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De la réalisation des graphes context-free par
des réseaux de Petri

Résumé : Etant donné un graphe de transitions etiquetées fini ou infini,
défini par une grammaire de graphes, nous donnons un algorithme qui décide
si ce graphe est isomorphe au graphe des marquages accessibles d’un réseau
de Petri fini, dont les événements sont étiquetés injectivement, et qui calcule
alors un réseau de Petri minimal le réalisant.

Mots-clé : graphes infinis, grammaires de graphes, réseaux de Petri, régions,
séparation, cones polyédraux, ensembles semi-linéaires
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1 Introduction

The Petri net realization problem for graphs is the question whether a direc-
ted graph labeled on arcs is isomorphic to the reachable state graph of some
Petri net, with events of the net in bijection with labels of the graph. This
problem, restricted to finite graphs, was shown decidable for elementary nets
[ER90a] [ER90b| and for P/T-nets [BBD95| [BD96|). The decision procedures
are based on regions in graphs, or projections thereof on the state graph of a
net with a single place. Regions are implicit places, and synthesizing nets from
graphs amounts to make them explicit. The device of regions was introduced
by Ehrenfeucht and Rozenberg [ER90a|; it was adapted shortly after to fit in
with P/T-nets under the step firing rule [Muk92| or the sequential firing rule
[DS93|. The characterization of graphs isomorphic to state graphs of P/T-nets
found in these papers applies to finite or infinite graphs. It is thus a shortco-
ming of our past attempts on the decision of the Petri net realization problem
to cope with finite graphs only. This may be felt all the more because one can
decide on the realization of formal languages by unbounded Petri nets [Da98].
The decision applies notably to deterministic context-free languages and one
might be tempted to infer therefrom a decision of the Petri net realization
problem for the deterministic context-free graphs [MS85]. We do not know
any reduction of one decision problem to the other; still, our goal is to show
a decision of the Petri net realization problem for context-free graphs. The
main motivation is to explore the border of the domain within which Petri
net synthesis may be helpful. Two specific areas have already been identified
in this domain, with applications to asynchronous circuits [CKKLY96] and to
distributing reactive automata [Cai99]). Solving the net realization problem
for wider classes of graphs or languages will hopefully open new fields of ap-
plication. We present below the finest version of the problem we can solve
today. Deciding on net realization for context-free graphs asks for combining
the methods from [BBD95] and [Da98|, thus mixing linear algebra and opera-
tions on semi-linear sets, with revised techniques for computing finite sets of
generating regions in graphs with countable bases of cycles. The organization
of the paper is as follows.
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2 Regions in Graphs

Graphs isomorphic to reachable state graphs of Petri nets may be characteri-
zed by two regional axioms adapted from Ehrenfeucht and Rozenberg’s axioms
for elementary transition systems. The purpose of the section is to recall this
characterization, appeared with minor variations in [Muk92] and [DS93|. Let
us fix the terminology.

A graph is a transition system G = (S, E,T) where S is a finite or infinite
set of nodes (or states), E is a finite non-empty set of labels (or events),
and T C Sx Ex S is a set of labeled arcs (or transitions). An automaton
is a pointed graph G = (S, E, T, sg) where sq is a distinguished node
(the initial state). In the sequel, s = s’ and s - are abbreviations for
(s,e,5") € T and Is' € S (s = s'). A reachable graph is a pointed graph
such that S = {s|sp — s} where — is the inductive and reflexive

INRIA
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closure of == U{-> |e € E}. An event-reduced graph is a reachable
graph such that every event e € E labels some transition in 7. We are
mainly interested in event-reduced graphs. Let us adapt in consequence
the definition of reachable state graphs of Petri nets.

Recall that a marked Petri net is a quadruple N = (P, E, F, Mj), where
P and E are respective sets of places and events, F' is the flow relation,
and My is the initial marking. The sets P and E are disjoint, markings
are maps M : P — IN, and F is given by a map from (P x E) U (E x P)
to IN. The set P may be infinite unless specified otherwise, but F is
always finite. An event e has concession at marking M if and only if
M (p) > F(p, e) for every place p, in which case it may be fired, resulting
in a transition M [ e > M’ such that M(p) — F(p,e) = M'(p) — F (e, p)
for every place p. Let — be the inductive and reflexive closure of the
relation — on markings such that M — M’ if M [ e > M’ for some event
e. A marking M is reachable if My — M. The reachability set of N,
denoted RS(N), is the set of the reachable markings. An event with
concession nowhere in the reachability set may be considered fictitious
and hence irrelevant. In this paper, we identify the reachable state graph
of the net N = (P, E, F, My) with the graph N* = (RS(N), E',T, My)
such that T = {M 5 M'|M,M' € RS(N) A M [e> M'} and E' =
{e€ E|3IM 3IM' (M,e,M") € T}. Thus, N* is event-reduced.

We state now the central definitions of regions and separation by regions on
which relies the characterization of graphs isomorphic to reachable state graphs
of marked Petri nets.

Definition 2.1 (Regions) A region of G = (S,E,T,sq) is a pair (o,°n)
made of two maps o : S — IN and *n : E — IN such that: i) o(s) > *n(e)
whenever s < in G, and i) there exists a map n : E — Z such that
n(e) + *n(e) > 0 and o(s) + n(e) = o(s') whenever (s = s') in G. The
map 1 is called the justifying map for (o,*n).

Definition 2.2 (Separated graphs) A graph G = (S, E, T, so) is separated
if the following axioms are satisfied for every s,s' € S and e € E:

(SSA) s # s' = o(s) # o(s') for some region (o,°n),

(ESSA) = (s 5) = a(s) < *n(e) for some region (o, °n).

RR n3674



6 Ph. Darondeau

A subset of regions containing enough elements to witness the satisfaction of
both azioms is called an admissible set of regions.

Theorem 2.3 An event-reduced graph is isomorphic to the reachable state
graph of some marked Petri net if and only if it satisfies the separation arioms
SSA and ESSA. An event-reduced graph may be realized by a finite Petri net
if and only if it shows a finite admissible subset of regions.

This theorem was established in [DS93|; we nevertheless state an explicit proof
below, for it may help understanding the paper.

