = =) ’ 3.1

This function is chosen right-continuous, because it is useful for being piece-wise order preserving,
(2.30). We assume that initial priorities are different from each other

Pion# Py Vin # 7 (32)
and different of the priorities after promotion
Pon# Qij Vpm #7Tij (3.3)

=3 —
unless an instance does not change its priority, i.e. Py, = Q5 is allowed. The priorities are assumed
to increase after promotion

If ﬁkn - ﬁka then the order among instances of a task is FIFO.

With the priority increase at execution beginning, an instance 7; ; with initialy lower priority than
some other instance 7 ,, can get a higher priority and be executed while 7, is pending. This is
commonly called priority inversion in the literature.
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Would we like to define a PPEB scheduling policy, we can not use (3.1) alone because it does not
specify a unique priority function. More than one I'y ,(¢) may satisfy this equation with a corresponding
scheduled task process that satisfies all required assumption. To see this, let us consider an example
of two instances 73 ¢ and 7; 0 with parameters:

Peo=5 Qro=2 Agog=1 Cio=2
Po=4 Qio=3 Aip=0 Cjp=3.

For T'; o(t) there is only one solution possible, because no other instance is pending when 7; ¢ is activated
and therefore necessarily B; o = A; ¢, to satisfy the non-idling assumption. As a result I'; o(¢) = 3, for
t > 0. For I'; o(t) on the other hand, the following solutions are possible:

(5 ift<3 L[5 ift<2
Tro(t) = { 2 ift>3 Pho(®) { 2 ift>2.
The corresponding scheduling functions are shown in Figure 2.
I o (¢) I, o (¢)
Ik,0(t) e — Ik,0(t) C —
0 1 2 3 4 5 0 1 2 3 4 5

Figure 2: Two different execution beginnings.

In the first case, Byo = FE;o = 3, which corresponds to a non-preemptive behavior, since 73
starts to run only after 7; o has completed. In the the second case, B/Ic,O = 2, because 2 = min{t >
Apo | Mg o(t) = 1}, recall (2.20) on page 9. Notice that this is consistent with the HPF rule, since
[ 0(2) =2 = 3=T,;0(2). Furthermore, B} , = 2 satisfies the characteristic property

Wi, .(2(27) =0

of execution beginnings, see (2.41) on page 17. The reason is that Hy »(2) = @, because the priority of
Tk,0 18 increased at t = 2. However, W; o(27) > 0.
To achieve that only the first case is a solution, we need an additional rule. We impose that

WHk,n(B;’n)(Blj,n) =0. (3.5)

It means that none of the instances that has a priority higher than Py ,, must be pending at the
execution beginning of 74 ,. Since Hi . (27) = {70}, and W;o(2%) > 0, 1";70(.) does not satisfy (3.5)
and is not a solution.

Proposition 3.1 Equation (3.1) admits at most one solution that satisfies (3.5).

Proof: Suppose there were two different solutions I'y, ,,(.) and I, . (.) with By, ,, < By ,,. According to (3.5),
there is no pending or just activated instance 7; ; with T'; ;(Bg ) > P ,. Since activation times have no
points of accumulation, an instance with a higher priority may only be activated after By, ,, with some strictly
positive delay. Furthermore, the right-continuity of priority functions implies that another pending instance
73,5 With T'; ;(Bg.n) < Pg,n may only change its priority strictly after By, ,,. Thus, B} ,, > By, means either
a violation of the non-idling assumption of the HPF rule. B ,

The existence of a solution is proven by Theorem 3.15 on page 41. Notice that because of Proposi-
tion 3.1, a PPEB priority function Ty ,(.) is exactly specified by the two parameters Py, and Q. n-
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Definition 3.2 A set of instances with priority functions of the form (3.1) and satisfying (3.2), (3.3),
(3.4) and so that the scheduled task process satisfies (3.5), are said to have priorities with promotion
at execution beginning (PPEB).

Basic properties of PPEB Under PPEB, the priority order among instances changes during time.
However, we will see in this section that from the point of view of a pending instance, the sets of
instances with higher, resp. lower priority change only once, at its execution beginning. As a result,
response times consist in two parts which have to be computed one after the other. The two parts are
separated by the execution beginning:

By = min{t > A, | Wy, (t") =0},

as given by (2.41). For t < By, i.e. while I'y,(t) = ﬁk,n, the set Hj »(t) contains among other
instances, those having a higher initial priority than 7y ,:

P ={7ij| Pij > Pin}- (3.6)
We will see that for PPEB it is convenient to define an interference period based on Py ,:

Definition 3.3 The time Uy, satisfying
Uk,n < Ak,n, ka,n(Uk:n) =0 and ka,n (t) >0 Vit E]Uk,naAk,n] (37)

is called beginning of the interference period [Uy n, Ey .| associated with the nth instance of task Tk, In
the case of priority promotion at execution beginning.

Since Pr,n C Hin(t), this definition implies that WHk,n(t)(t) > 0, for t € [Ug,n, Ak,n[- Using Proposi-
tion A.3, it can therefore be proven that

Byn = min{t > Uy, | WHk (D) ( ) =0}. (3.8)

The set Hj,(t) may contain also other instances than those in Py,,. If for t € [Ug,, Brnl, 7i; €
Hin(t) \ Py, then 7;; has a lower initial priority than 7y p: 13” < ﬁk,n- It induces that 7; ; must
start its execution before Uy ,:

Ai;j < Bijj < Ugn- (3.9)

To prove this, suppose we had B; i 2> Upp. At any t € [Ug g, Bin[, there is a pending instance 7y j
with Ly j i (t) > P ,,. Since B] < Pk oy Til ! € H,]( ). Thus, WHi,j(t)(t) >0, forall t € [Uk,mBk,n[- It
implies that WHi,j(t )( ) >0, forall t € [Uk,mBk,n[ i.e. Bi’j g]Uk,n;Bk,n[- But then, Fiyj(t) = F’i,j for
t E]Uk,naBk,n[; i.e. Ti,j ¢ ijn(t).

It implies that 7;; is part of

dﬁf {TZ,] & Pr n ‘ T ](Uk n) > Pk n} (3.10)

Thus, the set of higher priority instances is time independent during [Uy ., Bk |:
Hk,n(t) — Pk,n U Bk,na t € [Uk,na Bk,n[ (311)

We turn now to the interval [Byn,Egn,[. At the execution beginning By ,,, the priority of 73, is
increased and thus Hy ,(t) changes. It contains those instances that always have a higher priority than

Tk

def
= {7 |P,J >~ Qk nt- (3.12)
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If 7i; € Hin(t) \ Qim, then T;;(t) = Gij > Qg For a similar reason as before 7;; must have
started its execution before 73 ,, has started to execute: A;; < By ,. Since WHk,n(Bk,n)(Bk:n) =0, also
W; j(Bkn) =0, ie. E;; < By, since 7; ; is not activated after By ,. It means that My ,(¢) contains
other instances than those in Qy ,, but their workload is zero throughout By, Ej ,[. Therefore,

WHk,n(t) (t) = WQk,n(t) and ]‘_‘[Qk,n(t) + Hk’n(t) =1, te [Bk,mEk,n[- (3.13)

We introduce furthermore the set of instances that move from Hy, ,(t) to Li n(t) at By ,, to which
we add the instance itself:

Mk,n déf {Tk:,n} U Pk,n \ ka,n- (314)

Proposition 3.4 The execution beginning of an instance with PPEB priority function, if considered
relatively to the beginning of the interference period given by Definition 3.3, is:

By = min{t 2 Ug | Wg, . (Urn) + Sp, . Uk, t1) + Uk =t 1. (3.15)
The set By, contains at most one pending instance at Uy ,:
#{7ij € B | Wi j(Urn) > 0} < 1. (3.16)
Given the execution beginning, the execution end is
By = min{t > U | Wa, . (Ukn) + Sm,.. Uk s Bewn) + Sy, (Uk s t) + Uk = t}- (3.17)
Proof:

® (3.15): Recall equation (3.8). Since t € [Ukn, Bi,nl, Wiy, ,(1)(t) > 0, the basic property (2.37) on
page 16 implies with (3.11) that IIy, (t) = IIp, ,(t) + 15, ,(t) = 1. We want to transform (3.8)
into (3.15) with the help of Proposition A.5:
ft)+x = Wp... (t) + Was... (t)

= Wa,..(Ukn) + S8y, (Ukns t1) + W, (Ukn) + Sp,. . (Ukns t7) = (t — Ur )

def ;
< Wa,., (Ukn) + Sp,.. (Ukn, t7) = f(1).

The second line is obtained using

Wiyj(t;—) = Wiyj(tl) + Siyj(tl,t;) f2 Hi,j(x)daz, (3.18)

- JE
which immediately follows from (2.14) and (2.15) on page 9. The third using:

— by Definition 3.3, ka,n (Uk,n) =0,
— for t1 = Uy, (3.9) implies SBk’n(Uk,n,tJ“) =0 and
- t> Uk,n-

As a result f(.) and f(.) satisfy (A.9). Since f(Bgn) = f(Bkn) = 0, also (A.10) holds. Thus, by
Proposition A.5, (3.15) is proven.

® (3.16): Assume there where two instances 7, ; # 7y ji € By, with positive workload at Uy ,. As
explained in (3.9), both have started before Uy, ,,. Since two instances can not start at the same time,
let 7; ; be the one starting first, i.e. B; j < By jt < U ,. Then

Lij(Birj) = Qij = Pen = Py j
implying 7; ; € Hy j1(By j). But because also W; ;(By ;1) > 0, we have a contradiction.

INRIA



Non-r'reemption, Critical Sections ana Lound 1ooin

e (3.17): Since Ey,, > By, we can rewrite (2.38) as
Ek,n = min{t > Bk,n | Wk’n(t) + WHk,n(t) (t) = 0}.

According to (3.13) and with W; j(t2) = W, ;(t1) + S; j(t1,t2) — fttf II; j(x)dx derived from (2.14),
we have

Win(t) + Wiy, 6y (t) =Win(t) + Wo, ()
=Win(Brn) + Wa, . (Brn) + Skn(Brn, t) + S, . (Bkn, t)
— J5,. Mea(@)de — [ T, (2)de.

Thus, the execution end formula can be transformed into
Ek,n = min{t > Bk,n | Wk,n(Bk,n) + WQk,n(Bkyn) + SQk,n (Bk,mt) + Bk:,n = t}.

Since Qg C Myn(Bg,n), and WHk,n(Bk,n)(Bk,n) = 0, we have Wq, (Bn) = 0. Furthermore,
Win(Bkn) = Cin. Thus

Ek,n = min{t > Bk,n | Ck:,n + SQk,n (Bkjn,t) + Bk,n = t}. (3.19)

Then, we extend the domain of ¢ by [Uy », Bk »[ using Proposition A.3. For t = By, ,, (3.15) implies
By = Wa, ,(Ugn) + Spi. ., Uk, B,‘:n) + Uy - We notice first that actually no instance from Py ,
can be activated at By . This follows from (3.8), since Py, C Hj . Thus, the function f(.), for
the application of Proposition A.3 is
f(t) = Crn+ So,.,.(Bkn,t) + B
= W, (Ukn) + So . (Bins t) + Crn + Sp . (Ukyny Brn) + Ugpn

and using (3.14) it it can be transformed to

=W, ..(Ukn) + So, . (Brns t) + Smy. . (Uk,ns Bron) + Soy,.. (Uk.ns B,jm) + Uk
= Wh,... (Ukn) + Sm,,,. (Ukns Brg) + Sy, (Ukns 1) + Ukn
=g
The function g is also defined for ¢t € [Uy ,,, By [ where
9(t) = Wp, . (Ukn) + Sp,.,. Uk, t) + U > 0,
by the definition of By, ,,. Thus condition (A.4) holds and the proposition applies, which implies (3.17).

[ |

A time independent priority function can be seen as PPEB priority function with ﬁk,n = ék,n =T'%.»(0).
In the case where it is scheduled together with tasks that have PPEB priority functions, its execution
time is given by a simplified version of (3.17):

Corollary 3.5 The execution end of an instance with time independent priority function scheduled
among tasks with PPEB priority functions is given by

Ek,n = min{t > Uk,n | WBk‘n(Ukz,n) + Ck,n + Spk‘n (Ukﬂ, t) + Uk,n = t}. (320)

Proof: Reconsider (3.17). If Qk,n = ﬁk,n then Qi , = Pin and thus My, = {74, }. It implies that
SMk,n(Uk,TL)B]_:’n) = Ck,n- |
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3.1.2 Function of demand for a resource

The major resource needed by a task is the processing unit. Scheduling is in a first place concerned
with sharing this resource among tasks. But tasks may also need other resources, implying additional
constraints that can have an impact on the scheduling policy. In this section we introduce an indicator
function that tells how a task needs a certain resource. It allows in particular to express that a resource
is mon-preemptable.

An instance may use resources during the time interval that ranges from its execution beginning
until its execution end. The exact location and duration of the sub-intervals where a resource is used
depends on one hand on the parts of the execution time Cj,,,, (i.e. the sections of the code) that need
the resource. On the other hand, it depends on the time periods where the instance is actually allowed
to execute. The second cause is a result of the global scheduling policy, whereas the first only depends
on the characteristics of the task. For this reason we will represent the two causes separately.

Let Z!' (c) be a left-continuous indicator function, that tells if the resource ¢y is required when
the instance has been executed for ¢ units of time. Figure 3 shows examples of an instance using

3.7, — sz, —
2-Z% _— 2-Z% _—
L S 123,
Ck,n Ck:,n
(a) Not properly nested (b) Properly nested

Figure 3: Indicator functions of critical sections.

three resources. To simplify the analysis it is commonly assumed that the critical sections, i.e. the
periods where an instance needs a certain resource, are properly nested [9]. This property says that
the corresponding resources are either not used at the same time or one is only used while the other
one is used: V¢ € [0,Crnl, 2n, 2n

Zh(e)-Zl(c)=0 or Z!()=1= ZF (=1 or ZI.(c)=1= Z! (c)=1 (3.21)

In Figure 3.a, critical sections are not properly nested. However they can easily be transformed by
expansion such as to satisfy this assumption (Figure 3.b). Such transformations imply conservative
response time bounds, and are therefore acceptable.

To be able to derive response time bounds it will be necessary to know the maximal length of a
period where a task requires a resource, i.e. the maximal length of a critical section:

Zp =max{z|3n, co F Z,’cl,n(c) =1, Vc€lc,co+ 2} (3.22)

Recall that fg’ Iy »(x)dz is the amount of time the instance 7y, was allowed to run until ¢. Given
the indicator functions Z,?an(.), the expression Z,’j’n(fg g n(x)dx) tells if at time t, 7y ,, needs (. We do
not say that it uses the resource, because even while 73 ,, is preempted, i.e. IIj ,(t) = 0, the expression
remains unchanged, that is equal to one if 7 , was interrupted while using (.

Suppose that after ¢ units of execution, an instance 7y, is about to start a critical section corre-
sponding to (5. The assumed left-continuity of Z,i‘yn(.), implies that Z,’;yn(c) = 0, meaning that the
resource is not yet locked. However, Z,’;}n(cJ“) = 1, meaning that it is immediately locked when the
instance continues to execute. Thus, the right-continuous version Zﬁn(."') tells if 7 , needs or is about
to need (.
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Definition 3.6 A left-continuous indicator function, Z}', (.) satistying Z}, (c) = 0 for ¢ & [0, Cy.,.[ is
called indicator of need for a resource (;, by the instance 7. The right-continuous version Z ,’C’n(+)
is called indicator of imminent need for resource (.

The assumption that a resource (;, is non-preemptable can be stated as:

> 2 (fy Miw(z)dz) € {0,1}. (3.23)

neNk=1..m

3.1.3 Priority Ceiling Protocol

In this section we show how the principle that is underlying the static and dynamic versions of the
priority ceiling protocol [9] (PCP) can be formalized in a general way. The aim is to facilitate extensions
to policies other than FPP and EDF for which the PCP has initialy been designed. In Section 3.3.2
we will apply the priority ceiling principle to Round Robin.

