N
N

N

HAL

open science

Dynamic Scheduling of Complex Distributed Queries

Luc Bouganim, Frangoise Fabret, C. Mohan, Patrick Valduriez

» To cite this version:

Luc Bouganim, Francoise Fabret, C. Mohan, Patrick Valduriez. Dynamic Scheduling of Complex
Distributed Queries. [Research Report] RR-3677, INRIA. 1999. inria-00072995

HAL Id: inria-00072995
https://inria.hal.science/inria-00072995
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072995
https://hal.archives-ouvertes.fr

I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Scheduling of Complex |
Distributed Queries

Luc Bouganim - Frangoise Fabret - C. Mohan
Patrick Valduriez

N° 3677
Avril 1999

THEME 3

apport

» de recherche

Les rapports de recherche de I'TINRIA

sont disponibles en format postscript sous
ftp.inria.fr (192.93.2.54)

si vous n'avez pas d'acces ftp

la forme papier peut étre commandée par mail :
e-mail : dif.gesdif@inria.fr

(n'oubliez pas de mentionner votre adresse postale).

par courrier :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA research reports

are available in postscript format
ftp.inria.fr (192.93.2.54)

if you haven't access by ftp

we recommend ordering them by e-mail :
e-mail : dif.gesdif@inria.fr

(don't forget to mention your postal address).

by mail :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

‘v

"

. &)

‘Dynamic Scheduling of Complex Distributed Queries

**’#t*

Luc Bouganim™” Frangoise Fabret™ * C.Mohan Patrick Valduriez™
* PRISM Labdratory, ' ** INRIA Rocquencourt, ' IBM Almaden Research,
78035 Versailles; _ France o USA
France : Francoise.Fabret@inria.fr ~ ‘mohan@almaden.ibm.com
Luc.Bouganim@prism.uvsq.fr - Patrick.Valduriez @inria.fr ' '

- Abstract: Database queries over distributed data sources have become increasingly complex.
Execution plans produced by traditional query optimizers for such queries may yield poor
performance for several reasons: the cost estimates may be inaccurate; the memory available at
run-time may be insufficient; and remote data may not be rapidly or predictably accessible. In
this- paper we address the memory limitation and data accessibility problems. We propose to
dynamically schedule complex distributed queries in order to gracefully adapt to the available .
memory and to deal with irregular data deltvery Our approach is both proactive by the careful
step-by-step scheduling of several query fragments and reactive by the processing of these
fragments based on data arrivals. We describe a performance evaluation that shows important
performance gains (up to 70%) in several configurations.

‘Keywords: Query Execution, Scheduling, Data\Accessibility, Memory Consumption

Résumé: Les requétes effectuées sur des sources de donnees dzstrlbuees dev:ennent de plus en’
plus complexes. Les plans d'exécution produit par les optimiseurs de requétes traditionnels

' peuvent étre peu performants pour plusieurs raisons : Les estimations dé coiits peuvent étre
inexactes; la mémoire disponible lors de l'exécution peut s'avérer insuffisante; et les données
distantes peuvent ne pas étre disponibles immédiatement, lorsqu'elles sont deinandées. Dans cet
article, nous nous intéressons aux problémes de limitation mémoire et de disponibilité des
données. Nous. proposons de changer dynamiquement l'ordre. d'exécution des fragments de
requéte complexes afin de s'adapter a la mémoire disponible et aux arrivées irréguliéres des
données distantes. Notre approche est & la fois prévisionnelle, en produzsant un ordonnancement -
pas a pas de plusieurs fragments de requétes, et réactionnelle en exécutant ces fragments en
fonction de l'arrivée des données distantes. Nous décrivons une évaluation de petformances
montrant des gams importants (jusqu'a 70 %) dans plusieurs configurations.

Mots clés : Exécution de requétes, Ordonnancement Dtspombtltte de données, Consommatlon
mémoire

1 Introduction

Classical query processing is based on a well-known distinction between compile-time and runtime. The
query, written in a declarative language (e.g., SQL), is optimized at compile time, thus resulting in a complete
query execution plan At runtime, the query engine executes the query, following strictly the decisions of the
query optimizer.

However, database applications have become increasingly complex’in terms of architecture (e.g., distributed),
query complexity and data volumes. Typical examples are decision support applications (e.g., TPC-D)
executing in a distributed environment or queries for bulk loading data warehouses that access several
operational sites. With such complex database applications, the execution of a query plan as produced by the
optimizer could result in poor performance for three main reasons:

* Accuracy of estimates: Sizes of intermediate results used to assess the costs of query execution plans can
be inaccurate even when detailed database statistics are used [GI97, KD98]. Typically, poor performance is
the consequence of a sub-optimal execution plan, especially for complex queries involving large databases.

* Memory limitation: The amount of available memory at runtime for processing a query may be much
less than what was assumed at compile time. Executing the query “as is” might cause thrashing of the
system because of paging [BKV98, CG96, ND98]. Poor performance thus results from an uncontrolled use
of memory.

e Data accessibility: With respect to remote data access, it is possible that data needed during execution
may be temporarily inaccessible [AFT98, AFTU96, UFA98]. This may happen because (i) the remote data is
the result of a complex sub-query; (ii) the data is produced by a remote site which is overloaded and/or is not
powerful enough; (iii) the network is slow or not reliable. In these cases, the query engine may be stalled,
waiting for some data which is not yet accessible, leading to a dramatic increase in response time.

In this paper,-we address the performance problem due to memory limitation and data accessibility issues.
Inaccurate estimates may require run-time re-optimization [KD98], while memory limitation and data
accessibility problems can be addressed using adaptive execution techniques (e.g., memory reallocation
(BKV98, ND98], dynamic scheduling [AFTU96, ONK+97], and adaptive relational operators [IFF+99]). Run-
time re-optimization and adaptive execution are, in fact, complementary and may be used together in order to
provide good performance [IFF+99]). The problem of inaccurate estimates has been widely addressed by
others. Hence, in this paper, we do not focus on estimation errors. We assume that an efficient execution plan
has been produced at compile-time and that it may have been readjusted at run-time, just before query
execution starts.

Now, consider the execution of a query which is complex in terms of the number of operators and data
. volumes, and which accesses remote data. Our goal is to develop an execution strategy that can dynamically
adapt to limited memory and data unavailability situations for a given query execution plan that is assumed to
be efficient. A classical solution to the data accessibility problem is to reschedule the query plan (e.g.,
changing the originally-decided order of execution of the query operators) when the query engine is stalled.
However, this can increase memory consumption and thus interfere with decisions regarding memory
allocation. This is the reason behind our decision of addressing these two problems jointly.

The strategy that we propose in this paper differs significantly from previous ones. In the following, we briefly
compare our work to the. most related approach called query scrambling [AFT98, AFTU96, UFA98] We
provide further discussion and comparison with other related work in Section 7.

The basic strategy of query scrambling is to dynamically modify the query execution plan in reaction to
unexpected delays in data access. [AFTU96] defines three types of delays. (1) Initial delay: when a delay
occurs for the first tuple only. (2) Bursty arrival: when data arrives in bursts followed by long periods of no

- e

“arrival. (3) Slow delivery: when the a_rrival rate is regular but slower than normal. Depending on the type of .

delay, several strategies have been proposed. To handle initial delay, the authors propose, in-a first phase, to
reschedule the query plan. If the latter is not sufficient, a second phase creates a new execution plan using
heuristics [AFTU96] or a query optimizer [UFA98]. In [AFT98], bursty arrival is considered and dynamic
scheduling is used to hide short repetitive delays. The authors have not provided any solution to the problem of

slow delivery.