Proof: In order to show that every graph realized by a marked Petri net is
separated, it suffices to observe that every place p of a net N = (P, E, F, M)
determines an induced region of N*, such that (M) = M(p) for any marking
M € RS(N) and *n(e) = F(p, e) for every event e. The justifying map n(e) =
F(e,p) — F(p,e) fits actually with Def. 2.1; SSA holds from the definition
of markings, and FSSA holds, for it expresses merely that an event with
concession at M may be fired at M. The proof for the other direction is slightly
more difficult. Given an event-reduced graph G = (S, E, T, sq), assumed to
be separated, let P be an admissible subset of regions of G and let N =
(P, E, F, My) be the marked net derived as follows. For any region p = (o, *n)
in the admissible set P and for every event e € E, let F(p,e) = °*n(e) and
F(e,p) = n(e) + *n(e) where n is the justifying map for p; also let My(p) =
0(s9). In order to establish the theorem, it suffices to show that G and N*
are isomorphic graphs. By definition, N* = (RS(N), E, T, My), where (M
M') e Tif and only if M € RS(N) and M [ e > M'. Define ~C (S x RS(N))
such that s ~ M if and only if o(s) = M(p) for all regions p = (o,°n) € P.
From this definition, relation ~ is injective. From SSA, as P is an admissible
set, ~~! is injective. Observing that sy ~ My, that G and N* are reachable,
and that N* is deterministic, it suffices to show that ~ is a bisimulation.
Suppose s ~ M. If s = in G then by definition of regions, o(s) > *n(e) for
any p = (o,°n) € P; thus M(p) > F(p,e) and M[e > in N. Conversely,
if M[e > in N then by definition of the firing rule, M(p) > F(p,e) for any
p = (0,°n) € P; thus o(s) > *n(e). As P is an admissible subset of regions of
G, it follows that s % in G. We let the reader verify that s ~ M, s = s' and
M 5 M’ entail s ~ M. [

INRIA
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3 Regions, Cycles and Spanning Trees

Extending to infinite graphs the approach followed in [BBD95]|, we will charac-
terize regions in graphs in terms of cycles and spanning trees. The characteri-
zation thus obtained is generally not effective; it will be refined subsequently
to an effective characterization of regions in context-free graphs. In the sequel,
G = (S,E,T,s) is a fixed event-reduced graph, finite or infinite.

To begin with, we recall some notations and definitions about graphs. Let
0°,0' : T — S and A\ : T — E map the arcs of G to their respective source,
target, and label. A O-chain is a map from S to Z. A 1-chain is a map from
T to Z. A 1-chain is finite if it evaluates to 0 almost everywhere. The res-
triction of the 1-chain ¢ on the subset of arcs 7" is the 1-chain ¢’ such that
d(t) = c(t) for t € T" and /(t) = 0 for t € T\T'. A node occurs on the
1-chain c if it is the source or target of an arc ¢ such that c(¢) # 0. Let 0
be the map from 1-chains to 0-chains such that, for ¢ : T — Z and s € S,
d(c)(s) = {c(t)|o () = s} — S{c(t)|0°%t) = s}. A cycle of G is a 1-
chain ¢ such that 9 (c) is the null map. A spanning tree for G is a connected
subgraph (S, E,0,sy) -thus © C T- with no cycle except the null map. The
remaining arcs in 7 \© are the chords. The Parikh vector of the 1-chain c is
the map ¥(c) : E — Z such that ¢(c)(e) = X{c(t)| A(t) = e} for e € E.

Lemma 3.1 A map n: E — Z justifies a region (c,°n) of G if and only if:
i) n(e)+°*n(e) >0 foralle € E, and
i1) the scalar products o - 9(c) and n - ¥(c) are equal for any finite 1-chain c.

Proof: By linearity, o - 9(c) = n - ¢(c) for every finite 1-chain ¢ if and only if
o-9(t) =n- () for every arc t € T. Now o - 9(t) = (9" (t)) — 0(9°(t)) and
n-1(t) = n(A(t)), hence condition (i) may be rewritten to o(9°(¢)) +n(A(t)) =
o(0%(t)). This is one of the requirements for justifying maps (see Def. 2.1).
The other requirement is exactly condition (i). ]

From now on, let G' = (S, E, 0, sy) be a fixed spanning tree for G; and for

each s € S, let ¢y be the (unique) 1-chain in this spanning tree such that
d(cs) = s — sg. Thus ¢ (t) € {—1,0,1} for t € ©.
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8 Ph. Darondeau

Proposition 3.2 A map n: E — Z justifies regions of G if and only if

* n-1(c) =0 for every cycle c, and

* n-1(cs) is uniformly bounded from below for s € S.

When these conditions are satisfied, the possible values o(sy) and the possible
weights *n(e) for regions (o,°n) justified by n are jointly characterized by the
conditions:

i) o(so) +n-1U(cs) > *n(e) whenever s = in G,

it) n(e)+°n(e) >0 for alle € E.

Proof:

(=) Let (0,°n) be a region of G, justified by a map n : E — Z. For every
cycle ¢ of G, 9(c) = 0 by definition of cycles, and hence 7 - ¥(c) = 0 by
Lemma 3.1. For any node s € S, o(s) — og(sg) = n-1(cs) by Lemma 3.1,
hence —o(sg) is a lower bound for 7-1(cs). Condition (i) may be rewritten to
(s =) = o(s) > *n(e), i.e. to condition (i) in Def. 2.1. Condition (ii) follows
trivially from condition (ii) in Def. 2.1.

(<) One can clearly choose *n(e) € IN for each e € F such that condition
(ii) is satisfied. Assume adequate values have been fixed. As FE is finite and
non-empty and G is event-reduced, and considering that 7 - 1(c,) is uniformly
bounded from below, 7 - 1¥(cs) — *n(e) reaches a minimum in Z when e ranges
over E and s ranges over the nodes such that s = in G. Therefore, one can
certainly choose o(sp) € IN such that condition (i) is satisfied. Assume an
adequate value has been fixed for o(sp). This definition extends to a unique
map o : S — Z such that o - 9(cs) = n-¥(cs) for all s € S. Thus, o(s) =
o(sg) +n - 1(cs). Condition (i) ensures that o(s) > *n(e) whenever s % in G,
i.e. condition (i) in Def. 2.1. Let us now establish condition (ii) in Def. 2.1,
requiring that o - 9(t) = n - ¥(t) for every arc t € T. We proceed in separate
ways for the arcs of the spanning tree and for the chords.

Considering that an arc ¢ of the spanning tree such that 9°(t) = sand 8'(¢) = &'
may be expressed as the difference ¢y — ¢, the relation o-9(t) = n-1(t) follows
directly from the definition o(s) = o(s¢) + 7 - ¥(cs) for the arcs t € O.

For each chord t € T'\©, there exists in G a unique cycle ¢; such that ¢; (') =1
for t' =t, ¢; (') € {—1,0,1} for ¢’ € ©, and ¢; (¢') = 0 elsewhere. The cycle
¢; is called the fundamental cycle of G determined by chord t. Let ¢ be the
1-chain of G’ defined as ¢ = ¢; — t; thus ¢+ is a cycle and 9(c¢) + 9(t) = 0. Let
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9°(t) = s and 9'(t) = &', hence d(c) = s — s'. As c is a chain of the spanning
tree G', O(c) = s — s’ entails ¢ = ¢; — ¢y. The following relations are therefore
satlsﬁed 0-0(t) = —0-9(c) =0-(9(cy) —(cs)) =0 -0(cy) —0-0(cs) =
n-Y(cy)—n-1v(cs) =n-(Y(cy) —w( ¢s)). Considering that c¢; —cy +1 is a cycle,
n-(cs—cy +t) =0 by the hypothesis on 1. Thus - (¥(cy) —1(cs)) = n-¥(t),
and o - 9(t) = n-1(t) as was to show.