The priority ceiling principle By definition, a non-preemptable resource can not be used while
some other task has started to use it but has not yet finished. A typical example is a shared memory
zone which serves as communication channel between tasks. While a task is writing into the memory
zone it must not be interrupted because otherwise the memory zone might be in an inconsistent state
when it is read by the preempting task. The consequences may endanger the integritiy of the system.
Under non-preemptive policies, the constraints imposed by (3.23) is automatically satisfied because
once an instance 7, has started, it executes without interruption. Under preemptive scheduling
policies on the other hand, it is necessary to guarantee the safe access to critical resources. Semaphores
can keep track of the state of a resource. If an instance 7; ; wants to use a resource, it first has to ask
the semaphore if the resource is free. If the resource is in use, then the instance has to wait until the
resource is available again.

Semaphores may have an effect on the scheduling policy. Under FPP they induce priority in-
versions [9]. Consider for example a non-preemptable resource and three tasks 75,7 and 77, to be
scheduled according to FPP. Suppose 75 has the highest and 77 the lowest priority among them. Let
at some time, an instance 77, enter a critical section and lock the resource. Suppose that before
T7,» Teleases the semaphore, an instance 75 ; is activated and needs the resource too. It has a higher
priority than 77, but it is blocked by the semaphore. Thus 77, can continue to execute. This is
a contradiction with the intended priority order and referred to as priority inversion. Furthermore,
while 75 ; is blocked by 77,, instances of 76 can preempt 75 ,, by preempting the critical section of
T7n- Thus, priority inversions can increase the response time of 75 ;. It can even lead to a deadlock,
see Section 3.1.4.

A solution for these problems is the Priority Ceiling Protocol [9]. Notice that while the higher
priority instance 75 ; is blocked by 77, its priority is de facto decreased below the priority of 77 .
Instead, one could increase the priority of the blocking instance 77, to some level above the priority
of 754, that is, one could use some kind of priority promotion. The access to the resource would still
be protected against preemption as required, but instances of 76 would not be able to preempt 77,
anymore. This is the basis of the priority ceiling protocol. Its advantages are shorter periods of priority
inversion and deadlock avoidance.

Under FPP, the priority of 77 is increased to the priority ceiling associated with the semaphore
that guards the resource. The priority ceiling is the highest priority of all tasks that may lock the
resource. Recall that in our model, priorities are assigned to instances and not to tasks as in [9]. Here
the ceiling must be a priority higher than the priority of all instances that need the resource. In our
example, we could choose Q" = (5), since (5) > (5,n), ¥ n, according to convention (2.27) on page 13.

Chen and Lin [2] have extended the PCP for EDF. It is called dynamic PCP, because in that case
ceilings must be time dependent in order to obtain the desired properties. If an instance enters a
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critical section its deadline is shortened to a deadline that ensures that any other instance, needing
the same resource and being released later, has a longer deadline. A ceiling is a deadline depending on
the release time of the instance which enters the critical section.

From the static and the dynamic PCP arises a general principle which can be stated in a more
general way as:

Definition 3.7 (Priority Ceiling Principle) When an instance of a task enters a critical section,
its priority must be promoted to a level, called priority ceiling, that is above the priorities of any other
instance, that will need the same resource in the future. Finally, the priority is decreased to the normal
level as soon as the critical section ends.

For applying the principle to other policies, we express it in terms of the concepts of our model.
For this purpose, let I'y ,,(.) be the priority function corresponding to the policy which is modified by
the PCP. We suppose that I'; ,,(.) can only change its value when 7y, ,, is executed:

Hk,n(t) = 07 = fk:,n(t_) = sz,n(t)- (324)

Recall that priority functions are right-continuous.

The possibly time dependent priority ceiling associated with the resource (;, will be denoted Qh()
To be compliant with the principle, the ceiling must be such that if an instance 7, that needs the
resource (p, is released after ¢, then its priority must be majorized by the value of the ceiling Qh() at
t:

Vo B t<Apn, ek Z0(c)=1 = Q" (t) = Tru(z) V> A, (3.25)

This property ensures that if the priority of an instance is set to Qh (t) at t, then it will not be preempted
by an instance that will need the same resource (.

It can be noticed that (3.25) specifies only a lower bound for the priority ceiling, which means some
freedom of choice. The case where ceilings are higher than any basic priority:

Q"(t) = Trn(t) Yk, n,t,

is called basic priority ceiling protocol. In the example above a basic priority ceiling is Q"(t) = (0).
Suppose now furthermore that the tasks 71,79, ... ,74 do not require (. The basic ceiling induces that
an instance can not be preempted during a critical section and therefore instances of 71,... ,74 may
be blocked. But this blocking and thus longer response times is not necessary since Qh = (5) is also a
valid ceiling and does not induce blocking of the tasks 7y,... ,74.

The question is then how to exactly define the priority functions of the instances. It can be noticed
that an instance can only enter a critical section when it is allowed to execute, i.e. if it is currently the
one with the highest priority. As it enters the critical section, its priority is immediately increased to
the ceiling. This behavior is similar to PPEB, but here it concerns beginnings of critical sections. Since
critical sections may be nested, a critical section may start during an ongoing other critical section.
Thus, the priority is not necessarily constant in a critical section. To handle this situation, we will
break instances into sub-instances at every beginning or end of a critical section. In other words a
sub-instance is defined by a fixed set of required resources. A critical section appears then as a sequence
of several adjacent sub-instances, see Figure 3.1.3 below. In terms of the indicator functions Z,’C‘ 2 (),
the execution times of the sub-instances can be defined by 7

Crmys = min{c > Crpo.s—1 | I B E 22 (cT) # Z7 ()},

where Cy n0.s = ijo Cion,j» with C , _1 = 0, to simplify the notations. The activation time of the
first sub-instance is Ay, 0 = Akn. In general, an instance completes its execution when it has been
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running for a time equal to its execution time. Since furthermore a sub-instance is ready for execution
as soon as the previous one has finished, we define the activation times and execution ends by:

Bips=min{t > Agpo| [3  Tp(x)de = Cip s}
Ak:,n,s :Ek,n,sfl-

With each sub-instance we associate a priority function I'y, ,, ; of PPEB type, which will be concatenated
to obtain the priority function of the instance. Each beginning of sub-instance is due to the beginning
or the end of a critical section. However the instance 7, may be needing other resource before and
after the beginning of the sub-instance. Thus, the parameters 13;67”,3 and Q'k,n’s of the PPEB priority
functions of a sub-instance 73, , must on one hand account for the ceiling of the critical section that
begins, and on the other hand, it must be higher than the ceilings of the resource that continues to be
used.

Binys = mjx({fk,n(AIZn,s)} U{Q"(Akn) | 3 Ch b ZEn(Crmps-1) = Zn(Ch g 1) = 1})  (3.26)
Qkoms = max ({Thn(A,, )} U {Q"(Akn) |36 b 28 (CF 1) = 1)) (3.27)

The priority function of the initial instance is defined by
Lin(t) =Trns(t) for Bpps1 <t < Eppg, (3.28)

with Ek:,n,—l = —0Q.

Example Consider the example of a set consisting in five tasks with three non-preemptable resources,
see Figure 3.1.3. Suppose the scheduling policy is FPP with 71 having the highest priority: Ty ,(t) =
(k,n). Let us determine the priority ceiling for (1. At any time, the instances with the highest priority
among the instances that need resource ¢; belong to 4. With Q'(t) = (4), (3.25) is satisfied and the
ceiling is just as high as necessary, since it is below the priorities of the instances of 73, 79, 71. Thus we
choose

A= Cw=1 Q=0

Suppose that 75 needs the three resources as shown in Figure 3.1.3. Notice the execution times of the
resulting sub-instances.

task | resource ;
3-Zs
T1 G2 >
2-7Z¢,
= 1.2¢
T3 C27 C3 5,n 1 1 1 | |
T4 Cl ! ! T T t b
Cs,n,0 Cs,n1 $ Cs.n.2 Csns 4\
75 Cla CQa C3 s 3T M, M,
T6 <3 C5,n,0..1 C5,n

Figure 4: Sub-instances due to critical sections.

The parameters of their PPEB priority functions are, according to (3.26) and (3.27):
Asno | Asmi | Asn2 | Asns | Asna

Psns | 5m) | (Bm) | (4) | (4) | (5:m)
Qs,n,s (5,m) (1) (4) (3) (5,m)

RR n° 3678



Jorn Martin Migge, Alain Jean-Marie

For example, when 7,1 is activated, the instance does not yet use any resource. Thus, ﬁk,n,l =
fk,n(t) = (5,n). On the other hand (; and (2 are needed for the execution of 74 1. Thus, Qk,n,1 =
max((5, n), (4), (1)) :

Notice that the sub-instance 75,2 actually has a constant priority function since it continues to
need a resource which has already been locked by the instance.

Remark 3.8 In the particular case where the processing unit is considered as (unique) non-preemptive
resource, an instance is a critical section from its beginning to its end. There is then only one sub-
instance with By, ,, 0 = By, and Ey , o = Ey 5. This leads to the definition of non-preemptive scheduling
policies, see Section 3.4.

Properties The purpose of PCP priority functions is twofold. They are designed to guarantee the
non-preemptive use of resources (3.23) and to avoid deadlocks. In this section we prove (3.23) and
some properties which are useful when deriving response time bounds. In the framework of our model,
deadlock avoidance is a direct consequence of the proof of existence of the scheduled task process
(A,C, D,II), see Section 3.1.4 for further explanations.

Proposition 3.9 Resources are used non-preemptively (3.23) if the tasks that need these resources
have priority functions of the form (3.28), based on priority ceiling functions that satisfy (3.25).

Proof: We proceed by contradiction. Suppose there is a time ¢, where two different instances 7y ,, # 7 ;
are using the same resource (j:

Zp o0 My n(@)dz) = Z5(fy° i j(2)dz) = 1.

Let By, s and B; ; o be respectively the execution beginnings of the sub-instances where the instances have
started to used the resource:

By n,s = max{u < tg | Z,’Cl’n(fou Oy n(z)dz) = 0} B, j ¢ = max{u < ty | foj(fou I; j(x)dz) = 0}.

An instance can only start to use a resource at some time if it is executed at that time. Thus IIj »(Bj ) = 1
and II; ;(B; j,s) = 1. The exclusive use condition (2.24) on page 12 implies By, s # Bi . Suppose
Bins < B;j . Because B; ; o < tg and Ty, is pending during [By s, to[, Tk,n is pending at B; ; »». Now,
two cases arise:

o A;; €|Bi s Bijs[: Onone hand, 73, is using (j, at A; ;. Thus
Ten(Aig) = Thns(Aig) = Qrms(Aig) = Q"(Agn)-

On the other hand, the priority ceiling principle implies Q‘h(Akm) =T j(x), for x > A, see (3.25)
on page 26. Thus, T'y,,(A; ;) = T ;(A;;) and therefore 7 , € H; j(A; ), i.e. 7;; can not start to
execute. A PCP priority function (3.28) does not change if the instance is not executed. Thus, I'; ;()
remains unchanged, i.e. II; ;(t) = 0 for ¢t € [A; ;,o], which is a contradiction.

. Ai,j < Bk,n,s: Since sz,n(Bk:,n,s) =1, Fi,j(Bk,n,s) < Fk,n(Bk:,n,s)- Thus, Ti,j has again a lower
priority and keeps it until after ¢y which implies again II; ;(¢9) = 0.

If the PCP is added to a policy, preemption from usually lower priority instances appears. It can
easily be seen that during an interval where the priority of an instance 7, is higher than its basic
priority without interruption, it uses the processor for at most the length of a critical section:

Tij(t) = Tij(t), Vteltts] = 3¢ b [P (z)de < Z (3.29)
For the derivation of response time bounds, a more precise property can be obtained, based on the

fact that the instance under study is pending.
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Proposition 3.10 Consider a set of tasks with PCP priority functions. Suppose an instance Ty , is
pending during an interval [t1,t;], where its priority function is Ty ,,(t) = Ty »(t) and constant. If there
is another instance 7; j with T'; j(t1) = Tk n(t1) = i ;(t1), then at ¢, 7;; is using a resource (, with a
priority ceiling higher than the priority of Ty, ,:

Ihr Zh () j(a)ds) = 1, and  QMAij) > Trn(ty). (3.30)

In [t1,ty] the instance 7;; uses the processor during a period which is limited by its longest critical
section for (p:

ft2 H,-,j(:z;)dx < Zh

11 7

Proof: Since priority functions are assumed to be of PCP type, they satisfy (3.28) based on (3.26) and (3.27)
and ceilings that satisfy (3.25). Thus, T j(t1) > Tkn(t1) = i ;(t1), implies that there is a resource
Ch used by 7;; with Z{fj( (fl IL; j(x)dz) = 1. The instance 7; ; may be using several resources with
Qh(Ai,j) > Tk.n(t1), i.e. may be executing several nested critical sections at ¢;. But since critical sections
are supposed to be properly nested (3.21), there is a longest section among them which ends after all others
at E; ;, for some s € N. Recall that fkyn(t) is supposed to be constant during [t1,t2]. Because after
E; js, Tij does not use any resource with a ceiling higher than T (1), the priority of 7; ; drops at E; j
below the priority of Tkt Fz’,j(Ei,j,s) < fk,n(Ei,j,s) = Fk,n(Ei,j,s)- As a result Tkn € Hi,j(Ei,j,s) and thus
B, js+1 = to, implying that II; ;(¢) = 0 for t € [E; j 5, t2]. Therefore
iy E; ;s
f Hi’j(.’L‘)dl‘Z ft1 > Hi,j(l‘)d.@.

t1

The instance 7; ; has been running for fgl II; j(x)dx units of time at the beginning of the interval and for

fOEi’j’s II; j(x)dz units of time at its end. For any amount ¢ between these two values, the indicator function
Z}; must is equal to one, according to (3.30):

celfy! Wj(z)de, [ Wij(z)da = Zl(c) =1
Thus, the definition of the longest critical section (3.22) on page 24 implies
fot2 1L j(z)dz — Otl IL j(z)dz < Zh
|

Notice that the interval [t1,t2] may be longer than Zh because the task may be preempted while
keeping the lock on the resource.

Response times Under the PCP, the priority function of an instance 73, increases and decreases
depending on the priorities of the sub-instances. An exact formula of the execution end depends
therefore on the exact lengths of its sub-instances, i.e. the exact lengths and positions of the critical
sections. Aside from the required detailed knowledge about the critical sections, the execution end
formula is also likely to become quite complex. On the other hand, the aim of the PCP is not to
ensure the feasibility of tasks; the priority of an instance without critical sections is not promoted.
We therefore propose to derive a bound based on Proposition 2.18 on page 17 by ignoring the priority
increases, i.e. by using the basic priority function Ty ,(t), which is a lower bound:

Fk’n(t) - fk’n(t).

According to Proposition 2.18, it implies response time bounds larger than the actual maximum, but
this is only the case if a task always ends with a critical section. If an instance does not end with a
critical section, then the bound is equal to its actual execution end.
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Recall equation (2.38) on page 16 for the execution end of an instance. We assume that the priority
function which we use for the task under study is time independent: T ,(t) = I'x (0). The associated
set Hyn(t) of instances to be taken into account contains among other instances those with a larger
basic priority function:

Pen={mij |3t F Ti;(t) = Trn(0)}. (3.31)
As for PPEB, it is convenient to define an interference period based on Py :
Uk,n < Ak:,na ka,n (Uk,n) =0 and ka,n (t) >0 Vit G]Uk,na Ak,n]- (3.32)

With the help of Proposition (A.4), the execution end formula (2.40) on page 17 can be proven to be
equivalent to

Ek,n = mln{t > Uk,n | Clc,'n + ‘fék . Hﬂk,n(t) (.fL‘)d.’L‘ + Uk,'n = t}

Consider an instance 7;; € Hyn(t) \ Prn, at some time ¢ € [Ug,, Ex,[. The priority of ;; has
necessarily been increased to a level above I'; ,(0), at the execution beginning B;;, of some sub-
instance 7; j o:

Tij(t) = Qijs = Thn(0) = P, js.