The different scrambling techniques are all based on the same concept: react to a significant event (e.g., a
timeout occurring while waiting for remote datato arrive). Thus, scrambling is a réactive approach. Reactive
methods can fail for two reasons. First, the event condition that triggers the reaction, e.g., an appropriate
timeout value, may be difficult to choose and/or tune. Second, the event may be detected too late to enable a
timely reaction. In contrast, proactive approaches (e.g., [CG94]) try to predict the behavior of query execution
and plan ahead (possibly at start-up time of a query execution) for likely contingencies. Proactive methods, in -
turn, may fail in their prediction because of inaccuracy. In our approach, we interleave proactive phases, where
we plan for the near future in order to avoid inaccuracy, and reactive phases in the spirit of [IFF+99].

In our approach, the query scheduler (QS) and the query processor (QP) are responsible for planning and
executing, respectively. The QS has all the knowledge about the execution of the current query and it uses that
information to control the QP. When the query execution begins, the QS chooses a set of independent query
fragments. which can be processed concurrently, and orders the fragments using a priority concept. To

~ compute the priority of a given-fragment, the QS uses heuristics based on its knowledge of the query execution:

plan, the arrival rate of the data, the memory context and the I/O overheads generated. These heuristics allow
the QS to avoid scheduling fragments that may incur more overheads than the gains realized, and to determine
the order of processing the fragments that might be scheduled. Selected fragments are sent to the QP in order
to be processed concurrently. A fragment with a certain priority is considered for processing a batch of data
only if none of the higher. priority fragments has any data to process (i.e., those fragments are temporarily
blocked because of inaccessibility of data). Thus, the QP as a whole is blocked only if there is no accessible
data for all the fragments that are scheduled concurrently. When a fragment ends, the QS produces a new
ordered list of fragments and continues until the query ends. ' '

Thus, our query scheduler acts proacfively by choosing and ordering a set of fragments. Our query processor
acts reactively by processing all these fragments concurrently using their priorities. The triggering event, here,
is the fact that no data is available for one fragment. However, no timeout mechanism is necessary. In fact, the
QP can switch from one fragment to another with negligible overhead and without negative consequences as
the QS ensures that these fragments can be processed concurrently.

By using this strategy, we can address both the data accessibility and memory limitation problems. Moreover,
this solution applies to any of the three previously defined types of data accessibility problems. As our
approach is independent of any timeout mechanism, it is able to hide repetitive short delays, which miakes ‘it
particularly suited to slow delivery cases, e.g., when the remote sites are overloaded. '

The remainder of the paper is organized as follows. Section 2 states the problem more precisely. Section 3
describes the architecture of our reactive-proactive query execution engine. Section 4 presents the heuristics
used'by the query scheduler in order to dynamically optimize the query execution. In Section 5, we discuss _
certain choice of heuristics and present implementation considerations. Section 6 presents the results of a-
performance evaluation which highlight the value of our contributions. Section 7 discusses related work.
Finally, we summarize and provide some concluding remarks in Section 8.

2 Problgm Formulation

In this section, we state explicitly our assumptions regarding the execution system and define more precisely
the model of query processing. These help in making a clear statement of the problem we are addressing.

2.1 Context

We consider the execution of a query which is complex in terms of the number of operators and data volumes,
and which accesses remote data. The remote data may be located on a high-speed local area network (LAN) or
a wide area network (WAN). However, since we consider large queries, it is more likely that the data ‘will be
on a LAN.

Figure 1(a) and 1(b) show a possible architecture and a simple query example. We consider the execution of a

query on a uniprocessor node (e.g., node 4 in Figure 1). Some of the data being processed (e.g., A, B and C) is

the result of sub-queries processed on other nodes (e.g., nodes 1, 2 and 3 in Figure 1). These nodes are

considered as black boxes. We are concerned with the response time for the execution of the query when it is
- executed using a certain amount of shared resources (e.g., CPU, disk, memory).

2.2 Communication Protocol

When the query engine needs some data from a remote site, it sends a sub-query and creates a queue of a given
size in order to buffer the received tuples. The communication manager (see Figure 1(c)) is responsible for
receiving tuples from several remote nodes and transferring them to the appropriate queues. If the relevant
destination queue is full, sub-query processing at the remote node is temporarily stopped as it cannot send
more tuples, until tuples are consumed from that queue. Thus, the communication protocol used is a kind of
“window protocol” [MPTW94]. The technique proposed in this paper is restricted to the case where the data
delivery rate of each remote node is independent of the number of nodes triggered in parallel. Thus, the
network must not be the bottleneck of the system. Moreover, we assume that the query engine has a way to
know the approximate data delivery rate of each node of the system or at least a relative one. These
assumptions are quite realistic in modern distributed environments.

Query Engine

g 2
®) L webs s e
Node 1 Node?2 Node3 Node4

Figure 1: (a) DBMS Architecture (b)a Query Example (c) Communication protoco!

t

.o

2.3 Query Execution Plans

Query processing is classically done in two steps. The query optimizer first generates an "optimal" query

.execution plan (denoted by QEP) for a query. The QEP is then executed by the: query engine which

implements an execution model and uses a-library of relational operators [Gra93]. The optimizer can consider
different shapes of QEP: left deep, right deep, segmented right deep or bushy. Bushy plans are the most
general and the most appealing because they offer the best opportunities to minimize the size of intermediate
reéults [SYT93]. Hence, we consider bushy trees in this paper: .

A QEP is represented as an operator tree and results from.the "macro-expansion" of the join tree [HM94].
Nodes represent atomic physical operators and edges represent dataflow. Two kinds of edges are
distinguished: blocking and pipelinable A blocking edge indicates that the data is entirely produced before it
can be consumed. Thus, an operator with a blocking input must wait for the entire operand to be materialized
before it can start. A pipelinable edge indicates that data can be consumed "one tuple-at- -a- tlme" Therefore,
the consumer can start as soon as one mput tuple has been produced.

‘We consider classical query execution plans with binary, _aSymmeiric relational operators (e.g.; hash-join) that

have one blocking input and one pipelinable input, and produce a pipelinable output.” The QEP also contains
unary operators, €.g., a scan. Finally, the unary operator mar will be introduced in the query plan before each
blocking edge to indicate that materialization must occur at that point. Notice that such a materlallzatlon can
occur in memory or on disk depending on the available resources. ‘

_2.4 Definitions and Notations

We introduce several defmmons and notations that we illustrate with the examples related to- the QEP of
Flgure 2. : '

A B C Virtual relations
=P Blocking edge
— Pipelinable edge

> Pipeline chain ‘

.] p"
(a) Logical execution plan * (b) Physical execution plan _ _ . (©aPC p, C-fragment p’,

) C-complement p’’
- Figure 2: A QEP example '

Depéndencies: A pipeline chain (PC for short) is the maximal set of physical operators.linked by pipelinable
edges. Blocking edges induce dependency constraints between PC’s. Given two PC’s p; and p,, we say that p,
blocks p2 iff there exié_t two operators op; and op, such that op, is in p,, op, is in p, and there is a blocking edge
difect‘ly connecting op; and op,. The ancestors of a PC p, noted ancestors(p), are all the PC’s that block p. The

ancestor relation may be extended to the ancestors* relation in the classical way (transitive closure). A PC p is
C-schedulable if p has no dependency constraints anymore, i.e., the execution of every PC in ancestors(p) has
terminated.-In Figure 2, ancestors(pp) = { ps pc} and ancestors*(pp) = {pa, ps pc}.