In order to conclude the proof, it remains to show that o : S — IV, i.e. that
o(s) > 0 for all s € S. Since any node is the source or target of some arc, this
follows from (i) for source nodes s, and this follows similarly from (i) and (ii)
taken jointly for target nodes s’ such that s = s'. [

The above proposition may be refined, without loss of generality, by restricting
the condition on cycles to bear upon fundamental cycles ¢; (definition given
in the proof). It is well known that the collection of all fundamental cycles ¢;
forms a basis for the finite cycles of G, which means that any finite cycle ¢ of
GG writes in a unique way as a linear combination ), z; c; where ¢ ranges over
T\O, z € Z and z; = 0 for almost every ¢ (see e.g. [Ber70| or [GMT79]). It
follows that the Parikh-vectors of finite cycles are the finite linear combinations
¥(c) =X ze¥(ct). Requiring n-(c) = 0 for all cycles ¢ is thus equivalent to
requiring 7 - ¥(¢;) = 0 for fundamental cycles ¢;.

Summing up, it has been shown that the regions of G may be characterized
from the following:

* a map sending each node s € S to the integer vector ¥(c;) € (E — Z),

* a map sending each chord ¢ € (T\©) to the integer vector ¥(c;),

x a map sending each node s € S to the ready-set R(s) = {e|s >} .

We will show that such infinite data reduce to finite and computable data in
the special case of context-free graphs, yielding an effective characterization of
regions suitable for synthesis algorithms.

4 Context-Free Graphs

A context-free graph is a rooted graph of finite degree such that, by removing
all nodes within fixed distances from the root, one obtains on the whole a finite

RR n3674



10 Ph. Darondeau

number of types of isomorphic connected components |[MS85]. Miiller and
Schupp have shown that context-free graphs coincide with transition graphs
of pushdown automata. This result was refined by Caucal who showed that
transition graphs of pushdown automata coincide in an effective way with
rooted graphs of finite degree generated from deterministic graph grammars
[Cau92]. We will decide on the Petri net realization of context-free graphs.
A workable representation of context-free graphs is needed for this purpose.
Borrowing from [Cau92], we recall below the representation obtained from
uniform graph grammars.

Definition 4.1 (Deterministic graph grammar) Let F be a finite set of
non-terminal symbols with positive arities, let E be a set of terminal sym-
bols with arity two (disjoint from F), and let X be a set of node variables
(v;). A (terminal or non-terminal) hyperarc is a word gz ... Tar(g) headed by
a (terminal or non-terminal) symbol g with arity ar(g). A hypergraph is a
nonempty set of hyperarcs. A deterministic graph grammar on (F,E, X) is a
set of productions fx1...ZTer(yy — Hy, one for each f € F, such that Hy 1is
a finite hypergraph and x; # x; for i # j. Variables occurring on the left of
productions are bound variables. The other variables are free variables.

In the sequel, we identify without saying a graph (S, E,T) with the associated
hypergraph T on ((}, E, S), where each arc s — s’ is represented as a hyperarc
ess’. A deterministic graph grammar G produces from any finite hypergraph
[y a series of hypergraphs I',, as follows. Let I',;; be derived from I, by
substituting for every hyperarc fz! ...z} matching a production fx;...z; —
Hjy a hypergraph Hy [z}/xi]i=1. k [2]/%;] j=k11... in which each free variable x;
of the production is replaced by a fresh node variable z7/. By taking for each
n the induced restriction of T',, on the arcs (i.e. the hyperarcs ex;zo labeled
by terminal symbols e € F), one forms an increasing sequence of finite graphs
Gy,. The graph generated by G from Iy is the limit G = U,,G,, of this sequence.

Theorem 4.2 (Caucal) Transition graphs of pushdown automata coincide
with reachable graphs of finite degree generated by deterministic graph gram-
mars; the correspondence is effective in both directions; further, one may im-
pose on the axiom T'y to be a unary hyperarc foxg such that xo matches the
wnitial configuration of the automaton.

INRIA
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Definition 4.3 (Uniform grammars) A deterministic graph grammar is uni-
form if the following conditions on the arcs and hyperarcs of Hy are satisfied
for every production fx, ...z, — Hy:

1) each bound variable x; occurs on some arc and it does not occur on the
non-terminal hyperarcs;

2) at least one bound variable x; occurs on each arc;

3) every free variable occurring in Hy occurs on some arc;

4) in each non-terminal hyperarc, and in each pair of distinct non-terminal
hyperarcs, all the occurrences of free variables are distinct.

Proposition 4.4 (Caucal) A deterministic graph grammar generating a no-
nempty connected graph of finite degree from a fixed axiom I'y may be trans-
formed to a uniform grammar generating the identical graph from T'y.

One may impose w.l.o.g. on a uniform grammar G that distinct productions
have disjoint sets of free variables, and that each non-terminal symbol f € F
occurs at most once on the right of each production. A convenient presentation
of the generated graph G is then obtained. Denote by X" the set of free variables
of the grammar, and let fyzy be the axiom. If one sets apart the root of the
graph, matched by the variable x(, each node at depth k£ + 1 may be coded by
a word fo... fy such that f;1, € F occurs in Hy, for ¢ < k and x € X occurs
in Hy,. Thus, for any arc s = s’ in G, {s,s'} = {0, foz} or {¢fz,of f'2'} or
{ofzx,pfx'} with x,2' € X, ¢ € F*, and f, f' € F. This way of representing
graphs is adopted in the next section, where all uniform grammars are supposed
to conform to the above specifications. For the sake of illustration, a typical
example is shown below. This example will be continued throughout the paper.

Example 4.5 Let G be the uniform grammar with productions as follows
(x' and z" are bound variables, x; to xq are free variables):

for' — {ax'xq, ra’xs, f1x129}

fia'x" — {ax'xs, foxs, ra'zy, ax’ g, ra"zs, f1 xaxs}

fax! — {bx'xg, ex72!, fyxexr}

fax'z" — {cx'a", ba'xg, exgr!, dagx”, f3xgme}.

The graph G produced from fqxq is depicted in Fig. 1.

RR n3674
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Figure 1: A context-free graph G

5 Regions of Context-Free Graphs

Relying on uniform grammars, we will refine the characterization of regions
given in Section 3 to an effective characterization of the regions of a context-free
graph. This amounts to show that, given a graph G = (S, E, T, s¢) produced
from a uniform grammar G, and given a spanning tree G' = (S, F, 0, sp)
produced from a simplified grammar G’, such that every arc in © connects
nodes at different depths in GG, one can construct:

1) a finite set I' of generators for the Parikh-vectors of cycles in G,

2) a finite automaton A such that G’ may be folded onto A in such a way that
the rooted paths of G' are sent bijectively to the runs of A and that all nodes
s € S sent to the same state of A have the same ready-set in G.

These two items capture exactly the information we need on a context-free
graph for deciding on its realization by Petri-nets.

Let G be a uniform grammar on (F, F, X) with productions fx;...Za ) —
Hy, let X C X be the set of free variables of G, and let G = (S, E, T, so) be
the graph produced by G from the axiom fyzy. Thus, a node ¢ € S such
that ¢ = fy... fr and x € X is at distance k£ + 1 from the root s; = xy, and
the restriction of G on the subset of nodes s’ = ¢ ¢'x’ with ¢ as a left factor

INRIA
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is determined by f; up to isomorphism of graphs. For more accuracy, let us
introduce special operators on graphs.