We suppose that B; ;, is the latest such time before Uy ,, where the priority changes from below to
above I'y ,(0). Since during the interval [Uy n, Ek | there is always an instance with a priority higher
or equal to I'y »(0), 7; ; - must have started its execution before Uy 5, and therefore T'; ;(Uy ) = I'k,n(0).
Thus, with

Bin = A{7ij & Prn | Tij(Ukn) = Tkn(0)}, (3.33)
we have ﬁk,n(t) = Prn UBgp, for all t € [Ug pn, B n[.

Proposition 3.11 The execution end of instances with a time independent priority function scheduled
under the PCP is bounded above by

Eyp =min{t > Upp | Chm + Jy, T, (2)dz + Sp, Uk, t) + U =t} (3.34)
At most one instance of the set By, ,, is pending at Uy p:
#{7‘1'7]' € Bk,n | dt > Uk’n, = Wi,j(t) > 0} < 1. (3.35)

Proof: Since Hy, ,(t) = Pin U Bi.n, the integral in the execution end formula can be decomposed. The
term in Py, can be transformed as follows:

flt]k,n Hpk,n (x)dx = ka,n(Ukm) + Spk,n (Uk,na t) - ka,'n (t) < Spk,n(Uk,mt)a

since Wp,  (Uk,n) = 0, by the definition of Uy, and Wp,  (¢) > 0. In order to apply Proposition A.5, let

F(O) =Ckn + fp, g, o (@)dz

def 2
=Chn + fgk,n 5, (z)dz + Sp, Uk, t) = f(2).

We have f(t) < f(t), but f(Brpn) = fA(Ekyn) since Wp,  (Egn) = 0, see (2.39) on page 16. Thus,
Proposition A.5 implies (3.34).
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We prove now that at most one instance of By, is pending at Uy ,. In the preliminary discussion
above the proposition, we have seen that the priority of an instance 7; ; € By, is necessarily promoted
to a level Q‘m,s above fk,n(O) at the execution beginning B; ; ; of one of its sub-instances and this before
Ukn. Suppose W; j(Uk,n) > 0 and that there is a second instance 7/ ;» which is also pending at Uy ,,. This
second instance has been promoted at some Bj j» ;. Necessarily II; ;(B; ;) = 1 and Iy ji(Byr ji o) = 1,
but two instances can not execute at the same time, B; ;s # By js. Let us assume B;;, < By jr o.
Then, at By j» o, the priority of 7; ; has already been promoted to Q'm-,s ps Fk,n(o). On the other hand,
Fi',j’,s'(BiT,j’,s’) = f’ilyjlysl < fk,n(O). Thus 7;; has a higher priority than Ty i1 just before Byt ji g1, 1€
Tij € ’Hil’jl(Bi/,j/’sl), But then, since WTi,j,s (t) >0, fort € [Bi,j,s,Uk,n[, Hi’,j’(Bi’,j’,s’) = 0, which is a
contradiction. Thus, there can be only one pending instances from By ,, at Uy ,,. B

3.1.4 Deadlocks and proof of existence

It is known that if semaphores are used to protect non-preemptable resources without the use of an
appropriate protocol, then a deadlock may occur. An example is the following. Suppose the first
instances 719 and 799 of two different tasks need two different resources, as shown in Figure 5. The
instance 71 o needs first resource (; and then both, whereas the instance 75 of the other task needs

Z3o(c) E— Z30(c)
le,o(c) Z21,0(c)

Figure 5: Two instances needing the same two resources.

first resource (3 and then both. Suppose 710 has a higher priority than 799. If 75 is activated first
as shown in Figure 6, then it will be able to execute and to use (2 after 2 units of time. At Ay, it is
preempted by 719 which uses (1 after 2 units of time. But from ¢¢ on 71 ¢ also needs {2 which is locked
by 7,0. Then, only 799 can continue, but after 1 time unit, 7 ¢ does also need resource (1, which is
locked by 71,9. This is a deadlock situation, since both instances need a resource which is locked by
the other instance.

CQ """ — lock
a need
1

T2

¢ e
G _—

Ty () BN 20200 mm Deadlock
4 (1)

T1

0 .A.2 0 AI,O t() tl
Figure 6: Deadlock on non-preemptable resources.
In [9] (and [2]) it is proven that the (dynamic) PCP prevents such situations. In our model, this
is implied by the proof of existence of the scheduled task process (A, C, D,II), see Section 3.6. Stated
differently, if a scheduling policy (= priorities + semaphores) is such that a deadlock may occur, then

any attempt to prove the existence of (A4,C, D,II) fails. In the deadlock example, when at ¢y, 719
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stops running because it needs resource 1 which is locked by 73, then the priority of 71 ¢ is de facto
decreased below the priority of 79 ¢; recall the highest priority first paradigm. When at #3, 790 does
also need resource 1, which is locked by 71 ¢, then its priority decreases below the priority of 7. As
a result both instances should have a lower priority than the other one. This is a lack of decidability,
which makes the existence of (A4, C, D,II) impossible.

The above discussion illustrates the meaning of the proof of existence: it ensures that a scheduling
policy is indeed correctly realizable.

3.1.5 Locking periods

In this section, we derive a bound for the length of the periods of time during which a task locks a
non-preemptable resource.

Recall the introduction of sub-instances in Section 3.1.3. An interval where a task keeps a lock on
some resource (, begins with the execution beginning By, ,, ; of some sub-instance s and ends with the
execution end Ej , ¢ of some possibly different sub-instance s’ > s. Similarly to (2.40), we have

Ek:,n,s’ = mln{t > Bk,n,s Ok,n,s..s’ + f;k s H’Hk,n(:z) (.TE)d.’,E + Bk,n,s = t}

For t € [Bin,s, En,s], Tkn(t) = Qh(Ak7n), i.e. the priority of 7, is higher than or equal to the ceiling
associated with the used resource. It may be higher because of a nested critical section with a ceiling
higher than Qh(Ak,n). We therefore bound the priority function of 74, from below by Qh(Ak,n). The
majorizing set of higher priority instances H} ,,(x) D Hg n(z) is then

M, (@) = {7i5 | Tij(t) = Q"(Agn)}-
It contains among other instances those with an initial priority higher than the ceiling:
Q" = {ri;j ITi;(t) = Q"(Arn)}-

If ; ; € H . (z)\ Q" then its priority must have been promoted above Q" and this before By, ;. But
since WHZ (Bk,”)(Bk,n,s) = 0, 7;; must have completed before By, ,, i.e. it is not executed during

[Bk:,n,s; Ek,n,s’[- Therefore
Oon(z) + M n(t) =1 t € [Brn,s, Brnsl-
Thus, the execution end formula reduces to

Ek:,n,s’ = min{t > Bk,n,s | Ck,n,s..s’ + SQh(Bk,n,sat) + Bk,n,s = t}- (336)

3.2 Layered priorities

Consider a set of tasks scheduled according to the fixed preemptive priority assignment (FPP), i.e.
with priorities of the form I'y,(t) = (k,n). Two instances of the same task will be executed in the
first in first out order, since n < n' implies Ay, < Ay and (k,n) > (k’,n'). Suppose now, that for
the instances of the highest priority task 71, we would choose priorities of the form I'y ,,(¢) = (1, —n).
Then, the instance of 71 would be executed in the last in first out order, since (1,n) < (1,n'). However,
response time bounds for lower priority tasks would not change, since the instances of 71 would still
have a higher priority than the instance of some task 74, with & > 1. This shows a kind of layer
structure of the priorities, with each task being part of a layer. We can generalize this idea to layers
that may contain several tasks, with some particular policy such as FIFO, LIFO, EDF, FPP, their non-
preemptive versions or Round Robin (RR) inside of the layer and a global FPP policy for the layers.
We say that such policies are based on layered preemptive priorities. Note that the combination of
FPP and RR is a Posix 1003.1b compliant scheduling policy, which is an extra motivation for defining
and analyzing layered priorities.
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3.2.1 Layered preemptive priorities (LPP)

Suppose the set of tasks 7 = {71,... , 7} is subdivided into separate layers
A=A |my <k <y},

where 1 < my <m; < m and m; +1 = my; ;. Assume that pending instances in a layer \; are executed
as soon and as long as no instance in the higher priority layers A1,..., A1 are pending. This can be
realized by using for each instance 71, € A; the index [ of the layer to which it belongs as first priority
coordinate:

Ten(t) = (,...). (3.37)

Indeed, because the first coordinate is the most important, recall (2.27), 7% ,, has a lower priority than
any instance 7; ; in a higher priority layer: 7; ; € Ap with I’ < [.

Definition 3.12 A priority assignment is said to be based on Layered Preemptive Priorities if it is
equivalent (in the sense of Definition 2.16) to an assignment of the form (3.37).

Notice that with I'} ,,(t) = (0,T'x »(?)), any priority assignment can be seen as an LPP assignment
with a unique layer. A more interesting case is a set of task with FPP assignment, i.e.

Lin(t) = (k,n).

It satisfies Definition 3.12 with [ = k, that is with each task contained in a separate layer with FIFO.
Usually, one chooses for each layer a particular scheduling policy which specifies the lower order
priority coordinates, as for example:

FPP: Ty »(t) = (I, k,n) EDF: Ty »(t) = (I, Di ., k,n)
LIFO: Ty, () = (I, —Apn, k, —n) FIFO: Tpn(t) = (I, g, k, )

but also Round Robin, see Section 3.3.

3.2.2 Priority promotion and ceilings under layered priorities

In this section we will apply the Priority Ceiling Principle, see Section 3.1.3 to layered priorities. In
order to be compatible with the overall priority structure, a ceiling must be of the form

-

Q"(t)=(,...). (3.38)

The priority function that is associated with a resource depends on the policy in the layer \; that
contains the instances 73, with the highest priority among the instances that can use ¢} after t.

Suppose this layer is scheduled according to FPP. Then, there is a highest priority task that needs
the resource. Let this task be 7, and let 73, be its next instance to be released after ¢. It is at ¢, the
highest priority instance among the instances that will need (j in the future after ¢. We could therefore
chose (I, k,n — 1) as priority ceiling. However, since earlier instances of 74 have already completed at
t it is equivalent to take

Q"t) = (Lk) = (I, k,n), (3.39)

which is preferable because it only depends on k.

Suppose now that, the layer is scheduled according to EDF. Notice that several tasks of the layer
may need the resource. At any time, the highest priority instance among the instances that will need
(p in the future after ¢, is the one with the shortest absolute deadline among the instances that will
need the resource. Since we can assume that the release times in the future after ¢ are known, we use
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the earliest possible absolute deadline, which can be obtained from the relative deadlines of the task
that need the resource:

Q"(t) = (I,t + min{D;; | mi; € N, e F ZI(c) = 1}). (3.40)

If the policy of the layer is LIFO, then at some time ¢, the instances that need the resource in the
future all have a higher priority than the instance to be promoted at t. We must therefore choose their
supremum as ceiling

Gh(t) = (). (3.41)

For a set of tasks scheduled under LIFO, this means that during a critical section an instance becomes
non-preemptable, under PCP.

Consider the case of a layer scheduled according to FIFO. Notice that FIFO is a non-preemptive
policy, i.e. once the execution of an instance has started it can not be interrupted by instances of the
layer. In other words the PCP is not needed for a set of task under FIFO. In the context of layered
priorities, a ceiling is however needed in the case where the FIFO layer contains the highest priority
instances that need the considered resource. We could choose (I,t) which would be the priority of an
instance released at t. But since at the time of promotion no instance of the layer is pending, i.e. all
instance released in the past have already completed, it is equivalent to chose

QMt) = (1), (3.42)

which is simpler.

3.3 Round Robin (RR)

The underlying idea of the Round Robin policy is to reserve for each task a certain rate of the available
processor capacity by recurrently permitting each task to execute during a certain time span. This is
not a typical real-time policy, but if response time bounds can be computed, a feasibility test can be
performed. Furthermore, if tasks are also feasible under an other policy than the optimal ones, the
alternative policy can be chosen in order to satisfy additional properties (regularity of service, fairness,
etc). It is interesting to notice that under LPP, alternative choices in one layer have no effect on the
response times in other layers.

The aim of this section is to define in our model the Round Robin scheduling policy in a layer
under LPP and to give reasons for using Round Robin.

3.3.1 Definition

First we will give an informal description of the Round Robin scheduling policy that we wish to define
by a priority assignment. To begin with, suppose it is the highest priority layer Ay = {71, 72,... , T, }
which is to be scheduled according to the Round Robin policy. The scheduler works in Round Robin
cycles during which all tasks are inspected, in the order 71, 7,... ,7m,. A task which is found to have
pending instances, is allowed to run for at most ¥y units of time, otherwise nothing is done and the
next task is considered.

More precisely, suppose 73 is checked at some time ¢, and found to have a pending instance 7y .
This instance is then executed for at most Uy units of time. If Wy ,(t) < Wy, then 74, does use less
than the allowed maximum W,. If the following instance is not yet pending, the scheduler passes on
to Ti4+1. But if the following instance 74,41 is pending, the scheduler continues with 73,41 and any
other pending instance of the task as long as the maximum Wy is not reached.

As a result, each task gets repeatedly the opportunity to execute during an interval of ¥y units of

time. If 75, has pending instances then two such opportunities are separated by at most U/ = Zn exn Vi
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the maximal length of a RR cycle. The time between two opportunities may be shorter if the other
tasks did not used their respective ¥; time units.

If a lower priority layer A;, [ > 1, is scheduled according to Round Robin, then the preemption
from higher priority layers does suspend all the activities in the RR layer.

Having described the policy, we will now construct a priority assignment that implies the desired
behavior of the scheduler. Notice first that this policy can be represented by an exclusive-use priority
assignment since at each moment there is exactly one instance that is allowed to execute. Recall that
the scheduler works in cycles, during which all tasks are checked for pending instances. If a task
is found to have pending instances, it is allowed to run for at most ¥y units of time. This implies
that the execution of the currently running instance must be interrupted as soon as the quantum Uy
is exhausted, if other instances are pending. To achieve this under the HPF paradigm, the priority
function of the instance must be decreased at that moment. Furthermore, it must be allowed to
continue its execution in the following RR cycle. We will realize this by a priority function of the form:

def

Ten(t) & (1, Pn(t), k). (3.43)

The first component is the index of the RR layer. The second component is the index of the RR
cycle during which 7y, is allowed to execute. Recall that a larger component means a lower priority.
A smaller index means thus a higher priority. If at ¢ there are two pending instances 73, and 7; ;
with Py ,(t) < P;;(t), than 7, has a higher priority than 7; ;. In other words, 7%, will be executed
in an earlier RR cycle than 7; ;. If Py ,(t) = P;;(t), then the two instances will run in the same
RR cycle, in the order which is determined by the third and fourth component of the priority. We
will define Py ,(.) such that if during the execution of 7j,, the limit ¥} is reached at some time
to, then Py ,(to) = Pin(ty) + 1. Thus, the priority of 71, decreases because it is set from the
index of the current RR cycle to the index of the next. Instances of 7;4; are then allowed to run.
According to the interpretation given above, Py (A ) is the index of the RR cycle in which 73, will
start to execute. Since instances of the same task are executed in the FIFO order, Py ,(Ag,,) must
be the index of the cycle where 7 ,_; completes its execution or a later cycle, i.e. we must have
Pin(Akn) 2 Prn-1(Egpn1). If Wi n_1(Agn) > 0, then Py n(Agn) = Pin—1(Ekn—1) is appropriate,
so that 7, can start as soon a 73 ,—1 completes. If on the other hand 73,1 has completed before
Tk,n is released, then 73, should be allowed to run as soon as possible, i.e. in the current (at the time
A n) or the next RR cycle. Therefore, we need a function that keeps track of the current RR cycle:

min{Pk,n(t_) | drn, e N, neN F Wk’n(t) > 0} if Wy, (t)>0
P(t) = (3.44)
0 if Wy, (t)=0

It is defined as the smallest RR cycle index P ,(t) among the pending instances activated before ¢.
Notice that P(t) is left-continuous and depends only on the past before ¢, this will be important for
the proof of existence (Section 3.6) of the RR priority functions. Furthermore, P(t) is set to zero when
when no instance is pending.