Memory consumption: A physical operator can operate in a range of memory allocation situations between
its minimum and maximum requirements with dissimilar performance results [YC93]. Let’s define mem(op) to
be the maxzmum memory requirement of a given operator op. Mem(op) does not include any memory for the
result tuples'. For instance, if op is a hash-join operator, mem(op) is equal to the size of the hash table built
* using the left operand. Given a PC p such that p = {op,, ..., 0pa}, p is M-schedulable if the sum of mem(op;) is
less than the total amount of memory available for the query usage, which we assume will not change during
its execution. In Figure 2, mem(pg) is the size of the hash table for the input relation A (assuming hash-join).

Schedulability and C-fragmentation: A PC p is schedulable if it is C-schedulable and M-schedulable.

PC’s can be further fragmented in order to enable more scheduling possibilities. If a PC cannot be scheduled
because of memory or dependency constraints, a subset of the PC may be scheduled. Given a PC p that is not
schedulable, we associate to p a pair of PC’s p” and p”’. The role of p’ is to retrieve tuples from the input
relation of p, apply the flrst scan operator of p (if any) and materialize the result in a temporary relation that
will become the mput of p”’, which corresponds to the remaining operators of p. In what follows, we call p’

C-fragment(p), and p’’ C- complement(p) The rationale for this decomposition is that p’ has no ancestors and
consumes a negligible amount of memory, and hence is always schedulable.

2.5 Motivating Example

To illustrate the potential gain brought by addressing the data accessibility problem, we now present a simple
example which consists of the sub-tree (A join B) of the QEP presented in Figure 2. Suppose that relation A
contains 10 K tuples and itsdelivery cost (delay) is SO us per tuple, and B contains 20 K tuples and its delivery
cost is 60 us per tuple. Processing the join using hashing will incur a relatively small cost (= 6 ps per tuple)
compared to the data delivery rate. Thus, the response time is dominated by the data delivery time. A
completely sequential execution will give a response time of 1.7 seconds (10 s x 50 K + 20 ps x 60 K = 1.7s).

Now consider the decomposition of the QEP for A join B into PC’s. A better execution strategy than the
traditional iterator strategy is to decompose pjp into C-fragment(ps) and C-complement(pg) in order to schedule
concurrently C-fragment(pp) (which retrieves remote tuples and stores them locally) and p, (which retrieves
remote tuples and builds the hash table). When p, finishes after 500ms, C-fragment(pp) is stopped. ps is then
scheduled concurrently with C-complement(pg) which consumes result tuples produced by C-fragment(pp).
This second phase of the execution is dominated by the retrieval time of the rest of pp, approximately 700ms.
Thus, the total elapsed time with thls scheduling is 1.2 seconds, leading to a gain of 30% by overlapping
delays between A and B.

However, scheduling a C-fragment. induces I/O overhead due to the. partial materialization of the retrieved
tuples. Consequently, such a strategy may be employed only when this overhead is compensated by the gain
obtained with an overlapped execution, .

2.6 Problem Statement

We can now describe the problem we are addressing as follows. We have several producers (the remote sites)
and one consumer (the query execution site). Each producer may have a different and variable delivery rate
~ because of the complexity of the sub-query it is evaluating or because the producer’s site is overloaded. A

' The amount of memory needed by the input and output buffers is neglected to simplify the presentation.

¢

o

sequentral execution, i. e .consuming entirely the data produced by one producer before accessmg another one,
leads to a response time with a lower bound equal to the sumi of the time needed to retrieve the data produced
by. each producer. Thus, if the time taken for data retrieval by.some producer is larger than the processing time
of the data produced by this producer, then the query engine will stall. ~

We claim that there exists an execution strategy that interleaves the processmg of data from several producers
in order to keep the query engine busy domg some useful work, thus reducing the total response time.

Our. objective is therefore to reduce the impact of data accessrblhty problems- by scheduling several PC s
concurrently. To decrease the risk of stalling the query engine, we may schedule as many PC’s as possible.

- Hence, the C-fragmentation of a PC.p into C-fragment(p) and C- complement(p) allows for more ﬂexrbrhty

However, this may cause two problems. First, scheduling C-fragment(p) can incur a high overhead since we

“break the: pipeline chain, forcing materialization of an mtermedlate result. Second, scheduling too many PC]

can result in disastrous performance because.it can cause contention at several levels in the system.

The problem is, then, to select, schedule and execute concurrently several PC’s (i.e., initial PC’s and/or their
decompositions) of a given query execution plan in order to minimize the response time. A crucial point is that
the data delivery-rate is typically unpredictable and may vary during the query processing. Thus, any algorithm

~ that will fix ahead a given scheduling for the duration of the entire query éxecution will be unsatisfactory.

3‘ Dynamic Query:'Processing

This section presents the archltecture of our query engine, the mode of operation of the query processor and

the query ﬁcheduler requirements.

3.1 _Query Engine Architecture -

Our dynamic query processing strategy is both proactive and reactive. The query ‘execution is divided into
several steps. in order to adapt to the dynamlc variability of the data delivery rate. Each step contains a -
proagtive and a reactive phase. Figure 3 presents the general architecture of our query engine.

The query scheduler (QS) implements the proactive component of the system. It uses static knoWledge (e.g.,

the QEP), and dynhamic knowledge (e.g., the current state of each scheduled PC) to compute a scheduling

priority list (SPL), i.e., an ordering of scheduled PC’s. The SPL is sent.to the query processor (QP). The QP
processes concurrently the PC’s of the SPL, reacting to predefined interruption events, thus implementing the .
reactive component of our execution strategy. Figure 3(b) shows how the QP and the QS cooperate.

Query Scheduler algorithm:

® On receive interruption from QP '
1. Compute SPL .
2. . Send SPL to QP

Query Processor aiéorithm:

® Onreceive SPL from QS
. 1. Execute SPL until an
" interruption event arises
2. Send interruption event to QS

Figure 3; (a) Query Engine Architecture and (b)‘Query Execution Algorithm 4

3.2 A Reactive Query Processor

At each execution step, the QP takes as input the scheduling priority list SPL = {pl, ..., pn} produced by the
QS. The task of the QP is to interleave the execution of these PC’s in order to maximize the processor
utilization with respect to the priorities defined in SPL. To do so, the query processor scans the queue’
associated with the PC which has the highest priority. If no tuple is available, then the. QP scans the second
queue in the list and so on. When the QP finds tuples, it processes a certain amount of tuples called a batch.
After each batch processing, the QP returns to the highest priority queue. Thus, the QP always processes the
first PC which has some available batches, following the priorities indicated by the SPL. The rationale behind
considering batches of tuples rather than individual ones is to reduce the potential overheads due to frequent
switches between scheduled PC’s. Thus, the query processor is a reactive process, reacting to variations in data
accessibility. However, the reaction of the QP is immediate (i.e., it considers another.queue) and there is no
timeout protocol.

Moreover, our reactive query processor can react to two other events: EndOfPC and RateChange which may
change the scheduling decisions. The former signals that some PC of the SPL has terminated, and the latter,
that a significant change has occurred in the data delivery rate of some PC of the QEP. This information is
delivered by the communication manager which monitors the data delivery rate of each queue The algorithm
of the query processor is shown below

1. Loop

2. Process a batch of tuples following priorities given by SPL

3. If a PC p has terminated then return (EndOf PC(p))

4. If the data delivery rate of PC p changes stgmf cantly then return (RateChange (p))
5. End Loop

3.3 Query Scheduler Requirements

Considering our query processor algorithm, the QS must produce an SPL which contains a sufficient number
of PC’s in order to prevent the QP from stalling. However, scheduling too many PC’s can cause thrashing
because the interleaved execution of concurrent PC’s can lead to paging [BKV98].