Definition 5.1 Given a graph G' = (S', E',T") such that S C F*X, and a
word ¢ € F*, let G' < ¢ (resp. G' = ¢) be the induced restriction of G’
on the nodes ¢'z such that ¢' < ¢ (resp. ¢' > ¢). Similarly, let G'/¢p =
(S"/o,E',T"/ @) be the isomorphic copy of G' = ¢ such that ¢’z € S’ is
mapped by the isomorphism to ¢'x € S'/¢ ; and let ¢ -G = (¢ - S",E', ¢ - T")
be the isomorphic copy of G' such that ¢’z € S" is mapped by the isomorphism
topdxreqp-S.

Coming back to the context-free graph G = (S, E, T, sq), one can observe that
G /¢ is determined ezactly by the last symbol in ¢, meaning that G/¢ = G /¢’
whenever ¢ and ¢’ end with the same f € F' (and there exists actually nodes
pz,¢'x’ € S). Considering the extra conditions we have posed on uniform
grammars, one can observe that the ready-set of a node s = ¢ x in G is totally
determined by the free variable x € X'. The ready-set R(z) = R(s) of the node
s = ¢« may be computed from the (unique) hypergraph H; in which z occurs
and the (unique) hypergraph Hp, if it exists, such that f'... ... € Hj.

Owing to these observations, computing from G a regular tree G’ spanning
G and folding it to a finite automaton is straightforward. One introduces for
this purpose a modified grammar G’ with productions fz,...Zu ) — H} in
bijective correspondence with the productions fx;...Z. ) — Hy of G. For
each f € F, H} is a subset of H, containing all the non-terminal hyperarcs and
containing no terminal arc between bound variables, such that each variable
r € X free in Hy occurs on exactly one arc in H} (exy or eyx where e € E
and y € X\X). Let G' = (S, E,0, s¢) be the graph derived from fyzo using
grammar G, then G’ is a tree that spans G, every arc in © connects nodes at
different depths in G, and G’ is a regular tree since G'/¢ is determined exactly
by the last symbol in ¢.

Example 5.2 (continued) Let G’ be the grammar with the productions:
for' — {az'xy, ra’'xe, fiaiTo}

fid'a" — {ax'xs, foxs, ax"zy, ra"zs, fL x4xs}

fo ' = {bil'lilfs, 651?735’, f3 $6£U7}
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14 Ph. Darondeau

faa'a" — {ba'xg, dxgx”, f3xgxe}.
The tree G' produced from fyxq is depicted in Fig. 2.

z0 r fox2 r
77777777777 >~ fofizs
. o
fofizs fofifizs
/k /\
fofifzze fofifazr fofififeze fofififezr
b d b d
fof1f2fazs fofifafsmg fofif1fafzzs fof1f1fafzzo
b T d b ] d
fofifafsfses ! fofif2fsfaxg fofifif2fsfszs ! fofifif2fafaze

Figure 2: A spanning tree G’

All nodes ¢ x that end with the same variable x are roots of isomorphic sub-
trees, because x determines the last symbol f; in ¢. Therefore, G’ may be
folded to a finite automaton with set of states {zo} UX. Let A = ({zo} U
X, EUE",7,29) where E~ = {—e|e € E} and 7 is the set of transitions as
follows (with z,2' € X and e € E):

x let 29 < 2’ (resp. 2o —> 2’) be a transition of A if z is bound to y in Hy,
and eyx’ (resp. ex'y) is an arc in Hj ;

x let x = 2’ (resp. x —> ') in A if some hyperarc f...z... occurs in G such
that z is bound to y in Hy and eyz’ (resp. ex'y) is an arc in Hj.

The regular tree G’ may be folded to A by mapping the arc ¢z = ¢'a’ to
the transition = = 2’ or to the transition z — 2’ according to ¢ = ¢ f or
¢ = ¢ f. Since the ready-set of s = ¢ x is totally determined by z, all nodes
¢ x sent to a common state x have the same ready-set in G.

Example 5.3 (continued) The spanning tree G' from Fig. 2 folds to the fi-
nite automaton A depicted in Fig. 3, with the following ready sets relative to
the original graph G from Fig. 1: R(x¢) = R(z1) = R(xs) = R(zy) = R(z5) =
{a,r}, R(xs) = {b}, R(zs) = R(ws) = {b, c}, R(z7) = {e}, R(wy) = {d, e}
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zg z7

b l-d
Tg zg
4

Figure 3: The folding of G’

It remains to show that rooted paths of G' are sent bijectively to runs of A.
If two different paths were sent to the same run of A, there would exist in G’
terminal arcs ess’ and ess” (or es’s and es”s) such that s = ¢fx, s = ¢ f f'a’,
and s" = of f"z' with f’ # f”. Since distinct productions have disjoint sets
of free variables, this case is not possible: if 2’ occurs both in H}, and in H},
then necessarily f' = f”. Rooted paths of G’ are therefore mapped injectively
to runs of A. In order to show that the mapping is surjective, we suppose for
contradiction that some rooted path in G’ with target node ¢fx cannot be
extended by any arc ¢fx > ¢f f'a' (resp. reversed arc ¢fzx <~ ¢ff'z') even
though = = 2’ (resp. = =% 2') is a transition of A. As z occurs in H; and

x5 2’ (resp. x =5 2'), there must exist a hyperarc f'...z... € H; such that =
is bound to y in Hy and eyz’ (vesp. ex'y) is an arc in H},. Thus, ¢ fx S oof flal
(resp. ¢fx <~ ¢ff'z') is an arc in G'. It follows by an induction on the length
of runs that every run of A is the image of a rooted path in G’. Therefore, the
automaton A fulfils all the requirements.

Let us now start considering cycles and their Parikh-vectors. We saw that

the Parikh-vector of a finite cycle ¢ of G may always be written as a linear
combination ¥(c) = ¥4 2 ¥(ct), where ¢; is the fundamental cycle determined
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by the chord ¢ and z; = 0 for almost all chords. A fundamental cycle ¢; may
be identified, up to the orientation fixed by the chord ¢, with the subgraph of
G with the set of arcs C; = {t'|t' € T A (e: (') =1 V ¢ (') = —1)}. This
identification is often used in the sequel without explicit mentionning. If one
abstracts also from the directions of the arcs, there remains three possible forms
for fundamental cycles ¢;, shown in Fig. 4. In order to obtain a finite set of

o Zo Zo

Figure 4: The possible forms of a fundamental cycle ¢,

generators for Parikh-vectors of arbitrary cycles, we must further decompose
fundamental cycles ¢; as shown in Fig. 5. The idea is to cut fundamental
cycles into slices delimited by similar pairs of nodes at constant depth, where
the similarity type of the node ¢x is x.

—_——

¢f¢’f¢”z” ¢ ¢f¢lf¢lllzlll

Figure 5: A slice in a fundamental cycle
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PN realization of CF graphs 17

Definition 5.4 A cycle ¢; with two pairs of distinct nodes (¢fx,pfz') and
(ofd' fx,pf @' fa') is said to be reducible. The restriction of ¢; on the subset of
arcs with source and target in the subset of nodes {¢"z" | of < ¢" < @fd'f} is
a slice of ¢; (hence slices are 1-chains like cycles). A slice is irreducible if no
proper restriction of this slice is a slice.