The definition implies that when an instance is pending at some time ¢, its RR cycle index must
be larger or equal to P(t). Thus, if Py ,—1(Akn) < P(Agy) then the previous instance 74,1 has
completed when 7y ,, is released. In that case 73, should run in the current RR cycle P(A;m) unless
the RR scheduler has already checked 7, which is the case if the task index of the instance, currently
allowed to run, is larger than k. Thus we need a function that keeps track of that index:

min{k | dm, e, neN F Wk,n(t) >0, Pk,n(ti) = P(t)} if W)‘l(t) >0

K() = { -1 if Wy, (t) = 0. (345)

Now, if Py pn—1(Agn) < P(Agn), we can choose Py n(Akn) = P(Akn) + Tk« (4, to obtain the
desired behavior.
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If Pyp—1(Akn) = P(Ak,n) and K(Agy) > k, then 7,1 has already completed in the current cycle
and we must also choose Py (Akn) = P(Akn) + ]I[k<K(Ak'n)].

If Pppn_1(Akn) > P(Akn), then 7,1 has not yet completed and 7, should start to run in the
cycle where 73 ,,_1 completes or in the following if with the completion of 7,1, the limit ¥y, is reached.
Thus, we need to know Py ,,_1(Egn—1). For this purpose the last instance 73 ;, of the type discussed
above, activated before Ay, is required:

Upn = max{j < n| Pyj 1(Ag;) < P(Ag;) or Pyj 1(Ag;) = P(Agj), k < K(Agn)}- (3.46)

Then 74 ,—1 completes in or at the beginning of the cycle P(Ak,uk,n) + LCk,uk,n..n—l/\Iij- The reason

is that each of the instance 744, ,-.. ,Tkn—1 is released before the previous instance has completed
and thus the task can use all available quanta W, entirely which implies that for their execution
|Ck,uy ,,.n—1/¥r] entire RR cycles are required. On the other hand, after 73, has started to run its
priorit,y should be decreased as soon as the limit W, is again reached. This can be obtained with a
priority function of the form

Ck:,uk,n..n—l + f(; Hk,n(l')dl‘

Ppn(t) = T, + P(Aku ) + pck(Ag )1 (3.47)

Notice that with this formula Py ,,(t) = Py n(Akn) for t < Ag . The value of Py ,(t) is only needed
for t > Ag, to perform the scheduling, but defining Py ,,(.) this way is needed for the PCP and the
non-preemptive version of Round Robin.

Notice also that the priority can only change when 7% ,, is actually running and therefore preemption
form higher priority layers have the effect of suspending the Round Robin scheduler in the sense that
all related functions remain constant while an instance of a higher priority layer is executed.

Above we have given a motivation for each of the equations that define the Round Robin priority
functions that we want to consider. It must however be verified that the priority functions are well
defined, i.e. if such a schedule can be realized. It follows from Theorem 3.15 in Section 3.6, that
the functions P(.), K(.) and Py ,(.) are indeed well defined. Furthermore, it means that Py ,(.) is
right-continuous, because the resulting I'; ,,(.) are piecewise order preserving.

For the derivation of response time bounds, the following property is needed.

Proposition 3.13 The function P(.) is monotonically increasing when Wy, (.) is strictly positive. It is
furthermore a lower bound for the priority component P ,,(.) of any pending or just released instance:

Vte [Ak,n,Ek,n[3 Pk,n(t) > P(t) (348)

Proof: From the defining equation (3.47) it can be seen that Py ,(.) is monotonically increasing. As a
result, during an interval ]t;,t2[, where W, (¢t) > 0 and no instance is released, P(.) is monotonically
increasing since the set of instances that contribute to P(.) can only decrease - due to execution ends.
By (3.44), if Wy ,,(t) > 0, then P(t) < Py n(t7) < Py n(t), since furthermore Py ,,(.) is increasing.

A time ¢t where some instance is activated must be treated separately, because just after such a time,
the set of instance that determine P(.) increases; if t = Ay ,,, then Wy, ,(¢) = 0, and Wy, ,(¢7) > 0. First
we prove that

Pk,n(Ak,n) = P(Ak,n) (3'49)

Iif n = Uk s then Pk:,n(Ak,n) = P(Ak,n) + ]I[k:<K(Ak,n)] > P(Ak,n). If n #+ Uk s then Uk < M. Notice
first that

Uk n—1 = Ukn = Pyn1(Erpn) = Prpn(Akn)- (3.50)

We have to distinguish two cases:
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® Ay, = Ak then Wi, (t) =0 and (3.49) follows from (3.50).

® Ay, < Agpn: then there is an instance 7; with ug,, <j <mnand Ay ;1 < Agj;=Agji1=... =
Apn. The definition of uy,, implies that Wy ;_1(¢) > 0. Furthermore, by (3.50), Py j_1(Axn) >
P(Ag,) and thus with (3.50), (3.49) is induced.

It remains to prove that P(.) is increasing at the times where an instance is released. Since P(.) is left-
continuous, it means to prove that P(Akf’n) > P(Ag,n). Since there is an interval [Ay ,,, Ay + €[ of positive
length, where 7, ,, is pending and P} ,(.) remains constant, we have Py ,,(t) = Py (t7) > P(Ag)- Since,
P(t) > Peo(t) it implies P(t) > P(Ag,) for t € [Agn, Apy + €] and thus P(A] ) > P(Ay,,). B

Illustration of priority functions Figure 7 shows the functions P;,(.) and P(.) for a sample

U, =2, Uy=4,Cp=6,Chp=14, C1 =9

I, s 22 =L | 2=
T \ — — —
0  Asp A1 Az Esp Eip Es
P() ] .
Poo(.)]
AQ’O E2,0
Po(.)
A1 Eip
Pya(.) L
A271 E2,1

Figure 7: Round Robin: illustration of the priority components.

trajectory, where the first instance 71 of some task 7 and the first two instances 7 7,1 of some
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task 79 are scheduled according to Round Robin. The functions P ,(.) are only drawn where the
corresponding instance is pending, whereas P(.) is drawn for all times. By definition P(¢) = 0 until
the first activation of some instance, i.e for t < Ay g.

Notice that us o = 0 and thus 7 o starts with Py o(A20) = P(A2,0) = 0. Then, P, (.) increases as
soon as Ty, has executed for ¥y = 4 units of time. As a result, the priority decreases. However, 7 ¢
continues to execute since it is the only pending instance.

At A; o an other instance is activated. Again, u19 = 0, but furthermore 1 < K(A;) = 2, since
79,0 is currently executed. Thus, 7 ¢ starts with

Pro(A10) = [0/%1] + P(A10) + Tjicgay =0+1+1=2.

Notice that without the term M[; (4, ), 1-€. if we had P o(A1p) =1, then 7o would immediately
be interrupted, since (/,1,2,0) < ({,1,1,0).

At A, 1, the next instance of 7, is activated while the first one is still pending. Thus us 1 = ug9 = 0.
It starts with Py 1(A21) = [C20/¥2] + 0+ 0 = 3. As a result, it starts with a lower priority than 7 o
and has always a lower priority than 73 g. Notice that while 75 1 is not allowed to execute, the function
P 1(.) remains constant.

3.3.2 Non-preemptable resources under Round Robin

If semaphores are used to protect non-preemptable resources, then instances may be blocked on a
locked resource. As under FPP or EDF, this can result in a deadlock if nested critical sections exist.
To understand how, let us consider a schematic example. Let a Round Robin layer consist in two tasks
71 and 7o with nested access to the same resources (1 and (3 but in a different order. Suppose 71 needs
(1 immediately and (3 after ¥; units of execution time. Symmetrically, 72 needs {3 immediately and
(1 after Wy units of execution time. Now, if 71 is released at t, and 7 just thereafter, then 71 locks
(1 at t and is executed until ¢t + V. Then 7 executes and locks (5. At t 4+ ¥y + Uy, 7y should again
be executed, but it needs (2, which is locked by 75. Thus 7y is blocked. On the other hand 74 is also
blocked since it needs (1 which is locked by 71, i.e. a deadlock occurs.

G - 1 task is pending

G H task is executed

To L I —— semaphore is locked
deadlock

7

Recall the priority ceiling principle (Section 3.1.3) which prevents from deadlocks and the prop-
erty (3.25) on page 26 that must be satisfied by a priority ceiling @"(.). Under Round Robin, priorities
are decreasing with time. Thus, if at some time ¢y an instance 7, enters a critical section where it
uses a resource (, it is sufficient making it keep its priority by choosing Q"(t) = (I, Py n(to), k,n). It
would not be preempted by an other task of the layer. On the other hand all instances with a lower
priority have completed before ¢3. Thus it is equivalent to choose

Q"(t) = (1), (3.51)

which is higher than any priority of the layer and preferable because independent of task instances.
To understand the effect of this priority ceiling let us consider a set of tasks entirely scheduled
according to Round Robin. Consider an instance 7, that requires only one resource. Let it start
to execute a critical section at some time By, . Its priority is then promoted to G"(Agns) = (—1)
and remains constant until the end of the critical section at some time Ej , s. The promotion is then
canceled and the priority is set back to Ty ,(t) = (Pyn(t), k,n). Recall that this priority depends on
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the amount of time the instance has actually executed. If the instance was able to executed for 3 - Uy
units of time because of the critical section, then Py »(Ekn s) = Pin(Akn,s) +3 = P(Egn,s)+ 3. This
means that the instance will not be able to execute in the following 2 RR cycles. In other words, it
has to wait until the other tasks have used the processing time that is normally reserved for them by
the Round Robin scheduling rule. This is a kind of automatic correction of the violated Round Robin
rule. Notice that this mechanism does operate on the task as a whole. If the instance 7, in the
above example ends with a critical section then the following instance 7,41 inherits the low priority
P(Egn,s) + 3, ie. will only run after two RR cycles.

3.4 Non-preemptive policies

A scheduling policy is non-preemptive if instances execute without being interrupted once they have
started their execution. Among the policies that we have considered, only FIFO is non-preemptive.
But by applying the concept of non-preemptable resource to the processor, non-preemptive versions
of preemptive scheduling policies appear naturally. Non-preemptive priorities are used for example for
the message communication on the field-bus CAN [13]. The bus can not be used preemptively. For a
usual microprocessor on the other hand it is possible to choose a preemptive or non-preemptive policy.
The non-preemptive case is characterized by the fact that once an instance has started to execute, it
completes without interruption. This has advantages:

e The scheduling of a set of tasks on a real-world processing unit according to some scheduling
policy is itself a task that is usually performed on the same processing unit. This activity means
overheads which reduce the time available to the tasks. Katcher et al. [7] have identified different
kinds of overheads. If an instance is preempted its state must be saved to allow it to continue
its execution later, without restarting from the beginning. Response time analysis that accounts
for this and other overheads can be found in [12] for FPP and in [10] for EDF.

The advantage of non-preemptive policies is that the scheduler has to intervene less often, which
reduces these overheads.

e Tasks may need resources that can only be used in an exclusive manner. It implies that while
an instance is using such a resource it may not be preempted. This condition is automatically
satisfied under non-preemptive scheduling policies. Preemptive policies on the other hand must
be modified, as by the Priority Ceiling Protocol (Section 3.1.3).

e The implementation of a non-preemptive policy is simpler because during the execution of an
instance the scheduler does not need to intervene.

But it has also a disadvantage:

e Timing analysis shows that a task set which is feasible under a non-preemptive policy is also
feasible under a preemptive policy, but the opposite is not necessarily true. In this view, non-
preemptive policies appear to be less efficient.

It can not be decided in general whether for a concrete application a preemptive or a non-preemptive
policy is more appropriate.

3.4.1 Non-preemptive versions of preemptive policies

For FPP, EDF, LIFO and RR, the non-preemptive versions can be derived by considering the processor
to be a non-preemptable resource. Suppose this is realized by a semaphore. An immediate question
is if a deadlock could occur. The answer is that no deadlock may occur, because there are no nested
critical sections, the processor being the only non-preemptable resource. However, the priority ceiling
principle is useful to determine the priority functions. According to (3.25) on page 26, a ceiling must
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be higher than the priority of any instance released in the future, since all instances need the same
non-preemptive resource. If the non-preemptive policies is to be used in a layer, then the ceiling must
be a priority in the layer and larger than any priority of instances in the layer. It can be verified that
under convention (2.27), the following ceilings are valid choices:

NP-FP Pep = (I, k,n) Q= ()
NP-EDF Py, = (I, Dgn, k,n) Qrm = (1)
NP-LIFO Py, = (I, = Agp, by —1)  Qrp = (1)
NP-RR Py = (I, Pon(Agn), kyn)  Qrp = (1).

In principle, these are PCP priority functions but here every instance has only one critical section
which is the instance itself. Thus, there is only one priority promotion at the execution beginning,
which implies that the priority functions actually are of PPEB type.

These policies are similar by the fact that an executing instance is not interrupted (by an other
instance of the layer). The difference lies in the order in which a next instance is polled among the
pending instances, when an instance completes its execution. Compared to FIFO, these policies reorder
the pending instances according to some criterion, within the limits of the non-idling assumption,
instead of executing them in the order of their activation times. Under NP-RR, for example, the
criterion is based on the quanta W;. The longer the execution time of an instance and the shorter
the quantum, the longer a following pending instance is delayed, when instances of other tasks are
pending.

NP-EDF is known to be optimal in the class of non-preemptive policies. But if other policies do
also provide a feasible schedule of a task set, then additional criteria can be considered for selection
the best policy for specific application. Which kind of properties the different policies have is an open
question for future investigations.

3.4.2 Layered priorities and non-preemptive policies

In the same way as preemptive policies can be combined as preemptive layers, non-preemptive policies
can be combined as non-preemptive layers. In that case an instance is not preempted by any task of
the set, once it has started its execution. This can be obtained by a PPEB assignment with

ﬁk,n = (l, .. ) Qk,n = (())’ (352)
i.e. with a priority after promotion which is higher than any other priority.

Remark 3.14 Consider a layer \; of tasks with NP-EDF priority functions. Under LPP, the param-
eters are Py, = (I, Dgn, k,n) and Qg = (0), which is different from (3.52) and different from

-ﬁk,n - (Dk,na kan) ék,n = (O)a

which would be used if the layer were scheduled alone on the processing unit. However, in all three
cases we speak of NP-EDF. The reason is that for the tasks in A; all three priority assignments are
equivalent (in the sense of Definition 2.16).

3.5 Posix 1003.1b compliant scheduling

Posix 1003.1b standard [5], formerly Posix.4, defines real-time extensions to Posix.1. Most of today’s
real-time operating systems conform, at least partially, to this standard. Posix 1003.1b specifies three
scheduling policies : SCHED RR, SCHED FIFO and SCHED OTHER. These policies apply on a
process-by-process basis : each process runs with a particular policy and a given priority. Each process
inherits its scheduling parameters from its father but may also change them at run-time.
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e SCHED FIFO : fixed preemptive priority with FIFO ordering among same priority processes.

e SCHED RR : round-robin policy which allows processes of same priority to share the processing
unit. Note that a process will not get the CPU until all higher priority ready-to-run processes
are executed. The quantum value may be a system-wide constant, process specific or fixed for a
given priority level.

e SCHED _OTHER is an implementation-defined scheduler. It could map onto SCHED _FIFO or
SCHED RR or also implement a classical Unix time-sharing policy. The standard merely man-
dates its presence and its documentation. Because it is not possible to expect the same behavior
of SCHED OTHER under all Posix compliant operating systems, it is strongly suggested not
to use it if portability is a matter of concern and we will not consider it in our analysis.

Associated with each policy is a priority range. Depending on the implementation, these priority ranges
may or may not overlap. Notice that a task as defined in our model, represents a recurrent activity
which is either performed by repetitively launching a process or by a unique process that is running in
cycles.