As the QS computes repetitively the SPL, at each step of the execution, there is a clear tradeoff between the
gain brought by an “optimal” schedule and the time to find such a schedule. So, the challenge is to produce a
reasonable schedule in a time interval that is short compared to the average processing time of one execution
step..

4 . Query Scheduler Strategy

Suppose that we want to produce an optimal execution schedule. In the following, we identify the different
parameters that may impact this schedule and derive the complexity of the probleni in a simplified case.

Obviously, the data delivery rates and the query plan (i.e., the query plan shape, the dependency constraints,
the PC processing time, etc.) are crucial factors. Less evident parameters are: the intermediate result sizes
which may impact the overhead induced by the scheduling of a C-fragmented PC and the available memory at
run-time that impacts the number of PC’s which can be scheduled concurrently. Finally, a more subtle
parameter ‘is the memory allocation point (i.e., the amount of memory assigned to an operator) [BKV98,
'YC93] of each operator of the scheduled PC’s. In fact, giving more memory to an operator can speed up its

? Note that some PCs can have local inputs. In this case, the query processor will read tuples from the local disk.
. Conceptually, the local disk can be considered to be a stored queue.

€

o

<}

processing, reducmg the amount of I/Os. However it can prevent- other PC’s from being scheduled leadmg to
more 1/Os. This tradeoff is discussed in the following.

Assuming a simplified case, where all these parameters are known or decided at the begmmng of the
execution, and do not change during the execution, it can be shown® that finding the best schedule for such a
case has a complexity of O(n/)” where n is the number of input relations of the query at the execution site.
Note that this complexity does not take into account the choice of the optimal memory allocation point of each
operator considering this parameter leads to a search space of not fimtely countable choices.

\ Thus the problem is too complex. to search exhaustively for an optlmal solutron _even when not takmg into

account the fact that the data dehvery rate is typically unpredictable.

In the rest of this section, we describe the strategy we use to produce efficiently at each proactrve step a
reasonably “good” SPL based on heuristics. By “good” SPL, we mean an SPL which is as close as possible to
the “ideal” SPL: the one which “keeps the query processor busy doing only useful work”. We first present
some cost functions to quantrfy the data accessibility problem. We then present the strategy we use to.compute
the SPL, based on the-previous considerations.

4.1 Heuristic Cost Functions‘ .

Notations (n, w, ¢): Let p be a PC and R the mput relatlon of p. We associate to p three parameters noted
respectively n,, w,, and c,. These parameters represent respectlvely the number of tuples of R, the average time
interval between the arrival of R tuples (called the waiting time of p), and the average processing time of one

. tuple of R.

~

Critical degree: Let p be a PC. The critical degree of p is given by the formula: critical(p) = n, x (w, - c,).
The PC p is said to be critical if critical(p) is greater than zero. Note that in a distributed environment, it is
likely that any PC of the QEP, consuming remote data will be critical as network times are generally
predommant ‘ ‘

‘

The critical ‘degree represents the total CPU idle time when p is computed with no other concurrent PC’s.
Intuitively, a PC p with a high critical degree, can induce important performance loss if scheduled at the end of
the query plan. Therefore, p has to be scheduled as soon as possible in ordér to have some other PC’s to
schedule concurrently. Nevertheless, it. may happen that p is not schedulable because of dependency
constraints or memory limitations. In order to avoid a late scheduling of p, an alternative solution is to apply a -
C-fragmentation to p and schedule C-fragment(p). However, such a strategy leads to the materialization of an
originally-pipelined intermediate result, thus incurring I/O overheads. The potential gain of such an approach'
is given by the benefit fragme’ntation ratio (bfr).defined as follows: !

Benefit fragmentatlon ratio: Let p bc a PC, (p p) its C- fragmentation IOp the I/O cost for reading or

writing a tuple produced by p’, ¢’ the average processing time associated to p’, and © the selectivity factor of
the scan operator of p’ if any (default value is 1). The benefit fragmentation ratio of p is given by the following

“formula:

bfr() '_ Econo'my achieved by scheduling p w+ ¢’ -0 10,
P Cost inciired by scheduling p' c'+o 10,

' Indeed, assuming that p’ has been scheduled and that ng tuples of p’ have been processed then the cost

incurred by the execution of p’ is (np.c’ + 0 ny 10,) for the scqn processing and the result writing®. The

"* Due to space hmltatlons we have not explained here this complexrty computatlon

‘Asp’is scheduled concurrently with others PCs, we do not include waiting times in the denominator of bfr -

potential economy achieved is ny (w + ¢’) as ny tuples of p have been processed. For these tuples, we will not
have to pay neither waiting times (i.e., w), nor processing time (i.e., c¢’). In contrast, we must deduct from this
value the cost of reading & n, tuples from the local disk which is incurred when executing p”’. :

Benefit thresholds: Obviously a negative bfr means that C-fragmentation should not be considered because
there is no potential economy to be realized, i.e., scheduling a C-fragment may increase the response time (and
the total work). High bfr means that the overhead induced by scheduling the C-fragment is negligible,
compared to the response time improvement. Between these two extremes, the bfr is a continuous function
which is an indicator of the importance of performing C-fragmentation.

Consequently, we define two constant threshold values of bfr named bfr, and bfrs,., which are inputs for our
query.scheduler. bfrm, is the minimum value of bfr(p) (p is a given PC) below which C-fragment(p) should not
be scheduled, while bfree, is the value of bfr beyond which scheduling C-fragment(p) is clearly beneficial (i.e.,
scheduling C-fragment(p) increases the total work while at the same time decreasing the response time
significantly). Finally, a bfr between these two thresholds means that C-fragment(p) should be scheduled as
long as it does not delay the execution of others PC’s which are potentially more beneficial.

4.2 Strategy for Computing a Schéduling Priority List

The QS computes a SPL at each proactive step by using static and dynamic knowledge. The former consists of
the QEP and some heuristic rules, while the latter consists of the current state of the query execution. The QS
first computes the set of schedulable PC’s (given the current execution state), then it establishes a priority
order between these PC’s and finally it uses this order, and memory considerations to extract an SPL from the

set of schedulable PCs. We will now detail each phase, and, for each one of them, point out the heuristics used

and the rationale for these heuristics with respect to our objectives of minimal QEP stalling and maximal
usefulness of the work. '

Phase 1: Schedulable set computation: During this phase, the QS derives a set, named Sset, of schedulable
PC’s by selecting the PC’s that are currently schedulable, and also by fragmenting non-schedulable PCs. The
heuristics used to decide which PC’s ought to be fragmented are given by the following fragmentation rules:

‘Fragmentation rules: Let pbeaPC.
F1:if pis not M-schedulable, then apply M-fragmentation (defined below) to p
F2: if pis critical, p is not C-schedulable, bfr(p) > bffmin, then C-fragment p

Rule FI applies as soon as the current state of the query execution lets the QS conclude® that p will never
become M-schedulable, i.e. the memory needed by p is greater than the total amount of memory available for
the query execution. In this case, following the heuristics devised in [BKV9S, YC93], it is generally more
efficient to break p than to execute it “as is”. Breaking p changes the memory allocation point of the operators
of p. Thus, we apply these heuristics and proceed with an M-fragmentation of p. M-fragmentation consists of

modifying the QEP by replacing p by two fragments. This involves inserting a mat operator at the highest

possible point in p, taking into account the memory requirements of the new fragments. A remarkable feature
is that one of the created fragments is necessarily schedulable.