Lemma 5.5 Let (¢pfx,ofz") and (¢pfd' fx,pfd' fa') be two pairs of distinct
nodes on a fundamental cycle ¢y, then the set of arcs (Cy < of) U of -
(Cy/ofd f) is a fundamental cycle.

Proof: As G/of = G/of¢d'f, the considered set of arcs is a cycle of G. Let
9O(t) = 6f¢' f¢"s" and O1(t) = 61 [¢"a". As G/6f = G/6f¢'f, this cycle
must contain an arc ¢ such that 9°(t') = ¢f¢"z", ' (') = ¢f¢"2™, and
A(t") = At). As G'/of = G'/ofd'f, t' is a chord of G and the considered
cycle contains no other chord of G, hence it is a fundamental cycle. [

Lemma 5.6 Parikh-vectors of slices of fundamental cycles are Parikh-vectors
of cycles.

Proof: Let (¢fz,¢fx") and (¢fd' fx, of¢d'fz') be two pairs of distinct nodes
on a fundamental cycle ¢;. Let ¢ be the slice of ¢; delimited by these nodes (thus
d(c) = 6’ — 6 ¢/ fa'+ 64 fx— ¢ fx or the opposite). As G/of = G/ofd'f,
the set of arcs (Cy > ¢f) U of - (Cy/of¢' f) is a cycle of G. The Parikh-vector
of ¢ is equal to the Parikh-vector of this cycle. [

Proposition 5.7 Parikh-vectors of cycles are generated by Parikh-vectors of
wrreducible cycles and irreducible slices of fundamental cycles.

Proof: Parikh-vectors of cycles are linear combinations Y, z;1(c;) of Parikh-
vectors of fundamental cycles. By Lemma 5.5 and its proof, ¢(c;) may be
expressed as a finite sum 9(cy) + 3; ¥(¢;) where ¢y is irreducible and the ¢;’s
are irreducible slices of ¢;. [

At this stage, one may observe that an irreducible cycle ¢; has at most 2 x h
nodes with h = (14|F|x |X|?). Considering that two cycles ¢; and ¢y such that
¢t = ¢ - ¢y have the same Parikh-vector (because Cy and Cp are isomorphic
labelled graphs), Parikh-vectors of irreducible cycles form a finite set. This
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finite set may actually be computed. For this purpose, it suffices to proceed as
follows for each possible axiom f...z... with f € F and x € X: derive from
the axiom a graph G}, of bounded depth A using grammar G; derive from the
axiom a spanning tree G}, for G}, using grammar G’; list the irreducible cycles
of G, with respect to G,. This takes finite time since there are finitely many
axioms to consider. One may proceed in a similar way for irreducible slices of
fundamental cycles, but replacing h by 3 x h. Gathering all the Parikh-vectors
listed at either stage, one obtains a finite set {v1,...,7,} C (£ — Z), such
that every Parikh-vector of a cycle writes as a linear combination Y- ; (z; ;)
with z; € Z. These integral vectors may not be linearly independent in £ — ).
If not, Gaussian elimination may be used to extract from this set a maximal
subset of linearly independent vectors I' = {v1,...,7,}. In the sequel, vectors

v € (E — Z) are written as formal sums v =Y, v(e) - e where e ranges over
E.

Example 5.8 (continued) The irreducible cycles of G (see Fig. 1) w.r.t. the
spanning tree G' (see Fig. 2) are depicted in Fig. 6. The respective Parikh-
vectors are from left to right: 0, b+c+e, b+d, 2b+ c+ d+ e, and 2b + 2d.
There s one irreducible slice, determined by nodes with similarity types xg and
Tg, with Parikh-vector b + d. After eliminating the linear dependences, one
obtains T = {b+c+e, b+ d}.

-Mj-/\T/\ N,
AN s

Figure 6: The irreducible cycles of G w.r.t. G’

We are in a position to state a simplified form of the net realization problem
for context-free graphs, using the results from sections 2 and 3 and the special
data elaborated in this section. Starting from an event-reduced graph G =
(S, E, T, sy) defined by a graph grammar, we have obtained:
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PN realization of CF graphs 19

1) a finite set of vectors I' = {vy,...,7,} generating Parikh-vectors of cycles
of G up to an integer multiplication,

2) a finite automaton A = (X, FU E~, 7, z0) with runs in bijection with the
rooted paths of a tree G’ spanning G, such that ¢(c;) =1+ ... + ¢, for a
path ¢, from sy to s with associated Tun p(c,) = Tg — 21 ... —= Ty,

3) amap R : X — P(F) such that s 5> in G & e € R(x,) where z,, is the
target state of the run p(cy).

Using these data, a specialized version of Prop. 3.2 may be stated for context-
free graphs. Let p range over Runs(A), the set of runs of A, with typical
rm p = 19 — T1... - T,. Extending the notation, let d'(p) = z, and
Y(p) =e1+...+en.

Proposition 5.9 A map n : E — Z justifies regions of G if and only if

* n-v=0 for every vy € ', and

* n-(p) is uniformly bounded from below for p € Runs(A).

When these conditions are satisfied, the possible values o(sg) and the possible
weights *n(e) for regions (o,°n) justified by n are characterized by:

i) o(so) +n-¥(p) = *n(e) whenever e € R(9(p)),

it) n(e)+°n(e) >0 for alle € E.

Theorem 2.3 may finally be specialized as follows, relying on lemma 3.1.

Theorem 5.10 G is isomorphic to the reachable state graph of a finite Pe-
tri net if and only if there exists a finite set of regions (o;,°n;), justified
by corresponding maps n;, such that the following azioms hold for all runs
p, 0 € Runs(A) and for every event e € E:

(SSA) p# o' = - 0(p) # mi - U(p) for some i,
(ESSA) e ¢ R(0(p)) = ai(s0) +mi - ¥(p) < *ni(e) for some i.

6 The Polyhedral Cone of Regions

Postponing the search of decision procedures for states separation and for
event-state separation, we refine Prop. 5.9 by showing that regions are all
integral vectors of a polyhedral cone in the rational vector space. The gene-
rators of this cone may be computed from I' and A. In order to prepare the
computation, we decompose runs of A into direct runs and round trips.
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Definition 6.1 A run p is direct if no state x is visited twice. A round trip is
a sequence of transitions xfy — ' ... = 2! (where possibly Ty # x}) such
that o =z, and (v{ =2; N i <j) = (i=0A j=n).

Direct runs and round trips form respective finite sets A(A) = {61,...,0,}
and Q(A) = {w1,...,w,}. Each finite run may be decomposed into a direct
run and a finite multiset of round trips. Thus, the Parikh-vector of a run
p € Runs(A) may be written as a finite sum v(p) = 1(6) + X°; n;9(w;) where
6 € A(A) and nj; € IN for 1 < j < r. Conversely, there exists for each round
trip w € Q(A) some direct run § € A(A) such that 6 w™ € Runs(A) for all
n € IN. The following proposition should therefore be clear.