It can be seen that scheduling policies based on layered priorities with FPP, FIFO and RR are
POSIX compliant. A Round Robin layer is a subset of tasks, with the same POSIX priority and
SCHED _RR attribute. A FIFO layer is a similar. On the other hand, an FPP layer consists in a
subset of tasks with SCHED FIFO attributes and different POSIX priorities which are consecutive.

3.6 Proof of existence

In this section we prove that the scheduling policies which we have specified by time dependent priority
functions do indeed define scheduling policies in the sense of Definition 2.3 on page 8. As pointed out
in Section 3.1.4, this proof guarantees for example that the scheduler will not run into a deadlock,
while trying to determine the instance with the highest priority.

Theorem 3.15
Let T = A\ U...U A be a set of tasks partitioned into layers and provided with an LPP priority
assignment (3.37). Inside of a layer, the priority assignment may either be time independent or Round
Robin (3.43). Furthermore, some instances may have a PPEB priority function (3.1) with initial
priority given by the policy of the layer to which they belong.

In this case, there exists a unique scheduled task process so that the HPF rule is satisfied with the
priority functions that correspond to the scheduling policies.

Proof: To prove this theorem, we show that it is possible to construct by recurrence a II and a T,
satisfying (2.31) in Lemma 2.14 on page 13 and such that T has the properties required by the definitions
of the layer-wide scheduling policies: (3.37) on page 33 for the layer structure, (2.32) on page 15, for time
independence, (3.43) on page 35 for Round Robin and (3.1)-(3.5) on page 20 for Priority Promotion.

It can be noticed that under any of the considered policies, the priority function of an instance 7 ,, is
constant before its activation time Ay ,,. Since the values of 'y, ,,(¢) for t < Ay »,, are not needed to define
II, we will verify only from Ay, on that I'y ,,() is well defined on [0, A, [.

The construction is based on a sequence of points {¢5}, starting with

to = min{Ago | k = 1.m},

the first time where some instance is activated. Since no instance is released before ty, we define I, ,,(t) = 0,
for all ¢ € [0,¢0[, k = 1..m, n € N. Because there is no activation in [0,%o[, Wi, (tT) = 0,for all
t € [0,to[, k =1..m, n € N and thus (2.31) holds independently of the I';, ,(t) which we will define later.
For each RR layer );, we have to define P(t) and K (t). Since W), (t) = 0 for t < ty, we set P(t) =0
and K(t) = —1 according to (3.44) and (3.45) and hence they are well defined for ¢ < ¢y. For the other
policies nothing need to be verified at the current step, since not priority function has yet been defined.
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Now, assume that IT is defined on [0,?,[ and that the Ty ,, of the instances activated before ¢;, are also
defined on [0,%,]. Suppose furthermore that (2.31) holds and that the I'y,, with Ay, < t, are defined
and satisfy the properties required by the different scheduling policies. Furthermore, we suppose that T is
constant on [ty _1,t4][.

Notice that since Wy ,,(t*) = Skn(0,t7) — [y g (u)du, the workload Wi, ,(t1) is defined on [0, ],
i.e. including t,. The reason is that the value of I, ,, at t,, which is not yet defined, has no effect on the
value of the integral, a point being a set of Lebesgue measure zero. Also the P(t) and K (t) of the RR
layers are defined until 5, included, since their values depend on the past strictly before ¢,.

We will define now I" and II until before the next construction point 5,1, which has to be determined
for each of the different cases that arise:

(i) Wi_m(t}) > 0: For any instance activated at t;, we first have to define I'y,,,(¢) for t < t4. If 74,
has a time independent priority function then it is simply I'y ,,(t) = [ ,(0), for t < 5. In the case
of PPEB it is T, ,,(t) = T (t), for ¢t < . Under RR, it is

Cn(t) = (I [Ckiug .1/ Vi) + P(Ukn) + Wpe i (v, )5 Ko )

for t < t,. Notice that since the scheduled task process is supposed to be defined until before 5,
Uk, is well defined. In particular, if Wi _,,(ty) = 0, then Uy ,, = tp,.

Now, all instances which are pending at ¢, have a priority function defined at least until before 5.
Among these instances let 75 ,, be the one with the highest priority just before ¢, i.e. for 7; ; # 7 n:

Wij(ty) > 0= Tpn(th1) = Tij(th1),

since we have assumed Ty ,(t) = I'y n(th—1) for t € [tn—1,tn[. Notice that 74, can be determined
because T is supposed to be decidable until before t;,. For the considered policies the priority of an
instance does not change if it is not executed. Thus, a pending instance 7;; # 74, will continue
to have a lower priority. It implies that 75, remains the pending instance with the highest priority
(at least) as long as its workload is positive, its priority does not decrease and no instance is newly
activated. Thus, 7y ,, is the instance allowed to execute during some time span after t,. The priority
decrease concerns the case where 7, is scheduled under RR. Because of this case let 7, = min{t >
0| Ckup, pp.n—1+ f(f g n(x)dr =0 mod ¥y} be the time where the priority decreases. If 7 ,, is not
scheduled under RR, let r), = 0co. Hence 73, can be executed until

th+1 = min{th + kan(t:), th + Th, min{Ai,j > th | 1= 1..m, n e N}},

that is we can define IT; ,(t) = 1 and II; ;(t) = 0 for ¢t € [tp, thy1]-

It remains to define I" on [ty, t541[. For the instances which are not executed and for which A; ; < tp,
let T; ;(t) =T j(th—1) for t € [tp,th11[, since their priority does not change, whether T'; ; is supposed
to be time independent, or of RR or PPEB type. For 73, on the other hand, we have to distinguish
between the possible policies.

— time independent: simply set 'y »(t) = I'x »(0).

— RR: Since TIj, »(t) =1, for t € [tp, th41], we can properly define

Pen(t) = [(Chagpom—1 + Jy Wi (2)dz) /1) + P(Up ) + Tpoc (v, -

Notice that P ,(t), and therefore T’y ,(t) is constant on this interval because t541 < 7p,.

By continuity, the value of foth“ [} »(x)dx is actually known. Thus, we can define Py ,(t) by
the above formula for ¢t € [t,tp41], i.e. until ¢441 included. As a result, P(t) is also defined
until ¢541 included, as required be the assumptions of the present proof by recurrence.
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— PPEB: Let I'y (t) = th, since under PPEB instances execute at their promoted priority.

With II and T" defined above, (2.31) holds, because during [t4, th41[, Tk,n is the pending instance with
the highest priority.

For PPEB we have to verify that (3.1) holds on [tj,ts+1]. An instance 7; j # 7y, can not start to
execute at tp. Thus, by keeping the same value as before ¢, its priority function satisfies indeed (3.1).
If Tk n(th—1) = Prn, then fgh Iy n(x)dz = 0, i.e T, has not yet started to execute, because (3.1)
is assumed to hold until before ¢),. Since for ¢t € [tp, thi1[, Tkn(t) = an and ITj ,,(t) = 1, we have
tn, = By, and hence (3.1) holds on [t, thy1[. If Tpn(t™) = an then By, < t, and (3.1) also
holds, since I'y, ,,(t) = an for t € [th,th+1[. Notice that (3.5) on page 20 holds in the case where
Tk,n has not been executed before t), = By, ,,, since 7; ; € Hy (2, )-

(i) Wi_m(t)) = 0: no instance is pending. Hence let
the1 =min{Ad; ; > t, |k =1..m, n € N}

be the next time where an instance is activated. In the interval [t,?,11[ there is then no instance
pending and therefore no instance to be executed:

Hk,n(t) =0 te [th,th+1[, k=1.m, n € N
Since no instance is executed the priority functions do not change their values. Thus, let
Fk,n(t) = Fk,n(th—l) te [th,th+1[, k= 1.m, n € N

Now, (2.31) trivially holds since Wy, ,,(t) = 0 for all instances. Furthermore, because no instance can
start to execute at tj, also (3.1) holds for instances with PPEB priority functions.

So far we have proven that the sequence of construction points is strictly increasing: ¢, < tp41. It can
be verified that each construction point ¢, is either equal to an activation time, an execution end of an
instance of a priority decreases under RR. By (2.2) on page 6, in an interval of finite length, the number
of activations is finite. The number of pending instances and thus of execution ends is finite by (2.17).
Furthermore, the priority of an instance 7y ,, is decreased as much as [Cy, /U] times, which is finite. Thus,
an interval of finite length contains only a finite number of construction points and thus the sequence must
diverge.

In all three cases, the II; ,(t) are defined constant on closed-open intervals [ty, 54 1], that cover Ry .
Thus, each Iy ,, is right-continuous.

Above we have proven the existence of TT and T'. The uniqueness of TI is a direct consequence of
Theorem 2.15. B

4 Response time bounds

4.1 Priority promotion at execution beginning

In this section we give a Lemma that tells how to derive response time bounds when some instances
have PPEB priority functions. It is in a generic form, which is valid regardless of tasks types and the
values of the parameters Py, and Q. It is a useful guideline when deriving bounds in particular
cases.

RR n° 3678



Jorn Martin Migge, Alawn Jean-Marie

4.1.1 Generic bounds

The context is a set of tasks with PPEB priority functions. We suppose that a bound for the execution
times of any instance that has a lower initial priority than 7, but a promoted priority, higher than
the initial priority of 7%, is known:

Zy > ilelg{ci,j(w) | Pij(w) < Pen(w), Qij(w) = Pen(w)} (4.1)

It will serve as bound for WBk,n(Uk,n)- Furthermore we suppose the existence of a set of increasing
functions Py = {g,f(a:,a, q), gf(w, a,b,q) | ¢ € Q} such that Vw € Q,Vn e NJg € Q :

5Py Ukins t50) < St = Uiy At = Unns 0) (42)
SMk,n (Uk,na B,I;':na w) + SQk,n(Uk,nat; Cd) < ng(t - Uk,n; Ak,n - Uk,na Bk,n - Uk,'na Q) (43)

Based on there bounds we define some kind of virtual execution beginning and execution end

Bi(a,q) o min{z > 0| Z, + SP(z,a,q) = z} (4.4)
Brla,q) & min{z > 0| Z, + SF(x,a, Br(a, q), q) = x} (4.5)

which will be considered for a in

def

Ai(q) = {a > 0] 5F(z,a,q) >z, Vo < a}.

In terms of these quantities, a response time bound can be stated as follows

Lemma 4.1 Let a set of tasks be scheduled with PPEB priority functions. A bound on the response
times of a task 7y is then given by

= def =~
Ry, < Ry = max max FE(a,q) —a
kon X 1t 460 acAr(a) k( 7Q) ’

where E(a, q) is given by (4.5).

Proof: First, we prove that W,  (Uk,) < Z. Because of (3.16), there is an instance 7;; € By, ,, such
that ng,n(Uk,n) = W; j(Ukn). Furthermore, by the definition of By ,,, 15;,,], < 13;9,” and Qi,j - ﬁk,n. Thus,
the execution time C; ; is taken into account in the supremum in (4.1) and Wpg,  (Ukn) < Z is proven.

Consider an instance 7, on a trajectory w and let ¢ be determined such that (4.2) and (4.3) do hold.
We have Ay, — Uy, € Ar(g), because by the definition of Uy, see (3.7), and (4.2) :

U, n
0 < W, , (&) = Sp,, Uk, Upn + ) = fy1 " T, ()dt

and since 1 =Tlp,  (t) +1p, ,(t) for t € [Ugn, Agnl,

= 8y Uk U +2) = fylr " (1= Tg, , () dt

& S’Pk,n(Uk:,na Uk:,n + .Z') + WBk,n(x) -
< §I§($aAk,n - Uk,naQ) + Zk: -,

N

forall x < Ag — Ugn- Thus, a = Ay, — U, € Ar(gq)- Now we prove that

Bim — Uk < Be(Akn — Ugns )- (4.6)

INRIA



Non-r'reemption, Critical Sections ana Lound 1ooin

Consider Proposition A.4 with zg = Uy 5,
flzo +2) = Wg, , (Ugniw) + Sp, , (Ukn, tH30),
To=0and f(Zo+x) = §,f(:v,Ak,n — Uk n,q). Then (A.6) holds because of (4.2) and thus
2* = Bim — Upn < * = Bp(Apn — Uk, @)-
Then, we prove that Ej, ,, — Uy, < Ek(Ak,n — Uk n,q). Consider again Proposition A.4 but with g = Uy ,,,

f(wO + .CL‘) = WBk,n(Uk,n; w) + SMk, (Uk ns k na ) + SQk,n(Uk,na t; OJ),

~

Zo =0 and f(Zg+x) = g,f(x,Ak,n - Ukyn,gk(Akyn —Uknrq),q) + Zi.. Then (A.6) holds because of
(4.3) and (4.6). Thus

2" =Epp —Upn < 3" = Ep(Akn — Ukny 9),
and finally, by subtracting Ay ,, — U, from both sides, we obtain

EgEA—U,—A + Ugn) < max FEp(a,q) —a < max max Fi(a,q) — a.
ko < Er(Arn — Ukny @) — (A + Ur ) s By (a,q) nax max Er.(a,q)

4.1.2 Non-preemptive policies

In this section we will derive response time bounds under non-preemptive policies, with the help of
Lemma 4.1. But first, we have to introduce a particular kind of WAF.

It can be noticed, that 7, € My, but 7, & Prn,. In order to be able to define an accurate
MWAF’s for Sp, ,, we introduce

tl) t2 Z Ck ,n - tl <Ak,n<t2] . I[[tl <Ak,n+l<t2}' (47)
neN

This WAF does not account for the last activation in [t1,?2[. A corresponding family of MWAF must
satisfy Vw e QVu e Ry, 3 g€ Q:

SE (u,u + z;w) <§,f(:v,q) Va>0.

Depending on the type of a task it may be easy to derive the 5,5(35, q) from the usual MWAF’s. It is
the case, if for all w, k, n there exists ¢ such that

Crnonti < ak,O..i(Q) Apmri = Apn = Ay ilq) V. (4.8)

This property means that the amount of work of any ¢ consecutive instances is majorized by the first ¢
activations of the MWAF. Thus, if (4.8) is true for 7y 4, and 7%, then it is also true for 74 »4;_1 and
Tk,i—1- In that case we can simply choose

Z o " Ak n<z] ]I[Ak’n+1<x]' (4.9)
neN
Indeed, consider S¥ (u,u + x) and suppose that Ay, 1 < u < Ak, and Agpy; < U+ < A piitr:

n—+te

i
SE (uw,u+ ) Z Crj* Mugay j<uta] " Mugay s 1 <uta] = Z Chj < Z Ch.j
= — —
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and since © > A ntit1 — Agpn = Ak’i+1, because of (4.8)

- Zo Chj - ]I[Ak,j<$] ' ]I[Ak,j+1<z]
i

~

1
~ _ QP
< Z Ck,j : ][[Ak,j<z] ’ ]I[Ak,j+1<;r,] - Sk (xaQ)'
JEN

Property (4.8) is true for sporadic tasks, because the usually chosen MWAF’s with

S def -~ def .
Cr;,=Cr = max Cp,(w)>=Ch T =T, = min Tp,(w) < T
7 neN, weQ n(w) 2 Cin 7 neN, weQ (@) < Tim,

satisfies (4.8). The two kinds of MWAF’s are
Se(x) = ([#/Tx]) - Cr, SP () = ([max(0, & — Ty)/Ty]) - C.

The same is true more generally for sporadically periodic multiframe tasks ( see [8] for the definition
of this type).

If (4.8) does not hold, then it is more difficult to determine §,f (z,q). Suppose for example that
for a sporadic task with T} , > 2 and Cj , < 1 we would choose a MWAF' with fk,j =4, ék,j =2 and
A\k,o = 0. Figure 8 shows the MWAF and the WAF on some trajectory after some time u, with Ay,
being the first instance of 7, activated after u. It can be seen that for 74 n42, Ckn.nt2 < C*k,o_j(q) holds
but not Ag,yo — Agpn = flk,g(q) and thus (4.8) is not satisfied. In this example we have deliberately

~

Sk(x,q)

S (u,u + z)

| |
T T

Ak2(q)
Ak,n+2 - Uu

Figure 8: A general MWAF

chosen a MWAF which does not satisfy (4.8). For tasks with mode change MWAF’s that satisfy (4.8)
are not known or may not exist. The reason is that they are obtained by taking the maximum over
several different WAF’s [8].