By creating schedulable fragments using M- or C-fragmentation, rules Fl. and F2 allow more scheduling
flexibility, tending to keep the QP busier doing useful work. With respect to the latter, executing an M-

% Such a decision may be taken based on the actual sizes of the operands which have been retrieved combined with
estimates for the other operands.

10

°

«t

) fragment of p leads to some memory being freed while the usefulness of the execution of the C- fragment of p
‘depends on the value of bfrtp) :

Phase 2: Priority computatwn During this phase, the QS computes a total ordermg of the elements of SSet

‘byapplying sequentially to SSet the following pr10r1ty rules:

Priority rules: Let p: and p, be two schedulable PCs.

Pr1: if there exists some PC p such that p; |s the C -fragment of p, bfr(p) < bfrben, pz is in_ancestor*(p), then pg has
priority over ps .

Pr2 if there eX|sts some PC p that is not schedulable and not C-fragmentable according to rule F2, i p1 is in
ancestor*(p), pz is not in ancestor (p) and p is more critical than pz, then'p, has pnonty over p2

Pr3: if rules Prt and Pr2 do not provnde a pnonty order between p1 and P2, and if ps is more critical than p2 then Py
has pnonty over p2 .

Pra: if there is no pnonty order between p1 and pz w.r.t. rules Pr1, Pr2, Pr3 then let ¢y (resp. c2) be the processing
- time of p1 (resp. p2). If Mem(p1)/p1 > Mem(pz)/pz, then p1 has priority over pg

For instance, consider the example of Figure 2. Suppose that PB and Pc are both critical, P, is not critical and
Py is not C-fragmentable because its benefit fragmentation ratio is too low. Then if Py is more critical than P,

- rule Pr2 says that P, has priority over P¢. On the other hand, if P is more critical than Py, Pc has priority over-

P4 by rule Pr3. Suppose now that the benefit ratio of Py is high, and Pg is more critical than PC, then the C-,
fragment of Pg has priority over Pc, and Pc has prlorlty over Pa.

Rule Prl tends to keep the QP busy: by giving hlgher prioritiesto the ancestors of a non-fragmentable critical
PC, we can unblock more rapidly this PC, so we have more opportunities for the concurrent execution of the
critical PC. The remaining rules tend to maximize the usefulness of the work. '

Phase 3: Scheduling priority list computation: During this phase, the QS computes the SPL that is a subset of
the ordered set produced-in’ the previous phase. To do that, it considers memory usage with respect to the

-priority order established in phase 2. These heurlst1cs are descrlbed by the following rules:

Order prteservmg: Let p1, and P2 be two eIements of SPL. If py has‘pnonty over pz then p1 precedes p2 in SPL 7
Memory Ilmltatlon rule: The, available memory is sufficient to execute concurrently the PC's of SPL, and SPL is
" maximal. More precisely, let ps,, pn be the sequence of PC's in SPL, S= Mem(p:) + ... +Mem(py,)), and M the
available memory. Then (1) S is at most equaI to M and (2) for any PC p of SSet, either p-is in SPL or it is not in SPL
‘because S + Mem(p) is greater than M. - _ ‘ \
* Stability rule: Let p be a PC occurnng in the SPL computed during a certain proactive step, say Si. Suppose that .
Mem(p) is not null. Then if p is schedulable at the proactive step Sis1, the SLP computed at Si.; must contain p.

The last two rules tend to maximize the usefulness of the work.by avoiding pagmg.

!

5 Discussion

In this section, we discuss the rationale behind our approach to decomposing a sequence of operations and
present some important implementation considerations. We also briefly outline the 1mpact of considering
executions of multiple querres Due to space limitations, we are unable to cover these points in great detail.

11

5.1 Considering More Pipeline Chain Decomposition

In Section 2.4, we have defined a possible decomposition by C- fragmentation of a given PC p into p’ and p”’
For simplicity, we restricted ourselves to that decomposmon which has no impact on memory consumptxon
However, other decompositions may bring important gains by reducing significantly the I/O overhead induced
by the scheduling of a sub-chain of p. Handling several possibie decomposmons of a PC (i.e., potentially, after
each binary operator) does not complicate too much the query engme However, it may have some adverse
effects. For a given PC p = {op,, ..., op,}, consider a decomposition p'= {op;, ..., op;} ‘which consumes some
memory. One of the operands needed by p to be schedulable (i.e., for opi, ... , op,) may be blocked by
another PC p,. p2 cannot be scheduled because there is insufficient memory to schedule concurrently p' and
p2. Thus, p' blocks p, because of memory, while p, blocks p because of dependency constraints. With such a
configuration, p; will be scheduled only when p' will have terminated, thus p’ has to terminate and will incur
potentially a high I/O overhead. We have developed a strategy which allows scheduling only those PC
decompositions which cannot conflict with the ancestors of the main PC because of memory considerations.

5.2 Multi-query Execution.

Our strategy can reduce significantly the response time of a query (see next section), at the expense of a
potential increase of total work. As soon as we consider a multi- -query execution context, we must face the
classical tradeoff between throughput and response time. A solution is to play with the value of bfr.i» and
bfrsen in order to schedule only those PC’s with a sufficiently high bfr. We can establish values for these
thresholds by considering the load of the system, i.e., the more the system is loaded, the higher the values for
those thresholds. If both thresholds are set to infinity, C-fragmentation will never occur and hence no overhead
will be caused. Nevertheless, some gain is still possible by interleaving independent PC’s of bushy trees (like
pa and pc of Figure 2).

Anyway, our approach can be beneficial even if it increases the total work as, by reducing the response time, it

also reduces resource contention (specifically, memory and transactional locks [Moh92]) and thus may -

increase throughput [YC93]. /

5.3 Implementation Considerations

In the remaining of this section, we briefly dlSCLlSS implementation considerations relating to process/thread
architecture and adaptation of a traditional query engine to support our approach to query processing.

5.3.1 Concurrent Execution and Thread Architecture

Notice that all of the query engine logic except for that of the commumcatlon manager is implemented in a
. single process. The messages exchanged between the QS and the QP are in fact procedure calls and hence are
not expensive. The communication manager is asynchronous and is implemented in One or more processes.

5.3.2 Necessary Modifications to an Existing Query Engine

Modifying an existing query engine to handle dynamic scheduling can be a difficult task. Here, we show how
this can be done on the commonly accepted iterator execution model {Gra93). In the iterator model, each
operator of the QEP is implemented as an iterator supporting three different calls: open, next and close. The
iterator model is demand-driven, while the execution model assumed in this paper is data-driven. To adapt our
execution strategy to the iterator model, we can create a thread for each scheduled PC and use thread priorities
to produce a behavior similar to the one described in the previous section. Thus, our query scheduler remains
unchanged, and controls the execution using thread priorities and system signals. While this incurs more
overhead than the approach proposed here, it requires much less modifications to an existing query engine.