Proposition 6.2 A map n: F — Z justifies regions of G if and only if

* n-v=0 for every vy € I', and

* n-Y(w) >0 for every w € Q(A).

When these conditions are satisfied, the possible values o(sy) and the possible
weights *n(e) for regions (o,°n) justified by n are characterized by:

i) o(so) +m-0(8) > *nle) for 6 € A(A) and e € R(81(6)),

it) n(e)+°n(e) >0 for alle € E.

A region (o, *n) with justifying map n may be represented as an integral vec-
tor (n;°n;¢) with ¢ = o(sp). Let 77 and *7 range over rational vectors in the
vector space £ — @), and let 7 range over ¢). By Prop. 6.2, a vector (n;°n;¢)
represents a region if and only if it is an integral solution of the finite linear
system with equations and inequations as follows:

-y =0 (for each v € T),

7+ 1¥(w) > 0 (for each w € Q(A)),

I+ 17-1(6) —*n(e) > 0 (for each § € A(A) and for each e € R (91(6)),
fi(e) + *7(e) > 0 and *7j(e) > 0 (for each e € E), 7> 0.

=1

These linear homogeneous equations and inequations define a polyhedral cone
in the rational vector space. By the Farkas-Minkowski-Weyl theorem, this cone
is finitely generated (see [Sch86| p.85-87). A set of generating vectors may ac-
tually be computed by Chernikova’s algorithm [Che65]. Thus, the solutions of
the system are all non-negative linear combinations

(75°7;0) = 2my g % (7375 4)
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with coefficients ¢; € @ of a finite set of rational vectors (7; ;*%; ; ;) compu-
table from I', A(A), R and Q(A). The generated cone does not change under
the multiplication of generators by positive numbers, hence one may assume
w.l.o.g. that the generating set is a family of integral vectors

P={(ni;*n;;e)|1<i<m}.

The regions of G are then all integral vectors in the rational cone cone(P)
generated by P. Generators (7;;°n;;t;) will play a crucial role for deciding
upon separation: since every region in cone(P) is a non-negative linear com-
bination of the regions in P, the separation axioms are satisfied if and only if
each instance of these axioms is satisfied by some region in P.

It is important to remark that two regions of G which are represented by two
opposite vectors must both be equal to the trivial region represented by the
null vector (this follows from Def. 2.1 using the hypothesis that G is event-
reduced). The cone of regions is thus a pointed cone; hence the generating set
P must coincide with the set of all extremal rays, and it is defined uniquely
(up to scalar multiplication of vectors by positive integers). Regions in the set
P deserve therefore to be designated as the canonical regions of G. The Petri
net synthesized from all canonical regions may be designated likewise as the
canonical Petri net synthesized from G.

Example 6.3 (continued) In our example, where E = {a,b,c,d,e,r}, the
cone of regions is defined by the reduced set of equations and inequations:

n(b) +n(c) +n(e) =0, n(b) +n(d) =0,
n(b) >0, n(d) <0, n(r) >0,

t—"*n(a) >0, t—"n(r) >0,

v+ n(a) —*nla) >0, ¢ +n(a) —*n(r) >0,
¢+ 2n(a) — *n(B) > 0,

v+ 2n(a) +n(b) — *n(c) 2 0,

¢+ 2n(a) —n(e) — *nle) > 0,

L+ 2n(a) — n(e) — n(d) — *n(d) > 0,

n(e) +°*n(e) > 0 and *n(e) > 0 fore € E,

¢t > 0.

This cone has 79 rays, which were computed with the help of the Polyhedral
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Table 1: Five extremal rays

‘ ‘ a b c d e r|%a b °c °d ®e °r ‘ L ‘
p|—-10 0 O OO0 1 0O 0 0 0 1|2
p| OO O O O 10 O O O O 0|0
D3 10 -2 0 200 2 2 0 0 0/0
p4] 01 -1 -1 0 0] 0 O 1 1 0 0|0
ps| 00 1 O —-10]0 O O 1 1 0|0

Library [Wil93]. Among these extremal rays are the 5 rays listed in table 1.
The family of all extremal rays defines a marked Petri net with 79 places. The
subnet of the canonical net with places p; to ps is depicted in Fig. 7. The reader

pP1
a 46\;
p3 Cgiﬂz
2
y2s
ps
e

ey
i

Figure 7: A synthesized net N
may verify that the reachable state graph of this subnet, shown in Fig. 8, is in

fact isomorphic to the contexrt-free graph G. The situation is similar for any
larger subnet of the canonical net.
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2,1,0,0,0
(250505050) ( : ”””,”)’””>
a al
r
01,00 " O -~
. al(l,l,l,o,O)
(0,0,2,0,0) (0,1,2,0,0)
/& /x
(0107211’0) < ° (0’0’070’1) (0’1a211’0) e (0’1’0’0’1)
(0,0,2,2,0) Y —— < = (0,0,0,1,1) 0,1,2,2,0) Y—° > (0,1,0,1,1)
b € I d bt N ] d
(0,0,2,3,0) Y____...._.> I (0,0,0,2,1) (0,1,2,3,0) Y- ' (0,1,0,2,1)

Figure 8: The reachable state graph of N

7 Deciding on Event-State Separation

From Theo. 5.10 and Prop. 6.2, the event-state separation axiom is satisfied
in the context-free graph G if and only if, for every event e € E and for
every run p of the automaton A = (X, EU E~, 7, z¢) leading to a state = such
that e ¢ R (x), there exists in cone(P), or yet equivalently in P, some region
(n;°n;¢) such that:

t+m-(p) —*nle) <0 (1)

Since X is finite, we can proceed separately with subsets of runs p with dif-
ferent target states x = 9!(p). So let = be a fixed state in X. The set
of Parikh-vectors 1(p) of runs p € Runs(A) such that z = 9'(p) is equal
to the set of Parikh-vectors v¢(w) of words w accepted by the automaton
A, = (X,E U E~,1,19,2) with x as the unique accepting state. Since A,
is a finite automaton, this set is a semi-linear subset of £ — Z and one can
effectively derive from A, a semi-linear expression of this subset, let

where u; is a vector in (E — Z) and V; is a finite set of vectors in (E — Z).
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We recall that the linear set u + V' *, where V = {v1,...,v4}, is the set
of all vectors u+ Y ;1-:1 n;v; with coefficients n; € IN. The construction
of semi-linear expressions from finite automata on free commutative mo-
noids is explained in ([Par61],[Par66]). One may also consult [Har78|.
The construction may be extended to finite automata on arbitrary com-
mutative monoids. The correspondence between rational subsets and

semi-linear subsets is indeed effective in any commutative monoid, and
in particular in (E — Z) ([ES69], [Reu89)]) .

Since F is finite and B, is a finite union of linear sets, we can proceed separately
with each event e € F and with each linear subset u; + V,* of B,. Let e be a
fixed event in F, such that e ¢ R (x), and let W = u + V* be a fixed linear
subset of By, with V' = {vy,...,v,}. We should decide whether there exists for
each tuple (ny, ..., n,) of non-negative integers some canonical region (n;°n;¢)
in P such that:

q
s+ 3 gl ) — "n(e) < 0 @)

7=1
Claim 7.1 If there exists for each tuple of non-negative integers (ni, ..., ng)

some region (n;°*n;t) € P such that inequation 2 is satisfied, then there erists
a region (1;°n;1) € P such that inequation 2 is satisfied for all (nq,...,ng).