The question is then how to define accurate MWAF’s if (4.8) does not hold. One could simply
chose §,f = §k, which is a conservative bound. To improve this one could think of transforming the
MWAF’s S, in order to obtain some useful property similar to (4.8). To obtain (4.8) is likely to
be difficult in general, since it concerns every trajectory of the task process. On the other hand, if
(4.10) below, holds then (4.9) is also a valid choice and the transformation can easily be performed by
inserting additional activations with ék,j = 0, after activations that do not satisfy (4.10).
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Proposition 4.2 If the family of MWAF of a task satisfies

' Te:(q) < min T, 41
VieN, VgeQ Ti;(q) peiin_ ke (W), (4.10)

then §,f(:r, q) given by (4.9) is a MWAF for S{(x,q).
Proof: We proceed by contradiction. Suppose that
Se(u,u+x) < §k(x, q) Vzx
and that Ay, is the first activation of 75 after or at u. Suppose furthermore that
St (u,u +x0) > Sf (w0, 9), (4.11)

for some zg > 0 and that §,f is given by (4.9). Let Ay ,4; be the last activation before or at u + z¢ on w
and Ay ; the last activation before or at zq for S:

Appnyi <u+xo < Agnpivr Agy <o < Agjq1

Then (4.11) implies C o nti—1 = S,f(u,u—l—:vo) > g,f(xo,q) = 6;970“]-_1. It implies flk,j < Apntio1 — U,
otherwise S; could not be majorizing. Furthermore, by the definition of /ik’j, flk,jﬂ 220 2 Akpnyi-1— U
Thus

Tij = Ak j+1— Arj 2 Apntio1 — 0 — Agj, > Apnti — Aknti—1,

which is a contradiction with (4.10). H

In the following, we suppose a layered structure of PPEB priority functions, i.e we suppose that
Pk,n = (l,) and ka = (l,)

NPFP Let a task 73 be part of a layer );, scheduled according to NPFP. In this case P}, consists
in all previous instances of 75 and all instances of higher priority layers:

Spk,n(Uk,WJ t+) = Sk,O..n—l(Uk,n7 t+) + Sl..k—l(Uk,na t+)
We have, Sko.n-1(Ukn,t7) < Yfg Chyi- Iy, ,<a,,]- On the other hand, since A, 1 < App,
sp (Uk,n, A:n) accounts for the activations after Uy, until at least Cj 1 included, i.e.

SEUkm, AL ) 2 Y050 Cri - Ty, <,

Thus, Sk0.n—1(Ugn,t1) < S,f(Uk,n,AZn). Since Sk 0.n—1 is also bounded by Sj, we finally have

Sk.0.7(Ug,n, tT) < min(Sg (U0, t1), S]f(Uk,naA;:’n))-

Notice that Skg.n(Ukn,t") < min(Sk(Ukn,t"), Sk(Ukn, Af,)) is also true, but would be a more
conservative bound since S,f(Uk,n, A;c"n) < Sk Uk, A;c"n)

Given a family of MWAF’s of the form 8§ = {gi(a:,q),g,f(m, qQ)|li=1,...,m, q € Q}, a family of
MWAF’s as required by Lemma 4.1 consists in

SE(x,a,q) = min(Sg(z*,9), 5F (a*,q)) + S1.x—1(z,q) (4.12)
Sk:E('r’ a, b7 Q) = §k(a+a Q) + §1..ﬁl_1(x7 Q) + Sml..k—l(ba Q)a (413)

since Qpn = {7i; | i <_1}. Because for all 7;; € \; Q;; = (1,0) and P;; = (I,4,7), the bound (4.1)
on the blocking periods from lower priority tasks is

Zr = max{Ci; | k < i <my, j € N}

RR n° 3678



Jorn Martin Migge, Alawn Jean-Marie

NPEDF In this case Py, is included in all previous instances of 7, all instances of higher priority
layers and instances of other tasks of the layer with deadline shorter or equal to Dy, = Ay, + Ekm.
We say included, because of the specific priority order among instances with the same absolute deadline
which we ignore by taking a conservative bound, see [8].

5Pt Utins tT) < Sk,0.m=1Usns t7) + Sk (Us st Ak + D) + Sty (Uk s t)-

Given a family of MWAF’s of the form 8§ = {gi(x,d,q),g,f(x, d,q)|i=1,...,my, q € Q}, a family of
MWAF’s as required by Lemma 4.1 consists in

§kB($’aa Q) = min(gk($+JQ)’§kI:J(a+aq)) +§k($aa +Ek,Q) + §1--ml—1(waQ)
‘§kE(x’a7 Q) = gk(a+,a +Eka) + §1..ﬁ171(x7 q) +§k(b7a +Ek7Q)7

since Qrn, = {7, | i < My_1}. Because for all 7, ; € A, Qi,j = (1,0,0) and ]5;'7]- = (I, Ai; + D j,i,j)
the bound (4.1) on the blocking periods from lower priority tasks is

Zk = max{C@j |7 e N, JEN, D, > Ek}
NPLP In the case where the layers are scheduled non-preemptively, Q. = 0. As aresult, gf (z,a,q)

becomes independent of x, because once the execution has started, the instance can not be interrupted.
Thus, Ex(a,q) = Bk(a,q). For a task in a NPFP layer, this means

Ek(a’a q) = §k(a+a Q) + §1..k—1(-§k(a’a q)a Q) + zk (414)

and in a NPEDF layer

~ =

gf(%%‘]) = Sp(a™,a + Dy, q) + Sk(Bi(a,q),a + Di,q) + §1..ml_1(§k(a, 0),9) + Z.

In both cases the MWAF is independent of z, implying that Ek(a, q) = By, (a,q) + C, for some C > 0.
On the other hand, the bound Zj, that accounts for the blocking periods due to lower priority tasks
get larger, because 7 ,, can also be blocked by instances from lower priority layers. For NPFP it is

Zk = max{Ci,j | t>=>2myj € N}
and
7 = max{Ci ;|7 €\, j EN, D; > Dy or i > m;}

for a NPEDF layer.

4.2 Response time bounds in the presence of non-preemptable resources

We intend to derive a generic response time bound for a task with time independent priority functions
in a context of layered priorities, where the PCP is used to protect non-preemptive resources. We will
use it in section 77 to derive response time bounds under different policies.

4.2.1 A generic Bound
The starting point is the execution end bound Fk,n given by (3.34) on page 30:

Ep =min{t > Uy | [y Ts,  (2)dz + Sp, , Uk, t) + Uk = t}.
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For the term Sp,  (Ukx,t) we suppose that a set Py, = {Sk(z,a,q) | ¢ € Q} of MWAF’s is known such
tht Vwe Q,VneN Jge@:

5P Uy tyw) < Si(t = Upny Apn — Uk ny @)- (4.15)

On the other hand we will derive a more specific bound, for féh g, (z)dz . The definition of By ,,
see (3.33) on page 30, can be rewritten as

Bip = {7i; | Ti;j(t) < Tgn(0) V#; T j(Ukn) > Trp(0)}.

According to (3.35) on page 30, there is only one instance of By, ,, which is pending in [Uy ,,, Bk »[. This
instance is 7; ;. Since being part of By, implies

i j(Ukm) = Thn(0) = T j(Ukn),

Proposition 3.10 applies for [t1,ta[= [Ukn, Ekn[. Thus there is a resource (j, used by 7; ; at U p, with
flt]k IL j(z)dz < Z! and A;j < Ugp < Agpn. Since 7;; is pending at Uy p, Qh(Am-) > Tt (0). Thus
the’general bound is

Zp =max{Z! |3t < Ag b QM) = Tin(0),
Jj,c b ZPi(c) =1, Tin(0) = Tij(t), Vi) (4.16)

It accounts for critical sections of certain task on certain resources. If we define

def

Er(a,q) ¥ min{z > 0| Z; + Sz, a,q) =2} Awl@) © {a > 0| 8k(z,a,q) > 2, Vz < a}, (4.17)

the response time bound takes the same form as in Lemma 4.1.

Lemma 4.3 Consider a task 1, with time independent priority function that is part of a scheduling
policy that that uses the PCP to protect non-preemptable resources. A bound on the response time
of 1, is

= def =~
Ry, < Ry = max max Fi(a,q) —a
kon X 1tk €0 acAr(a) k( ’Q) ’

where Ey(a,q) is given by (4.17).

The proof is similar to the proof of Lemma 4.1.

4.2.2 Time independent priority functions in layers

In the case of layered priorities, the set Py, on which the response time analysis is based (3.31), always
contains all instances from higher priority layers. Notice that this fact is true whatever policies are
used in the different layers. Thus, from the point of view of a task 7, in some layer A;, all task from
higher priority layers behave in the same way and all tasks from lower priority layers behave in some
other common way.

In [8], response time bounds are derived for several time independent policies. The bounds are
also based on characteristic functions Sg(z,a,q) which have to be adapted here to account for the
preemption from tasks in higher priority layers. We suppose a family of MWAF’s for the set of tasks
is known.

FPP-layer: the formula of gk(x,a,q) remains the same, but here the tasks 71,...,7m, , are then
part of higher priority layers:

gk(‘ra a, Q) = min(gk(:v,q),gk(a"',q)) + §1..k—1(ma q)
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EDF-layer: the preemption from higher priority layers is independent of the deadline of the task
under study:

§k($,a, Q) = gl..ﬁl_l('ra(J) + §ml..ﬁl (:v,a +Eka Q)

FIFO-layer: similarly to EDF":

~

gk(xa a, Q) = gl..ﬁl_l (.CU, Q) + Sml..ﬁl(a_'—a q)
LIFO-layer: as for FPP, the form remains the same:

Sk(.’L’, a, q) = Sl.-ml (.T, Q)
In all for cases, the bound 21}: is given by (4.16). In Section 5.4, we will give a numerical example.

4.2.3 Execution begin until execution end

Proposition 4.4 Let 7 be a task with PPEB priority assignment. Suppose a family of increasing
functions Py, = {S,?(x, q)| g € Q} is known such that Vw € Q andVu e Ry, 3¢ € Q:

Sgy . (uyu+ ) < §,?(:r, q) Yz>0. (4.18)
Let C*k > Cgn(w), Yw. Then a bound for the time between execution beginning and end is

Epn — Bin < max min{z > 0| Cy, + S%(z,q) = z}. (4.19)
qc

Proof: Recall formula (3.36). Given Proposition A.4, the definition of C, and (4.18), the bound (4.19)
follows immediately. B

Notice that, there is only one partial bound per ¢, whereas for response times there may be several.
The reason is that at the execution beginning of an instance, also the previous instance of the same
task has completed.

4.3 Round Robin

In this section we are interested in the response times of an instance with a priority function of RR
type (3.43), in the context of layered priorities with PCP. For this purpose we first have to derive some
properties.

In order to determine a response time bound for a task, it is necessary to bound the preemption
from other tasks. Under Round Robin, priorities change over time. No fixed set of higher priority
instances exits. However, the function P(.) allows to estimate the preemption. Let Z; = maxy, Zh the
longest critical section of 7;.

Proposition 4.5 A task 7; € \; in a Round Robin layer runs for at most V; units of time in each
Round Robin cycle: if Wy, (t) > 0 for €]t;,ts] then

to ~
/ I(z)de < ;- (1 + P(ty) — P(t1)) + 2. (4.20)
t1

Proof: For the proof we subdivide the instances into several classes. Let 7; ;, be the first instance of 7; to
finish its execution strictly after ¢1, i.e. so that E; ;1 <t; < E; ;. Similarly let 7; ;, be the last instance
starting its execution strictly before ¢5, i.e. so that B; j, <ty < B; j,+1. We suppose ji < j2, otherwise
there would be no instance of 7; executed during [t1,t2[ and (4.20) would trivially be satisfied.
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In order to establish the bound on ft (x)dz, it is convenient to partition the instances 7; j, with
j1 < j < Ja2, according to common reference pomts Aj ;. ; in the definition of P; ;(.):

eo = min{j > ji [ P j(Aij41) < P(Aij11)} (4.21)
b=e—1+1 1>1 (4.22)
e =min{j 2 b | Pij(Aij+1) < P(Aij)} 121 (4.23)

Let jo = max{b; < ja}. By Definition (4.23), for 7;; with by < j < e, P, j-1(4i;) > P(A; ;). Further-
more, by = u; p, = Uj e, = U j.

Biy
For t € [Eie,, Bip,,, [, ILi(t) = 0, since b1 = e; + 1. Thus, we can ignore the parts f P+, (x)dz.
The remaining parts are the following:

o ffi’eo II; (x)dx:

—t; < At since E;j 1 < t1, Ii(z) = 0 for x € [t1,A;;,[. Thus, the integral reduces to
ffl;" II;(z)dx. It follows from (3.48), that P; j, (Aij,) = P(Aij ). Using furthermore that
P(.) is monotonically increasing allows to prove the following inequality:

Piyeo (Ei,eo) - P(tl) P; EO(EZ' eo) - P(Ai jl) 2P ,€0 (EZ eo) - B:jl (Ai:jl_l)
|—C'l“k_71 e0/\Ij-| [C LU, 5y --J1— 1/ 5]

Now, since [z] <z + 1, we have —[z] > —z — 1. Thus

(Ozuxwl eo/qjﬂ [C LUk, jq - J1— 1/\1121 (C LU Gy - o_Cing1 J1— 1)/‘1"_1
:Ci,jl..eo/\Il 1— 1/\11 fAZEOH )dx—l

— A j, <ty since t; < Ei,j1, equation (3.48) implies P; j, (t1) > P(t1). Thus,

Ei,e Ei,e
Piyeo (Ei,eo) - P(tl) 2 Pi,eo(Ei,eo) - Pi,jl (tl) = (1/%) ’ [.ﬁtl ° Hi(x)d$-| > ftl 0 Hi(x)dx/‘lli

. fB”l IT;(z)dz: since u; e, = u;p, = by, we have
Pi:el (Ei,ez) - ]D'i:bl(Bi:bl) = (Ci,bl--ez/\pﬂ C; b1 ez/\Ij = 1/\II fBI - H

. fgj’jo IL; (x)dx: let tg = max{t < ty | T j,(t) = Ts.,(t)}. For [to, 2] we use Proposition 3.10:

~

J8 Mi(e)de < 20 < Z,

for some (j,, used by 7;. By the definition of ¢y, P; j,(to) = P(to). The function P(.7) is increasing
on |ti,ts]. The left-hand side limit is needed, because when W), (t3) = 0 then P(t2) = 0, recall the
definition. Thus,

( ) P,J2 (B',jo)

> Pyjo(to) = Prjo(Biio) = [[75,, TMi(@)dw/ W] > (1/Wy) - [ Ti(a)da,
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where we have also used that, by definition of jo = u; j,. Thus,

e;=ja2—1
Y Eie i,e
ftizﬂi(x)d;v:ftl’oﬂ ydx + Z fB lH d:v-l—f dx+f z)dx
>1
er=j2—1
SY;- |1+ Pi,eo(E’i,eo) - P(tl) + Z (Pi:el(Eizel) - Pi,bz(Biybl)) + P(t2) - P'&':]'O(Bi,jo) + Z;

I>1
S Ui-(1+ P(t2) — P(t1))-
The last line is obtained using that
P (Bie_) = Pie_(Aip,) < P(Aip,) < Py (Aip,) = Pip(Bip,)-

At Ag,y, ,, the workload of the task 7 is zero, but the workload of task from higher priority layers
may be positive, which is impractical for deriving response time bounds. The last time before Ay, ,,
where their workload is zero is preferable. Accordingly, let Uy ,, be such that

Uk:,n < Akyuk,n’ Wl..ml_l(Uk,n) =0 and Wl..ﬁl_l(t) >0 t E]Ukz,n,Ak,uk,n]- (4.24)

Notice that Wi(t) = 0 for ¢t € [Ukn, Akuy -

For the derivation of response time bounds of Tk,n, We have to analyze the set of higher priority
instances Hj (t). Let A\; be the Round Robin layer that contains 7y ,. The set Hy ,(t) contains all
instances from higher priority layers A, s < [, but also certain instances form lower priority layers,

that use non-preemptable resources with a priority ceiling in the RR layer or higher. Let 7;; € A,
s > 1. Then

Lij(Ukn) > Ten(Ukn) & Tij(Ukn) = (1)
To handle that kind of preemption we redefine By, ,, in this context by

B, = {Ti,j € A | s > l, Fz‘,j(Uk,n) = (l)}

From Proposition 3.10 it is known that at Uy ,, at most one instance of By, is pending and executing
a critical section before By, ,. Accordingly, let

Zy =max{ZM| 7 € \s, s> 1, Ij,¢ b Zi(c) =1}

It is also convenient to introduce a notation for the sum of the scheduling functions of other tasks
in the RR layer );, to which the instance under study belongs:

Ti€EAiFk

Lemma 4.6 The workload of higher priority instances is strictly positive between the beginning of
the interference period defined by (4.24) and the activation time:

W’Hk,n(t) (t) >0 Vte [Uk,na Ak,n[ (425)

Proof: We divide the interval into two parts: [Uy n, Akn|= [Uk,ruAk,uk,n]U]Ak,uk,n,Ak,n[- The definition
of Uy implies that Wy m, ,(t) > 0 for t € [Uk,n;Ak,ukm]- Since 7;; € Hyn(t), if i < T—1, we have
0< Wl..ﬁl_l(t) < WHk,n(t)(t)'

We turn now to ¢ E]Ak’ukm,Ak,n[. Let 74 5 such that u,, < s <n. Fort €]Ag s 1,FEf s 1[, we have
Wi s—1(t) > 0, and because T'y s_1(t) > Tk n(t), we have 74,1 € Hin(t). Thus, (4.25) holds on this
interval.