12

-

nl

a3

6‘ Performance Evaluation

Evaluating the performance of several execution strategles is a d1ff1cult task requiring sound understandmg of
the influence of the parameters of (1) the experimentation platform (e.g., CPU speed, configuration), (2) the
benchmark (queries, relations size, shape of the QEP), and (3) even the execution strategy itself (e.g. threshold
values). The typlcal solution is to use s1mulatlon which eases the generation of queries and data, and allows
testing with various configurations. In contrast, using 1mp1ementat10n and benchmarkmg would restrict the
number of queries and make data generation very hard. : :

We used a performance evaluation methodology smnlar to [BFV96]. We fully implemented our dynamic
execution model and the compared strategies, and s1mulated the execution of the operators. With- this
approach, query execution does not depend on relation content and it can be s1mply studied. by generatmg

‘queries and setting relation parameters (cardinality and selectivity).

In the rest of this section, we describe our prototype and report on performance results focusing only on the
data accessibility problem, i.e., assuming the existence of sufficient memory. We chose to present the results

' for-a single, relatively simple, QEP in order to explam the behav1or of the different strategres and to analyze

the behav1or of our query scheduler. .

In the first expenment we ‘slow down only one relation's arrival rate and measure the response time under

three different query processing strategies. In the second experlment we analyze the influence of changes in

the minimum poss1ble delay between the arrival of two tuples of a relation. The last experiment studles the -
performance gain of our approach when the number of slowed-down relations is var1ed '

6.1 Experimentation Platform

We first describe the QEP used in the experlments Then, we present the strategies implemented in our

_ prototype and the simulation parameters. Fmally, we present the methodology applied in the experiments.

6.1.1 The Query Execution Plan

We chose a fairly simple query' a ﬁve-way join, with 4 medium size (i.e., 100K-200K tuples) input relations

- and 2 small ones (i.e., 10K-20K tuples). The query. was generated using the algorithm of [SYT93] and

optimized in a Volcano-style dynamic programming query optimizer [GM93]. The résulting QEP is shown in
Figure 4. Other queries were tested in the same ‘manner in order to check the validity of the results presented in

the rest.of this section.

A . .
small Medlum (/ Medlum .

» .Small / \

’ Medlum . Medrum
Flgure 4: QFEP used for the expenments B

6:1.2 Experimental Prototype and Execution Strategies

We have 1mplemented the classical 1terator model, resultmg in a- sequential execution, denoted by SEQ, along
with two other strategles DSE and MA The sequentlal execution performance results are easy to predrct :

7

13

analytlcally We use its performance as the baseline, i.e., the performance results when nothmg is done to
handle data accessibility.

We denoted our strategy DSE, Dynamic Scheduling Execution, and based the implementation on the
architecture and the heuristics described in Sections 3 and 4. The different heuristics rules were implemented
in an efficient algorithm which recursively computes the PCs’ priorities, beginning with the most critical PC.

The last strategy is the fairly simple Materialize All, denoted by MA, proposed in [AFT98] which proceeds in
two phases. In the first phase, MA materializes simultaneously on the disk of the query site all the remote
relations. Then, in the second phase, it executes the query with local data stored on disk. Therefore, MA can
overlap the delays of several input relations, however at a high I/O overhead.

Notice that we do not compare with the other policies presented in [AFT98]. In fact, the context and the
problems considered are different. [AFT98] considers distributed queries on a WAN with potentially high
delays between, the arrival of two tuples (on the order of magnitude of a second), while we consider LAN
architectures with very small delays (i.e., in all the experiments, the average delay between two tuples is at
most 0.5 ms).

Finally, we also compute anaiytically a lower bound for the response time, denoted by LWB. For a given

query Q, the lower bound for the response time is: ~ LWB(Q) = ma’{ 2ne, max (”p Wp)]
pe

No execution strategy can’ obtain an execution time lower than LWB. Hence, LWB can be used as a
conservative value for the optimal execution strategy’s response time. Note however that LWB is generally not
obtainable. We include the LWB curves in the figures to get an idea of the quality of our strategy.

The different execution strategies share the simulated operator library, simulated buffer management system
and I/O system. Since the different strategies use the same lower-level code, the performance difference can
only stem from the execution strategles We used classical parameters [YC93] for the simulation. They are
presented below. The prototype is written in C and runs on a Sun Ultra 1.

Parameter Value Parameter Value

CPU Speed 100 Mips Tuple Size 40 bytes
Disk Latency 17 ms Page Size 8 Kb

Disk Seek Time 5ms Move a Tuple 100 Inst.
Disk Transfer Rate 6 MB/s Search for Match in Hash Table 100 inst.

/0O Cache Size 8 pages Produce a Result Tuple 50 Inst.
Perform an 1/O 3000 Instr. Network Bandwith 100 Mb/s

Number of Local Disks 1 20000 Instr.

Send/Receive a Message

6.1.3 Experimentation Methodology

For all the experiments, we induce an average interval between the arrival of tuples of a given relation R,
denoted w,,,(R) by computing for each tuple delivered a w uniformly distributed in the interval [0, 2wavg(R)].
This value represents the per tuple average remote processing time, plus the averaged time to send the tuple to
the query site. We define the basic w,,, value denoted basic_wiy, as the minimum possible value of Wayg.

For the experiment, we fix the basic_w,y, as following: basic _Wayg = [Oyem + Send where 10,,,, is the time to
read a tuple from the disk on the remote site. In fact, the remote processing time to produce a tuple is generally
more than IO, (e.g., if there is a remote selection). Nevertheless, in the experiment, a PC p can be critical
even if we use a basic_w,y, for its input relation (depending on the processing time of p).

14

2]

~

4

®

w

-

In the following experiments, we vary the w,, value for one or more input relations: To simplify. the .
presentation, we say in the following that we slow down these relations. Moreover, we denote by pg the PC
which takes as input the relation R. We fix the threshold values bfr., and bfr,., to respectively 0 and 1 as the
experiment has been done considering \'a single query execution. '

‘Given the random nature of the Wave distribution, yy)e repeat each ‘measurement 3 times and compute an

averaged value of the 3 response times.

6.2 Perfofmanée Comparison with one»Slowed-downA Relation

* For this first experiment, we slow down. only one relation and mcasure the response time of the three

strategies. We perform this experiment slowing down successively each base relation of the QEP to observe
the influence of the position of the slowed-down critical relation in the QEP. Figure 5 shows the performance
results with A and F being the slowed-down relation. The X axis represents the total time taken to retrieve
entirely the slowed-down relation. ‘ A :

As one can expect, SEQ strategy’s response time increases linearly with the slowdown because the query
processor stalls when tuples from the slowed-down relation are delayed. For SEQ, the performance difference
between the two graphics stems from the overlap between processing time and waiting time.

One slowed-down relation: A . A One slowed-down relation: F
25,00 3o e . , S . 2500 ,
—&~—DSE —e—SEQ ‘ . —&—DSE —&—SEQ
g MA serioneec | WB .) S0 —d—MA et LWB
2000 & —— y— & — 20004 & Y- & - —~—b
_ . E z '
o _ ~ o °
® 15.00 / 2 4500
E ' ‘ . =
S 10,00 - - g 10,00 ;
2 . . e 4]
3 .- it &
T ; e ,
5004 g 5,00
AY
0.00 = 4 0,00

2.00. 3.09 4,00 5,00 6.00 7,00 8,00 9.00 2,00 3,00 4,00 6,00 6.00 7.00 800 9,00

Total retrieval time of A (s) Total retrieval time of F (s)

Figure 5: One Slowed—down Relation Experiments

MA’s response time is always worse in these experiments and stays constant with a slight increase after 8s
slowdown. The reason for such bad performance is that only one relation is slowed-down, and hence MA
cannot overlap any delays. It should be noted that after 8s (not shown in the graphics), MA increases linearly
with the slowdown, as the slowed-down relation becomes the bottleneck of the execution.