This claim is based on the following lemma and corollary.
Lemma 7.2 n-v; > 0 for any region (n;°n;t) € P and for every v; € V.

Proof: Suppose otherwise. By definition of A, and B,, for every n € IN,
u + nv; is the Parikh-vector of some run p,, € Runs(A). Thus, 1 -(p) is not
uniformly bounded from below for p € Runs(A), contradicting Prop. 5.9. =

Corollary 7.3 Let (n;°n;t) be a region in P such that inequation 2 holds for

(n1,...,mq), then it holds for all (n}, ..., ng) such that n’;, < n; for all j.

Proof of the claim: Let P’ C P be a subset of canonical regions such that
inequation 2 may be satisfied for all tuples (ni,...,n,) by regions in P, and
let p=(n;°n;t) € P'. We show that if P’ contains at least two regions, the
supposed property of P’ holds for a strictly smaller set P”. As P is finite, the
claim follows by induction on |P’|. We proceed by case analysis.
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If p does not contribute at all to the satisfaction of inequation 2, the pro-
perty assumed for P’ must hold for P" = P'\{p}.
If all instances of inequation 2 are satisfied by p, the property holds for

PII — {p}
In the remaining cases, there must exist some tuple (ny,...,n,) and some
k€ {1,...,q} such that:
v+n-u+ Y -y ni(n-v;) —*nle) <0, and
v+ foing(n-vg) +m-vp = *nle) > 0.
Thus necessarily 7 - v, > 0. As a consequence, whenever

vhnu+ X oy ni(n-vs) — *nle) <0

for some tuple (n},...,n;), there exists m € IN such that
vhmeu+ X oy ni(n ) +m(n - o) — *nle) > 0.
Now consider the tuple (nf,...,ng_y,n% +m,np,q,...,ng) .

/.o /.

From the assumption on P’, there exists p’' = (n';*n’ ;') € P’ such that:

VA w4+ d 0l vp) +m(n’ - ve) — ' (e) < 0.

Therefore, by lemma 7.2 and corollary 7.3:

VA w4+ do ni(n o vy) — ' (e) <0,

and the supposed property of P’ holds for P" = P'\{p}. ]

Proposition 7.4 A region (n;°*n;t) € P solves all instances of the inequation
2 if and only if t+n-u —°nle) <0 and n-v; =0 for every j € {1,...,q}.

Proof: Straighforward from lemma 7.2. [

It follows from claim 7.1 that one may decide whether event-state separa-
tion holds in G by checking canonical regions in the finite set P against the
conditions of Prop. 7.4 for each x € X and for each linear subset u + V* of
B, =UY_, (u; + V;*). Altogether, we have established the following.

Theorem 7.5 Given a context-free graph G, one may compute a finite set of
canonical regions P such that the event-state separation ariom ESSA is valid
with respect to regions of G if and only if it is valid with respect to regions in
P, and one may decide on the latter.
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Example 7.6 (continued) Letx = zg, then B, = (2,0,0,—1,—-1,0)+{(0,0,
0,0,0,0,1),(0,0,0,—1,0,0)}* where events in E = {a,b,c,d,e,r} are enume-
rated in this order. We search for a canonical region (n;°n;¢) in P such that:
t+2n(a) —n(d) —n(e) —*n(c) < 0, n(d) = 0 and n(r) = 0. These conditions
hold for p3 in the table, hence event-state separation holds in G for the event
c at all nodes ending with x = xg.

8 Deciding on States Separation

From Theo. 5.10 and Prop. 6.2, the states separation axiom is satisfied in G if
and only if, for any two different runs p, p’ € Runs(A), there exists in cone(P),
or equivalently in P, some region (7;°n;¢) such that:

v4n-Y(p) #+n-(p) (3)

As a preliminary to deciding on states separation, we construct from A =
(X, FUE~,T,20) a finite automaton A™ that recognizes all differences 1(p) —
¥ (p') between Parikh-vectors of different runs p, o' € Runs(A).

The set of states of A™is X x X x {0,1,2,3}. Each state (z,2’,7) repre-
sents the respective states  and 2’ of two copies of A run independently and
produces a comparison between their respective runs p and p’ as follows: i = 0
if p = p', 1if p is shorter than p’, 2 if o' is shorter than p, and 3 if p # p’ and
both runs have identical length.

The alphabet of A™ is the subset of vectors ¥ € (E — Z) such that the
absolute values |W(e)| of their entries add up to a sum bounded by 2. Each
vector U measures the difference added to ¢(p) — (') by firing at most one
transition in each of the two copies of A. For convenience, these vectors are
denoted below as 0, ¢, or 1 — g9 (where €,£1,69 € FUE~ and e = —(—e) for
all e € F). Thus for instance, (—e;) — (—e3) denotes the vector ¥ such that
U(e;) = —1, ¥(ey) = 1, and ¥(e) = 0 for the remaining events.

The initial state of A™ is (xg, zo,0), meaning that both copies of A are in
the initial state. The accepting states of A™ are all states (x,2’,7) with ¢ # 0,
meaning that the runs of the two copies of A have already diverged (possibly
by stopping one run and continuing with the other).

The transitions of A™ derive from the transitions of A as follows. For all
transitions (x = 2'), (z; = z}), (z2 = z5) in 7, and for each state 2" € X,
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Table 2: Transitions of A™

(x,2,0) LN (', 2, 0)
(x,z,0) = (', 2,1)
(x1,2",1) 2 (2f),2",1)
(x,z,0) N (z,2',2)
(2" 29,2) =2 (2",2,2)
(1,29,0) 2222 (2),2h,3) if &1 # &g or 2| # ),
(x1,29,3) =5 (2, 75,3)
(x1,2",3) = (2f,2",1)
(2", 29,3) ==& (2",2,2)

let the transitions described in table 2 be transitions of A™.

As a finite automaton, A ™ recognizes a semi-linear subset of (EF — Z), let
B = UL, (s + 1))

This semi-linear expression and the finite set P of the canonical regions are
adequate data for deciding on states separation. The decision is cut in two
stages. One decides first from the data B™ whether any two different runs of
A have different Parikh-vectors. If this is the case one decides next from P
and B™ whether any two Parikh-vectors of different runs ¢ (p) and ¢ (p') are
separated by some canonical region (n;*n;t) € P such that n-1(p) # n-¥(p).
Both stages of the decision rely on the effectiveness of the boolean operations
on semi-linear subsets of (E — IN) and (F — Z). The reminder below may
be skipped by readers familiar with this subject.

Ginsburg and Spanier proved in [GS64] that semi-linear subsets of (£ —
IN) form an effective boolean algebra, which means that their inter-
section and complementation are computable. The same authors gave
in [GS66| an effective correspondence between semi-linear subsets and
Presburger subsets, i.e. subsets of (E — IN) definable in Presburger’s
arithmetic. The algebraic results established in [GS64] were extended
soon after by Eilenberg and Schiitzenberger who proved that semi-linear
subsets form a boolean algebra in any finitely generated commutative
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monoid [ES69]. This covers the case of (E — Z), but the constructions
given in [ES69] are not immediately effective.