For t € [Eks—1,Ak,s|, we have to distinguish two cases:
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® Pp_1(Akrs) > P(Ags): since Py _1(.) is constant after Ej ,_1, we have Py ,_1(t) > P(Ags) 2
P(t). Thus, there must be a pending instance 7; ; € A\; with, P(t) < P; ;(t) < Py s—1(t). Since
Fi’j(t) - Fk:,s—l(t) - Fk,n(t), Tij € Hk,n(t) and (425) holds.

o Pps_1(Aks) = P(Aks), k < K(Ags): since Py 5_1(.) is constant after Ej ;_1, we have Py, ;_(t) =
P(Ag ) = P(t). Since k < K(Agy), there must be an instance 7, ; € A\; with K(Ag,,) > @ > k.
Again, 7; ; € Hy »(t) and (4.25) holds.

Theorem 4.7
The execution end of an instance in a Round Robin layer is bounded by

Eip =min{t > Upn | Ckupn + Jy, Wby, (@)dz + St (Unot) + [y, T(@)dz + Uy = 8}
(4.26)
Proof: Recall the scheduling function based execution end formula (2.40) on page 17.

Ek,n = min{t > Ak,n | Ck:,n + fjk,n HHk,n(x)(fU)de + Ak,n = t}. (2.40)

It is an equation of the form (A.2), with 29 = Ay, and f(t) = Cipn + f;k HHk,n(m)(x)dx, for t > Ay .
First, we extend the domain of definition by [Uj, ,,, Ay »,[, with the help of Proposition A.3. Let

Property (4.25), implies Iy, (5)(2) =1, fort € [Uy n, Akn[ Thus, f(ﬁc’“’n"HHkm(w)(x)dx = A n—Upn and
therefore f(t)+ Ak = g(t)+Ukn, i.e. condition (A.3) holds. Furthermore, g(t) = Ci n+t—Ugr, > t—Ug n,
meaning that also (A.4) is satisfied. So far we have proven

Ek:’n = mln{t > Ukm | Ck,n + fék " HHk,n(x) (m)da: —I— Uk:" = t}

The set of higher priority instances Hy, ,(x) varies during time, due to the RR scheduling in the layer and
the PCP. However, Hy, () is contained in the set of instances that either belong to tasks of higher priority
layers, to other tasks of the layer, to 7 or are part of By ,:

Hkyn(ﬂi) C {7'1'7]' ‘ 1< my—_1; or Tij € A, it £ kyori=k, j<mn; or Tij € Bk,n}-
The sum of the scheduling functions of these tasks are a bound:

<fl§k,n (M1, (2) + g (@) + T 0.1 (2) + Mg, , (x)) dz
<Chn + Sty (Uknat) = Wi, (1) + Sk,0.0-1(Ukyns t) = Wi o.m—1(t)

+ Jp, . (@) + T, , (2)) da (4.27)

<Stmpy (Ui t) + Croon+ Ji, . (Wilw) + g, , (2))dz < §(2).

Proposition A.5 applies to ¢(.) and §(.), with zy = &g = Uy, which directly implies (4.26). B

Notice that instead of Sk,uk,n..n(Uk,na t) we could have used Ck,uy, ..n- But the equation would then
be based on a larger function, since Sk, . .n(Ukn,t) < Ckuy ,.m, for t > Uy . It does not make any
difference when considering the execution end of some instance Tk,n With the corresponding interference
period beginning Uy, ,,, but it is of some importance for deriving response time bounds from a family
of MWAF’s. The aim of using Sk,uk,n“n(Uk’n,t) is to avoid conservative bounds.
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Proposition 4.8 Let \; be a layer scheduled according to the Round Robin policy. Suppose a family
of MWAF’s § is known for the task set (Definition 2.9). A bound on the response times of a task
T € A7 18

E — Api(9), 4.28
0 r, Jrgif(q) k3(0) = Ak (0) (4.28)
where
By j(q) = min{z > 0| min(f; ;(z,q), f£ ;(z.q) = =}, (4.29)
fg,j(w? q) = Zi+Zp + 619,0,,]-((1) + fak,o..j(Q)/‘I’ﬂ U+ §1..ml_1(:1:, q), (4.30)

Zy =max{Z'| 3t < Ap, + QM) > Tr.n(0),
Jj,c b Zl(e) =1, i > my}

f2 (@) = Zy + max {Sy(0,u + z) + Sp.am_, (0,u+ z) + 54(0,u) — u} (4.31)

and Ak(q) = {i.; | f2 (@) + Si(w,q) > z,¥ & < Ay j(9)}-
Proof: The execution end formula (4.26) is in the form (A.2), with o = Uy ,, and
ft) = Cruy,n.n(@) + fékn g, (@)dz + S1.m_, (U, t) + fékn i (z)dz.

We intend to apply Proposition A.5. For this purpose we will derive bounds for the different terms that appear
in f(t). For the considered trajectory w let ¢ be the corresponding element from the family of MWAF's for
the task set. Notice that for non-deadline based MWAF's, corresponding sequences of activations Ay ;(q)

with ék,j(q) do always exist.
o Letn & max{Jj | fik’j(q) < Agn — Ugn}. We have
Chug o = SkUkins Ay ) < S0, (A — Urn)*, 0) = Crp.ia)-

o Notice first that = € [Ug p, Akukn[ II(z) = 0. We have then, using Proposition 4.5:

fU x)dr = fA I (z)dz < ,fk’n T (z)dz < (P(Ek_n) — P(Aku,) + 1) - Wy,
k,n k,u k, 5 >

[Ckukn PYATIER TS (Cko @)/ Y] - Uy

[ ] ka Bkn da: S Zk

L4 Sl..ml_l(Uk,'n’t) < gl..ml_l(t - Uk,'naQ)

This leads to the bound f,%jj(.) On the other hand
ka L k(z)de = Sk(Uknst) + Wi(Ukn) = Sk(Ui i, t) + Sk(U, Uk n) ka " g (z
and using 1 = TI(¢) + Ig(¢) + g, (t) + 1 m,_, (1),

:S(Ukn,) (Uk,n — Ukn —I—fU'”’HBk (z d:r—}—ka”Hk d:1:—|—fU'°"H1 . (@)dz
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and that Wlnml—l(Ul?,ln) = Wl..ﬁl_l(Uk,n) =0 and Wk(UIZZn) = Wk(Uk,n) =0,

< m m Uk,n m m
= Sk(Ugmrt) — Uk — UgS,) + fU;Zﬁn g, , (x)dx + Se(Uy, Ukn) + Sty (Ugns Uk n)-
Thus,

fgk,n I (z)dz + fgkm Mg, (z)dz + St.m_, Uk n,t)
= gk(Ufom t) + f[?,znn HBk,n (x)dx + S1..ml,1 (Ulg,bmt) + Sk(UI::r,Ln’ Uk,n) - (Uk,n - Ulzbn)
< fRjt = Uin),

where f,fj() is given by (4.31).
Now, with f(z) = min(f] (), f2 /(z)), we obtain, by Proposition 4.5 Ej , — Un < Eg. On the
other hand Akﬁ < Ak,n - Uk,n- Thus

Rin=FEpn—Akn=FErn—Ukn— (Akn — Uryn) < Ek,fz — Ap s
The remaining question is if Ay ; € Ag(g). Since Wi, (@)(@) > 0 for t € [Ug,n, Aknl,

0<g(t)—(@—Ukn)
< Sl..ml_l(Uk n;t) + Sk,O..n—l(Uk,ru t) + f[t]k,n (ﬁk(m) + HBk,n (SIT))d.CU

)

Sty Uiy ) + Sk (Usmy t) + S (U t) + Zie

<
< SR(tq) + Sk(Ugp, 1)

5 Numerical applications

5.1 Layered priorities

The efficiency of EDF, concerning feasibility is due to the fact that if the execution time of a task
is increased, the resulting additional preemption is fairly distributed over all tasks. Under EDF the
response times increase less for tasks with short deadlines than for tasks with large deadlines. Consider
now the task set given in Table 1.a. Suppose that the characteristics of 79 are difficult to estimate and
that instead of the assumed maximum Cy = 80 it may actually need Cy = 121 units of time. As can
be seen in Table 1.b, the task set is infeasible. But more interesting, all tasks just fail to meet their
deadlines, which is the domino effect (see[11]).

Suppose the tasks 71,... ,77 have hard deadlines, whereas 73, ..., 7o have soft deadlines, which
reflect more the relative importance than a deadline to be met. In this case, a solution could consist
in moving the tasks with hard deadlines in a higher priority layer. As can be seen in Table 1l.c, the
tasks 7q,...,7; are protected, when Cy = 121.

Notice that with this solution it is not necessary to supervise the actual execution times of
T8,.-- ,T10, 1O guarantee that the tasks with hard deadlines are feasible. This may be an interesting
advantage although the layers reduce the ability of EDF to produce a feasible schedule. Furthermore,
compared to FPP (see Tablel.d), EDF reduces the maximal response time of the task 73,... , T1p.
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Layer | Task | C™* | T™" | D™" | bound | laxity Pk | P1.m
£10 A0 800| 700| 637 63| 50 90.8
t9 80| 1000 | 600 | 537 | 63| 8.0 858
t8 35 250 | 250 | 187 | 63 | 140 778
7 20| 400 200 137 | 63| 50 638
6 % [ 150 | 150 87| 63167 588
edf 5 6 150 | 120 571 63| 40 421
t 21 40| 20 i 51 50 381
£3 8| 70| 15 13 2 (114 | 33.1
2 31 20| 10 8 21150 | 21.7
t 21 30 5 3 2T 67 67

(a) Task set under EDF.

Layer | Task | C™ | T™" | D™" | bound | laxity Pk | P1.m
t10 40 800 700 701 -1 5.0 94.9
t9 121 | 1000 600 601 -1 12.1 ] 89.9
t8 35 250 250 251 -1 | 14.0 | 77.8
t7 20 400 200 201 -1 | 5.0 63.8
t6 25 150 150 151 -1 | 16.7 | 58.8
edf t5 6 150 120 121 -1 4.0 421
t4 2 40 20 21 -1 5.0 381
t3 8 70 15 16 -1 114 | 33.1
t2 3 20 10 11 -1 15.0 | 21.7
t1 2 30 5 6 -1 6.7 6.7

(b) Task set under EDF at the limit of schedulability.

Layer | Task | C™** | T™™ | D™" | bound | laxity Pk | P1.m
t10 40 800 700 782 -82 | 5.0 | 94.9
edf t9 121 | 1000 600 682 -82 | 12.1 | 89.9
t8 35 250 250 332 -82 | 14.0 | 778
t7 20 400 200 96 104 | 5.0 | 63.8
t6 25 150 150 56 94 | 16.7 | 58.8
th 6 150 120 26 94 | 4.0 | 421
edf t4 2 40 20 15 5| 5.0/ 381
t3 8 70 15 13 2114 | 33.1
t2 3 20 10 8 2| 15.0 | 21.7
t1 2 30 5 3 2| 6.7 6.7

(c) Tasks protected in a higher priority layer.

Layer | Task | C™a* | Tmn | D™ | hound | laxity Pk | P1.m
t10 40 | 800 700 892 | -192 | 5.0 | 94.9
t9 121 | 1000 600 688 -88 | 12.1 | 89.9
t8 35 | 250 250 195 55 | 14.0 | 77.8
t7 20 | 400 200 96 104 | 5.0 | 63.8
fop t6 25 150 150 56 94 | 16.7 | 58.8
t5 6 150 120 24 96 | 4.0 | 42.1
t4 2 40 20 15 5] 5.0/ 381
t3 8 70 15 13 2114 | 331
t2 3 20 10 5 51| 15.0 | 21.7
t1 2 30 5 2 3] 6.7 6.7

(d) Same task set under FPP.

Table 1: EDF and layers.
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5.2 Round Robin

To give an idea of the behavior of the Round Robin scheduling policy, we will consider the sample
task set shown in Table 2. It is not possible to schedule the entire task set under Round Robin, unless
choosing some ¥y, smaller than 1 to keep the maximal length of the RR cycles small enough. If ¥ =1
V k, then ! = 13. But 7y requires then two RR cycles to complete, and 73 even three. They may miss
their deadlines, because at the release time of an instance the RR scheduler may just have checked the
corresponding task so that the instance must wait an entire cycle before being reconsidered. Feasibility
may achieved with U, < 1 but this seems excessively small compared to the execution time C13 = 100.
For an instance of 73 this could mean more than 100 interruptions.

On the other hand, a layer consisting in the tasks 74, ... , 719 can be scheduled under Round Robin.
The result is shown in Table 3. The column entitled p, gives possible assignment POSIX priorities (a
higher numerical value means also a higher priority in that context). To compare the two alternatives,
we have performed simulation and estimated the mean and maximal response times and its standard
deviation.

It appears that when the layer is scheduled under Round Robin, the maximum of the average
response time jitters in the layer is smaller under Round Robin than under FPP. The response time
jitter is measured by its standard deviation. Under FPP we have obtained 52.8 whereas only 34.7
under RR.

To understand this comparison consider the following. It can be verified that the jitter of the
response time of a task tends to be lower when its priority is higher. Thus, if its average response time
jitter of a task is higher than acceptable, one would increase its priority. But other tasks may then
become infeasible. We conclude therefore that being able to reduce the jitter without using higher
priorities is interesting if small average response time jitter is a matter of concern.