We can first remark that DSE achieves better performance improverherit with F than with A, specifically when .
the slowdown is high because while p, is not terminated, we cannot schedule pg and pg, which represent
approximately one half of the query execution. This problems does not. happen with pg, which does not block

-any other PC.

DSE shows better performance than MAT and SEQ, which is not surprising as it reacts to data inaccessibility -
by partially materializing A (or F) while executing other PC’s in the background. One can be surprised by the

-important performance gain brou_ght by DSE (around 40 %!) even When'wavg = basic_w,y,. In fact, bdsic'_w,,vg
‘is higher than the time to write a tuple on the local disk (i.e., remote accesses are costlier than local ones,

. ' - BRE

Performance gain of

which is generally the case in the distributed environment). This important result shows the potential gains of
our approach even when no specific problem occurs in the system. In essence, this gain is the same as the one
that can be achieved with asynchronous I/Os in a uniprocessor machine with several disks [MPTW94].

6.3 Influence of the Basic_w,,, value

In this experiment, we want to analyze the influence of the basic_w,y, value. In the previous experiment, we
used an underestimated value of basic_way, in order to isolate the effect of the slowed-down relation.
Figure 6(a) shows the performance gain of DSE over SEQ with respect to the basic_w,, value.

Basically, the performance gain increases with the basic_w,y, value and goes up to 70%. However, we observe
an irregularity when basic_w,, 'is around 35us. Checking the execution traces, we have observed that this
“bad” value is due to the heuristic nature of our QS, i.e., we obtain a better response time with basic_w,, =
63us than with 35ps because the QS has computed a wrong SPL for the latter case.

Varying the basic_w sy, Varying the number of slowed-down relation
70%

80%

70% 65% { —®Total retrieva! time : 100 ms

g
7]
. ~
60% & | —#*Total retrieval time : 5 s
o 60%
9% - . L
o 50% - T— ~—+Total retrieval time : 8 s
0 a0% £
e 8 50%-
7] 30% 1 8
a 9 4s5% 1
20% A ©
10% 1 g 40% 1 M -
0% 1 E, 359%
-10% T v T : 30% —4 - T - T
0 20 40 60 80 100 120 140 . 0 1 2 3 4 5 6

basic_w ayq (us/tuple) Number of slowed-down relations

-

Figure 6: (a) Varying the basic_w,,, value (b) Varying the number of slowed-down relation

6.4 Performance Comparison with Several Slowed-down Relations ,

This last experiment shows the performance gain of DSE over SEQ with respect to the number of slowed-
down relations. We have successively measured the performance by slowing-down 1 relation (A), 2 relations
(A and B), and so on. The number of slowed-down relations is on the x-axis (Figure 6(b)). Each curve
corresponds to a different total retrieval time for the slowed-down relation.

We observe that the performance gain increases with both the number of slowed-down relations and the total
retrieval time of each relation.

6.5 Discussion

The lessons from these experiments are the following: (i) there is potentially an important gain even with a
rather small query (e.g., 4 medium-size relations) and small slowdowns (e.g., around 20us per tuple); (ii) the
performance gain increases with the average slowdown of the relations up to a certain limit (e.g., 70%).

One could be surprised by the bad performance of MA, compared to those shown in [AFT98]. This stems from

the extent of slowdown. In fact, the delays considered here are very small compared to the I/O overhead .

generated by MA (15s are necessary to materialize concurrently all the relations of the QEP). Moreover, MA
can be beneficial only if there are delays to overlap, i.e., it does not attempt to interleave materialization and
normal processing.

)

7 Cornparison with ‘Related Work

- Three strategies descrlbed in the database llterature relate to our work. (1) Re-opum;zmg at run-time or at

start-up time, (2) changing some. phys:cal operators w1thout changmg the query plan, and (3) dynamlcally
changmg the query scheduling. ' »

Re-optimizing the query during its execution can incur high overheads but can result in significant saving,
principally if the join order is sub-optimal [KD98]. Thus, mid-query re-optimization should be invoked when
estimates are highly inaccurate. Re-optimization may also be invoked at query start-up time if the available

. resources (specifically memory) differ greatly from what was assumed during query planning. However,

taking into account resource availability in the optimizer is a-hard optimization problem [GI97] and can make
traditional optimization strategies like dynamic programming [HFLP89] impractical. Finally, we need to have

- somewhat reasonably accurate predictions on data accessibility if we want to take into account this factor

durmg query optmuzatlon but such predictions are rarely possible.

Changmg some operators in the query plan is a more conservative approach, which allows adapting the
resource needs to what is available [IFF+99, BKV98]. For instance, a hash join [KTM83] that was supposed to
execute in one pass can be degraded to a GRACE [KNT89] or hybrid hash join [DKO+84], if available

" memory is insufficient. In the context of the Tukwila project, [IFF+99] proposes the use of specific- non- -

blocking operators (e.g., the double-pipelined hash join [WFA95]) in order to hide data accessibility problems.
As these operators consume more memory, they dynamically revert to blocking operators if sufficient memory

" 1s unavailable. The focus of Tukwila is on data integration, where volumes of data transferred across nodes are
- not likely to be very high, whereas we are concerned with classical distributed databases where such volumes

might be high. In addition, the double pipelined hash join can be used only w1th equi-joins.

" Three related pieces of work that cons1der the memory allocation problem are [BKV98], [ND98] and [YCO93].

In a ‘multi-query environment, [YC93] defines the concept of return on consumption to study the overall
reduction in response times due to additional memory allocation. The objective is to find a near-optimal way to
distribute the available memory over the queries, in order to obtain the best overall reduction in response time.

- Unfortunately, the authors restrict themselves to single-join queries. [ND98] presents a static solution (just

before execution) while [BKV98] presents static and dynamic solutions. The current paper is an extension of '
[BKV98] to the distributed context, with the additional consideration of the data accessibility problem.

[SS96] presents dynamic query scheduling strategies to take into consideration unpredlctable response times

associated with retrieving data resident on tertiary storage devices, and data access reqmrements of queries
posed by multiple users. Reordering executions is shown to be beneficial when access latency to the data in
various parts of the plan tree varies widely and dynamically. -

A collection of related papers have taken into account the data accessibility problem via a technique called

scrambling: [AFTU96], [UFA98], [AFT98). Scrambling involves modifying query execution plans

dynamically when delays are ‘encountered during runtime. [AFTU96] considers two phases of scrambling,
rescheduling and operator synthesis. When encountering delays, rescheduling changes the order of execution

. of the already-existing operations in the QEP. On the other hand, operator synthesis involves creating new
~operators that were not part of the original QEP. While the initial work was based on heuristics, [UFA98]

relies on cost-based scrambling decision making that takes into account total cost or response time. Unlike our
approach, the scrambling techniques rely-on timeouts as a way of detecting delays. Even when only initial
delays are considered, it is shown that, in the absence of good predictions of duration of expected delays, there
are fundamental tradeoffs between risk aversion and effectiveness of scrambling. The authors have also
mentioned that scheduling and memory management issues relatmg to bursty arrivals need to be considered as
part of future work. :

17 ' . !