In Table 3, we have chosen as POSIX priority p = 4, to underline that being part of the RR layers
is as being scheduled at lowest priority of the range 4,...,8, for the FPP layer in Table 2. In the
example, the maximum of the average response time jitters of 7g,... , 719 remains close to 50, even if
the priorities 4, ... , 8 are differently attributed to these tasks. On the other hand, if they are scheduled
under Round Robin as in Table 3, then the maximum drops to 34.7, and this without using a higher
priority.

| Layer | p | Tk | Cy | Ty | Dy, | bound | max | mean | stdev | Pk | Pl.m |

13| T1 2 40 10 2 2.0 2.0 0.0 ] 5.0 5.0

12 | T2 3 20 10 5 5.0 3.5 0.7 ] 15.0 | 20.0

11 | T3 1 30 15 6 6.0 2.3 21| 33| 233

10 | T4 7 70 20 13 13.0 9.2 211 10.0| 33.3

91 T5 6| 150 30 19 19.0 9.2 3.7 40| 373

81 T6 11| 300 | 190 34 33.0 | 248 4.8 | 3.7 | 41.0

fpp 7| T7 35| 250 | 230 90 90.0 | 59.0 | 10.5 | 14.0 | 55.0
6| T8 20 | 400 | 230 114 | 114.0 | 50.0 | 246 | 5.0 60.0

51 T9 25 | 400 | 400 167 | 166.0 | 100.0 | 31.0 | 6.2 | 66.3

4| T10 | 40 | 700 | 700 227 | 226.0 | 122.1 | 52.8 | 5.7 | T2.0

3| Ti1| 40| 800 | 800 367 | 338.0 | 1974 | 526 | 50| 77.0

2| T12 | 80 | 1000 | 1100 630 | 624.0 | 376.2 | 130.2 | 8.0 | 85.0

1| T13 | 100 | 1400 | 1400 1392 | 1387.0 | 730.3 | 267.0 | 7.1 | 92.1

Table 2: A task set under FPP only ...
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| Layer | p| Uy |7 | Cu| Ti| Dy |bound| max | mean [stdev| pg | prm |

13 T1 2 40 10 2 2.0 2.0 0.0 5.0 5.0

12 T2 3 20 10 5 5.0 3.5 0.7 | 15.0 | 20.0

fpp 11 T3 1 30 15 6 6.0 2.3 2.1 3.3 | 233
10 T4 7 70 20 13 13.0 9.2 2.1 10.0| 33.3

9 TH 6| 150 30 19 19.0 9.2 3.7 4.0 37.3

4 4| T6 11 300 190 180 162.0 48.7 25.7 | 3.7 | 41.0

4 9| T7 35| 250 | 230 227 | 216.0 | 77.1| 30.4 | 14.0 | 55.0

Rou,nd 4 5| T8 20 | 400 230 227 | 208.0 93.0 326 | 5.0| 60.0
Robin 4 71 T9 25 | 400 | 400 227 | 1950 | 906 | 29.3| 6.2 | 66.3
4| 10 | T10 | 40 700 700 227 | 200.0 | 100.0 | 34.7 | 5.7 | T72.0

3 T11 | 40| 800 800 367 | 338.0 | 1974 | 52.6 | 5.0 | 77.0

fpp 2 T12 | 80 | 1000 | 900 630 | 624.0 | 376.2 | 130.2 | 8.0 | 85.0
1 T13 | 100 | 1400 | 1400 1392 | 1387.0 | 730.3 | 267.0 | 7.1 | 92.1

Table 3: ... and with a Round Robin layer.

5.3 Non-preemptive policies in preemptive layers

It is interesting to notice that priority functions directly allow to define non-preemptive policies in
preemptive layers. In that case, an instance of the layer may be preempted by a instance of a higher
priority layer but not by an instance of its own layer. Such a policy could be useful in the following
situation. Suppose a set of task such as shown in Table 4 should be scheduled non-preemptively for
some reason. As can be seen, the set of tasks consists in two kinds of tasks, whose parameters differ
by an order of magnitude. Under NP-EDF, the "small" tasks 7 and 79 are not feasible because of the
blocking from the "larger" tasks, which appears when a small task is just activated after a "large" task
has started to execute. A solution could consist in grouping the "small" tasks in a higher priority layer
and the "larger" task in a lower priority layer and to schedule the layers preemptively. As can be seen,
the set is feasible, because the "small" tasks are allowed to preempt the "large" tasks. With this policy
some of the non-preemptive behavior is kept. If for example, the "large" tasks need a non-preemptive
resource, which is not needed by the "small" tasks, then no semaphore is required.

Layer | Task | C™e® | 7™ | D™ | bound | laxity Pk | PL.m

taskb 10 70 50 42 81143 | 804
np- task4 15 100 70 59 11 | 15.0 | 66.1
odf task3 12 80 100 60 40 | 15.0 | 51.1
task2 1 9 10 17 -7 1111 | 36.1
taskl 2 8 7 16 -9 25.0 | 25.0

Layer | Task | C™* | 7™ | D™ | bound | laxity Pk | PL.m

np- taskd 10 70 50 42 81143 | 804
odf task4 15 100 70 59 11 | 15.0 | 66.1

task3 12 80 100 60 40 | 15.0 | 51.1
np- task?2 1 9 10 3 7| 11.1 | 36.1
edf taskl 2 8 7 2 51 25.0 | 25.0

Table 4: Non-preemptive policies in preemptive layers.
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5.4 Bounds on blocking periods under PCP

Table 5 shows response time bounds for a set of tasks scheduled under preemptive layered priorities
with priority ceiling protocol for non-preemptive resources. Critical sections induce bounded periods
of priority inversions where a higher priority task is temporally preempted by a lower priority task. In
this section we will illustrate the bounds Zj, (4.16) on page 49 on these blocking periods.

There are two resources (; and (». The highest priority instances that may use (i belong to 7o,
which is scheduled in a FPP layer, A;. Thus, according to (3.39) on page 33, the associated ceiling is

Q') = (1,2).

The highest priority instances that may use (2 belong to tasks which are scheduled in the EDF layer
Ag. Thus, according to (3.40) on page 34, the priority ceiling is based on the shortest relative deadline
of the tasks that may use (3, which is D7y = 250. Therefore,

Q2(t) = (2,t + 250).

As example we derive Z3 according to (4.16) on page 49. Since QX(t) = (1,2) = (1,3,n) V ¢ €
Ry, n € N, the ceiling associated with (; can induce blocking periods for 3. On the other hand
Q2%(t) = (2,t +250) < (1,3,n) and thus the ceiling associated with ¢, is to be ignored. It remains to
determine which instances 7; ; may block an instance 73 ,, by having its priority promoted to Q)I(Ai,j).
These are the instances of 75 and 77, but not 73, since the latter always have a higher priority than
T3,n- Slnce Z} = 2 and Z} = 10, we conclude that the bound on the length of a blocking period is
Z3 = 10.

Layer | Task | ¢™a* | Tmn | pmin zZmaez bound | laxity Pk | PL.m

Pi1 30| 800 | 800 779 615 | 185 | 25| %6.6
Round —

nd =75 50 | 1000 | 1000 71=2 655 | 345 | 5.0 84.1

Robin =g 70 900 | 900 655 | 245 | 78] 79.1

8 50| 400 | 400 77 137 | 263 | 50 713

t7 35| 250 | 250 | Z%=3, Z—10 | 111 | 139 | 14.0 | 663

edf I35 10| 800 | 200 77=5 510 | 581 | 5.0 523

5 6| 150 | 150 71=2 53 97| 4.0 473

I T T 70 50| 40 | 10.0 | 433

oy L 5T 40| 40 i8] 221 50 333

) 57 20 20 7=3 16 1250 283

) 1] 30 30 1] 29[ 33| 33

Table 5: Effects of critical sections under the priority ceiling protocol
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Layer | Task | C™** | T™™ | D™" | bound | laxity Pk | Pl.m
t11 20 | 800 | 800 502 | 208 | 25| 86.6
Round =75 50 | 1000 | 1000 639 | 361 | 5.0 84.1
Robin =g 70 900 | 900 | 639 | 261 7.8 79.1
t8 20 | 400 | 400 115 | 285 50 713
t7 35| 250 | 250 89 | 161 | 14.0 | 66.3
edf t6 40 | 800 | 800 195 | 605 | 50| 523
t5 6| 150 | 150 26 | 124 | 4.0 473
t4 7 70 70 15 55 | 10.0 | 433
fop t3 2 40 40 8 32| 50| 333
£2 5 20 20 6 14 [ 25.0 | 28.3
t1 1 30 30 1 20| 33| 33

Table 6: Same task set but without critical sections

6 Conclusion

In this document, we have illustrated the the concept of priority functions introduced in [8] by defining
the class of layered priority based scheduling policies and we have shown how to realize the Round
Robin scheduling policy in terms of priority functions. Furthermore, we have given a generic form of the
priority ceiling protocol, which can be applied to any preemptive policy. In this context the deadlock
problem with nested critical sections has given some insight into the meaning of the proof of existence
of scheduled task processes, which must be established for any policy defined in the framework of the
trajectory based model. The proof of existence ensures in the particular case of preemptable resource
that no deadlock occurs when the priority ceiling protocol is employed.

An other interesting point to notice is the recurrent use of left or right-continuity in the definition
of the different concepts. If two events have a cause and effect relation, one usually considers that
the earlier event influences the later one. Represented in a discrete event system model, these events
may appear simultaneously, because a model is kept as less complex as possible. In order to obtain
an accurate model, cause and effect relations must be represented in some way by the model. In our
trajectory based model, it is the left or right-continuity of functions defined on Ry that specifies how
simultaneous events influence each other.

We have derived response time bounds for tasks scheduled under layered priorities, Round Robin
and the priority ceiling protocol, to allow feasibility testing. It should be noticed that we do not have
assumed any particular task model. The response time bounds are valid for any task model for which
a family of MWAF’s is known. This approach has the advantage of allowing a separate study of tasks
and scheduling policies, which reduces the difficulty of the analysis.

The basic motivation of this study is to enlarge the class of scheduling policies that can be used
for real-time systems, by providing the analysis that allows feasibility testing. The aim is to enable a
refined choice, which does not only guarantee feasibility, but does also provide additional properties
that improve the quality of a particular system. We have seen for example that Round Robin allows
to reduce (average) response time jitter. Which properties the different policies can provide is an open
question that need further investigation.
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A Miscellaneous properties

In this section we give some technical properties, which are useful for deriving response time bounds.
We omit the proofs; they can by found in [8].

A.1 Fixed point equations and iterative computation

A.1.1 Fixed point

Response times are often expressed as particular solutions of fixed point equations. These equations
generally have more than one fixed point and such that in their neighborhood, the involved function is
not necessarily a contraction. This partially explains why response times appear as "first fixed point
after some point", see (A.1). In this section we give several simple properties of these fixed point
equations which are repeatedly used when deriving response time equations.

Lemma A.1 Let f be an increasing function R — R with f(0) > 0 . Define

X (2>0|f(z) =z} o Einfx  (if X £0).

We have the following properties:
1. If there exists an & > 0 such that f(%) < & then there exists a & < & such that f(%) = Z.
2. If X # () then z* = min X,
3. and f(x) > x for x € [0,z*].
The response time Ry , = x* of a task typically satisfies an equation of the form
¥ =min{z > 0| f(zo+z) =2z} (A.1)

with g = Ay, and f being the appropriate work arrival function. The related execution end E} , =
Ap.n + Ry is also solution of a fixed point equation. On can pass from one to the other, by changing
the dummy variable x = y — xg, which only affects the way of writing, but not the involved function:

y* =mo+a" =min{y >z | f(y) +zo=y}. (A.2)
Lemma A.2 Equation (A.1) is equivalent to (A.2).

Notice that the point xg = Ay, plays the role of a reference epoch after which something is
considered. Furthermore the involved function f does not need to be defined before zy3. But if the
execution end is expressed using the beginning of the appropriate interference period Uy, then the
reference point changes to yg = Uy . The following proposition helps to handle this situation.

Proposition A.3 Let yo < x¢ and g be an increasing function R — R which coincides with f up to
an additive constant such that

9(y) = f(y) +x0 —yo Yy> 0. (A.3)

If

9(y) >y —yo Yy € [yo, w0, (A.4)

then for y* defined in (A.2),

y* =min{y > yo|g9(y) +v0 =y}
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If f can be bounded by another function f then the first fixed point either remains unchanged or is
shifted towards the future z* < 2*. This is typically used when deriving response times bounds with
xg = U, being the beginning of the interference period containing the instance under study and
Zo = 0 being the beginning of the first interference period of the majorizing task process.

Proposition A.4 Let f be an increasing function R —— R with f(i’o) > %o for some Ty € R, and
such that

#F=min{zx > 0| f(Zg+z)=2} (A.5)
exists. If
Voel0,# flwo+a) < fld@o+a), (A.6)
then x* exists and x* < &*. If furthermore
f(w*) =", (A.7)

then % = z*.

Proposition A.5 Let f be an increasing function R — R with f(i¢) > 0 for some 2 € R, and such
that

§* =min{y > &9 | f(y) +30 =y} (A8)
exists. If
Vael0,2*] flzo+z) < fldo+ ), (A.9)

then §* exists and y* — x¢ < §* — Zo. If furthermore

~

f(y* — X + C&o) + g = y*, (AlO)
then §* — o = y* — xo.
Corollary A.6
If f(xo+z) < 0+ p-z, Ve, for some o,p € Ry with p < 1 then z* = min{z > 0| f(z) = =} exists.
A.1.2 TIterations

The iterative computation of response times has been introduced by Joseph and Pandya [6]. Here we
state this method in the framework of our model and give the assumption under which the computation
works.

First remind the following definition. A function f : R +—— R is said to be piecewise constant if on
any interval of finite length there is a finite partition into sub-intervals where the function is constant.

Proposition A.7 Let f : R, — R, be a left-continuous and increasing function with f(0) > 0, such
that z* = min{z > 0| f(z) = =} exists. Let zg € [0,2*[ and x,, = f(zp—1), for n < 1.

(i) The sequence (z,,) converges to x*.
(ii) If f is piecewise constant, then the convergence takes a finite number of steps.

Notice that assuming f to take integer values would have the same effect than assuming it to be
piecewise constant. In view of the application of the model, discrete time and thus discrete WAF
could be justified and furthermore it would not change the feasibility problem [1], but since such an
assumption is not necessary we keep the model as general as possible.
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Index

absolute deadline, 5, 9
activation, 5
time, 5

CAN, 38

completion time, 8

controller area network, see CAN
cycle time, 5

deadline
absolute, 5, 9
relative, 9

deadlock, 30, 37
discrete time, 61

earliest deadline first, see EDF
EDF, 14, 32
equivalent priority assignments, 16
execution

beginning, 8

end, 8

time, 5

feasibility, 9

FIFO, 14, 32

first in first out, see FIFO

fixed point equation, 60

fixed preemptive priorities, see FPP
FPP, 14, 32

highest priority first, see HPF
history, 5
HPF, 12

instance, 5

pending, 8

sub-, 25
inter arrival time, 5
interference period

priority promotion at B, 20
invocation, 5
iterative computation, 61

last in first out, see LIFO

layered preemptive priorities, see LPP
LIFO, 14, 32

LPP, 32

mark, 5
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non-idling, 10

non-preemptable resource, 24, 37

non-preemptive earliest deadline first, see NP-
EDF

non-preemptive fixed priorities, see NP-FP

non-preemptive last in first out, see NP-LIFO

non-preemptive policy, 38

NP-EDF, 39

NP-FP, 39

NP-LIFO, 39

PCP, 24
PCP, dynamic, 24
piecewise constant, 61
point, 5
of accumulation, 5
process, 5
policy
non-preemptive, 38
priorities
layered preemptive, see LPP
priority, 12
assignment, 11
decidable, 12
EDF, 14
equivalent, 16
FIFO, 14
FPP, 14
LIFO, 14
NP-EDF, 39
NP-FP, 39
NP-LIFO, 39
piecewise order preserving, 12
PPEB, 18
Round Robin, 33
ceiling
principle, 25
protocol, see PCP
promotion, see PPEB, PCP
priority inversion, 18
priority promotion at execution beginning, see
PPEB
properly nested resources, 23

recurrent task, 5
relative deadline, 9
release time, 5
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resource, 24
non-preemptable, 24, 37
properly nested, 23

response time, 8

Round Robin, see RR

RR, 11, 33

scheduling function, 7
scheduling policy
deterministic, 7

random, 7
(o, p)-bound, 10
stable, 10

step-function, 6
sub-instance, 25

task
recurrent, 5
task process, 5
scheduled, 7
stable, 10
task sequence, 5
task set, 5
time
activation, 5
completion, 8
cycle, 5
execution, 5
inter arrival, 5
release, 5
response, 8
trajectory, 5

WAF, 6
work arrival function, 6
deadline based, 6
majorizing, 11
family of, 11
workload function, 8
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