The approach taken in [ONK+97] to deal with uncertainties regarding processing times (and hence data
accessibility) at the different autonomous nodes in a multidatabase context is to use a dynamic query

-optimization scheme. This method determines the sequence of internode operations, as partial results become -

available during runtime at the different nodes involved in processing subqueries of the global query. All the
subqueries are initiated in parallel at the beginning. A statistical decision mechanism is used and takes into
account the cost of an internode operation, its selectivity and the transmission costs involved. While this
mechanism exploits inherent parallelism in the system as much as possible, unlike our approach, it does not
deal with memory constraints.

The technique of using a single process for processing multiple data streams simultaneously, as data is brought
into database buffers, has been successfully employed in a commercial product (DB2/MVS) to deal with
uncertainties in data retrievals -from different disks even in a centralized environment [MPTWO94]. That
technique is similar in spirit to our way of processing the message queues, as data becomes available.
However, unlike [MPTW94], we associate scheduling priorities with the queues and process them in priority
order as data arrives in the queues in order to minimize overheads.

8 Conclusion

In this paper, we addressed two important correlated problems that arise while processing complex queries in a
distributed environment: data accessibility and memory limitation. With respect to the query processor, our
goal is to avoid, whenever possible, blockage (i.e., waiting for some data that is not accessible) which leads to
a dramatic increase in the query response time. '

We proposed an execution strategy that reduces the query response time by concurrently executing several
query fragments in order to overlap data delivery delays with the processing of these query fragments. Our
approach is both proactive by the careful step-by-step scheduling of several quety fragments and reactive by
the processing of these fragments based on data arrivals. Pursuing this approach, we have made the following
contributions:

(1) We proposed a general architecture where the proactive component, the query scheduler (QS), is
responsible for planning one execution step. The reactive component, the query processor (QP), executes
the orders of the QS and reacts immediately to data unavailability by following the contingency plan
produced by the QS. The QP also detects situations that may invalidate the plan, thus concluding the
execution step.

(2) We highlighted the important parameters that have to be taken into account to generate the plan and
proposed heuristics to produce efficiently a plan which is always executable with the allocated resources
and which is beneficial. ’

(3) We described experiments to validate the approach and the heuristics used, using a prototype
implementation. The experiments show that our approach brings significant performance improvement
(e.g., up to 70%) even when dealing with small data-delivery delays (e.g., 20us per tuple). In contrast,
more aggressive approaches like materialize all (MA) fail since MA may generate more overhead than
gains.

In the near future, we plan to make more exhaustive experiments in order to tune the heuristics used when
producing the plan, considering more complex situations like multi-query executions and/or parallel query
executions in a multiprocessor system.

Acknowledgments: We would like to thank Patrick Valduriez, Olga Kapitskaia, Dennis Shasha, Philippe
Pucheral, and Hubert Naacke for their comments, encouragement and help. .

18

ral

o

Sy

n

9 Blbllography

[AFT98]
[AFTU96]

[BFV96]
 [BKV98)
(CG4]
[CG6]

[DKO+84]

[Gra93]
(GI97]
[HFLP89]
| [HM94]
[IFF-+99]

[KD98]
[KNT89)
[KTM83]

[Moh92]~

- [MPTW94]

[ND98]

L: Amsaleg, M. J. Franklin, and’ A Toma51c Dynamic Query Operator Schedulmg for Wide-
Area Remote Access. Journal of Dlstrtbutea' and Parallel Databases, Volume 6, Number 3,
July 1998.

" L. Amsaleg, M J. Franklin, A. Tomasxc and T. Urhan. Scramblmg Query Plans to Cope With
* Unexpected Delays International Conference on Parallel and Distributed Informanon Systems,

1996.

L. Bouganim, D. Florescu P. Valduriez: Dynamic Load Balancing in Hlerarchical Parallel

Database Systems. Interndtional Conference on Very Large Data Bases, 1996.

L. Bouganim, O. Kapltskala and P. Valduriez. Memory-Adaptive Scheduling for Large Query . '

Execution. International Conference on Informatton and Knowledge Management, 1998.

R. L. Cole, and G. Graefe. Optimization of Dynamlc Query Evaluation Plans. ACM SIGMOD
Internattonal Conference on Management of Data, 1994

P. Corrigan, and M. Gurry What Causes Performance Problems In Oracle Performance -
Tuning, 1996. :

D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, D. A. Wood. Implementatlon
Techniques for Main Memory Database Systems. ACM SIGMOD Intemattonal Conference on

-Management of Data, 1984.

G. Graefe. -Query Evaluation Techniques for Large Databases. ACM Computtng Surveys,
Volume 25, Number 2, June 1993.

M. N. Garofalakis, and Y. E. Ioannidis. Parallel Query Scheduling and Optimization with Time-
and Space-Shared Resources. International Conference on Very Large Data Bases, 1997.

L. M. Haas, J. Christoph Freytag, G. M. Lohman, and H. Pirahesh. Extensible Query Processing
in Starburst. ACM SIGMOD International Conference on Management of Data, 1989.

W. Hasan, and R. Motwani. Optimization Algorithms for Exploiting “the Parallel
Communication Tradeoff in Pipelined Parallelism. International Conference on Very Large
Data Bases, 1994. .

Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Wald. An Adaptive Query Execution .

System for Data Integration. To appear in ACM SIGMOD Internanonal Conference on
Management of Data, 1999. :

N. Kabra, and D. J. DeWitt. Efficient Mid-Query Re-Optlrmzatlon of Sub-Optimal Query
Execution Plans. ACM SIGMOD International Conference on Management of Data, 1998.

M. Kitsuregawa, M. Nakayama M. Takagi: The Effect of Bucket Size Tuning in the Dynamic -

Hybrid GRACE Hash Join Method. International Conference on Very Large Data Bases, 1989

M. Kitsuregawa, H. Tanaka, T. Moto-Oka: Application of Hash to Data Base Machine and Its
Architecture. New Generation Computing, Volume, Number 1, 1983

- C.- Mohan. Interactions Between Query Optimization and Concurrency Control. 2nd

International Workshop on Research Issues on Data Englneerzng -Transaction and Query
Processing (RIDE-TQP), 1992.

"C. Mohan, H. Pirahesh, W. G. Tang, 'and Y. Wang. Parallelism~ in Relational Database
Management Systems. IBM Systems Journal, Volume 33, Number 2, 1994.

B. Nag, and D. J. DeWitt. Memory Allocation -Strategies -for Complex Demsron Support
Queries. International Conference on Informanon and Knowledge Management, l998 A

19

[ONK+97]
[SYT93]
[SS96]
[UFA9S]
[WFA95]

[YC93]

o

F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic Query Optimization in
Multidatabases. Data Engineering Bulletin, Volume 20, Number 3, 1997.

E. Shekita, H. Young, and K. L. Tan. Multi-Join Optimization for Symmetric Multiprocessors. |
International Conference on Very Large Data Bases, 1993.

S. Sarawagi, and M. Stonebraker. Reordering Query Execution in Tertiary Memory Databases.
International Conference on Very Large Data Bases, 1996.

T. Urhan, M. J. Franklin, and L. Amsaleg. Cost Based Query Scrambling for Initial Delays.
ACM SIGMOD International Conference on Management of Data, 1998.

A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallel Evaluation of Multi-Join Queries. ACM
SIGMOD International Conference on Management of Data, 1995.

P.S. Yu, and D. W. Cornell. Buffer Management Based on Return on Consumption in a Multi-
Query Environment. VLDB Journal, Volume 2, Number 1, 1993.

tr.

20

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers l¢s Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhéne-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

=

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr
ISSN 0249-6399

AR
RR_.367 7%

-~

L4