An effective construction of the intersection of semi-linear subsets of
(E — Z) is given in [Reu89], relying on a lemma from [GS64] streng-
thened in [ES69]. The import of the lemma is as follows: given a ho-
momorphism of monoids ¢ : (B — IN) — (Ey — Z) and a vector
w € (By — Z), the inverse image ¢~ (w) of w under ¢ is a semi-linear
subset of (E1 — IN) and it is effectively computable. From this lemma
follows an important corollary (used in the sequel): the set of solutions
in (E — IN) of a system of linear inequations with coefficients in Z is
semi-linear and it can effectively be computed [Reu89]. The set of non-

negative solutions (ni,...,nx) of an inequation zinq + ...+ zxgng > 0 is
actually semi-linear, and such is by the lemma the set of non-negative
solutions (n1,...,nk) of an equation z1ny + ...+ zxng = 2 .

Although we do not need complementation in (E — Z), one may prove
easily that semi-linear subsets of (E — Z) form an effective boolean
algebra from the similar property of semi-linear subsets of (E — IN).
The idea is to decompose each semi-linear subset W C (E — Z) into a
finite union of subsets

W=U{(xW¢|(: E—{-1,+1}}

such that W, = ((* W) N (E — IN)

with ¢« W = {(*w|we W}

and (¢ *w)(e) = ((e) x w(e) forw e W and e € E.

It is easily seen that each set { * W is a semi-linear subset of (E — Z),
hence W¢ is also (as an intersection of semi-linear sets).

From the definition, W, C (E — IN), hence each W¢ is a semi-linear
subset of (E — IN).

As a consequence, its complement CW¢ with respect to (E — IN)

is semi-linear and it may be computed.

Now observe that the complement of { * W, with respect to (£ — Z)
may be expressed as (¢ *x CW¢) UV,

where V¢ is the set of vectors

v: E — Z such that (¢ *v)(e) < —1 for some e € E.

It is not difficult to see that V; is semi-linear.
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We come back to the decision of states separation. The first stage is straight-
forward since the singleton set {0} is a semi-linear subset of (E — Z) and
the intersection of semi-linear subsets is effective. Thus it suffices to compute
a semi-linear expression of B™ N {0} and to check that it differs from the
null expression (the union of the empty family of linear subsets) to decide that
two different runs p, p’ € Runs(A) have always different Parikh-vectors. Since
condition 3 cannot be satisfied when (p) = 1¥(p'), states separation cannot
be valid in G if the decision produces a negative answer.

Assuming that 1(p) # ¥(p') for any two different runs p, o’ € Runs(A), we
enter now the second stage. Recall that B™ denotes the set of differences
¥(p) — Y(p') between Parikh-vectors of different runs p, p’ € Runs(A). One
has to decide whether there exists for each vector w € B™ some canonical
region (1;°n;t) € P such that n-w # 0. Seeing that B™ is a finite union of
linear subsets, one can deal separately with each linear subexpression.

Let W = u + V * be a linear subexpression of B™, with V' = {vy,...,v,}. One

has to decide whether there exists for each tuple (n4,...,n,) of non-negative
integers some canonical region (7;;°n;;t;) in P such that:
q
i u+ Y ni(ni-vj) #0 (4)
7=1

For each canonical region in the set P = {(7;;°n;;t) |1 < i < m}, let U; =
U U U where:

q
U = {(n1,-oyng) [ u+ Y- ni(n; - v5) > 1}
Jj=1

q
Ur ={(m,...ong) [mi-u+ ) ny(n - vy) < 13
=1

Thus Uj is a semi-linear subset of IN? (as a 131ni0n of two semi-linear sets). Since
semi-linear subsets of IN? form an effective boolean algebra, one may compute
a semi-linear expression of the set INY\ U7, U;. Checking that this expression
differs from the null expression allows to decide that condition 4 may actually
be satisfied for all (ny,...,n,). Event-state separation is valid in G if and only
if the answer to this question is positive for all linear subexpressions u + V*
of B =U%_; (u + V). Altogether, we have established the following.
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Theorem 8.1 Given a contert-free graph G, one may compute a finite set of
canonical regions P such that the states separation axiom SSA is valid with
respect to regions of G if and only if it is valid with respect to regions in P,
and one may decide on the latter.

Example 8.2 (continued) In our running example, B™ = (L) U (—¢)(L)
where L € Rat((E U E~)*) is the language defined by the reqular expression

r+r ) (r+rt+(a+a®>+b)b*+(a ' +a?+b*)ed* +dd*) .
By developping this expression, one obtains 9 (X2) linear subsets of B™. The
summand Ly = (r +r71)* a2ed* produces for instance the linear set

¥(L,) =(-2,0,0,0,1,0)+ {(0,0,0,1,0,0),(0,0,0,0,0,1),(0,0,0,0,0,—1) } *
One has therefore to decide whether there exists for each tuple (nq,mn2,n3) of
non-negative integers some canonical region p = (n;°n ;1) in P such that:

—2n(a) + nle) +n1 x nle) +nz X n(r) —nz x n(r) #0 .
All instances of this relation are satisfied when selecting p = py (or p = ps)
from table 1.

9 Eliminating Redundancy

From theorems 2.3, 5.10, 7.5 and 8.1, one may decide on the Petri net reali-
zation problem for the class of event-reduced context-free graphs, as our main
purpose was to show. However, we have not taken care of producing irredun-
dant Petri net realizations of context-free graphs, as may be remarked from
our example. Actually, the decision method outlined in the last two sections
contents itself with checking that the whole set of canonical regions of the given
graph is admissible. This weakness can be remedied by eliminating redundant
regions from P = {py, ..., pm} according to an iterative process. At the initia-
lization of the process, let Py = P. At the i*" step in the iteration, one checks
whether P;_1\{p;} is an admissible subset of regions, following the procedure
detailed in sections 7 and 8. If this is the case one sets P; = P; 1\{p;} for the
next step in the iteration, else one sets P; = P; ;. The process halts with the
result P,,. From Theo. 5.10 and Prop. 6.2, the Petri net synthesized from the
subset of regions P, is a minimal net realization of G: no proper subnet of
this net is a realization of G. Our final result is therefore the following.
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Theorem 9.1 Given an event-reduced context-free graph, one may decide whe-
ther it can be realized by some (finite) Petri net, and one may compute in this
case an irredundant net realization of the graph.

10 Open questions

One can decide on the Petri net realization problem for context-free graphs.
Could one decide whether the reachable state graph of a net is contextl-free ?

The state graph of a Petri net is a synchronized product of state graphs of
one-place subnets, and these are context-free. Could one decide upon the net

realization of a synchronized product of context-free graphs 7 (a question by
Caucal)

One can decide on Petri net realization for context-free graphs and for deter-
ministic context-free languages. Could one decide on Petri net realization for
incomplete specifications combining assertions on behaviours and assertions on
states ?

We designated the Petri nets which derive from the canonical regions of a
context-free graph as canonical nets. Do these nets enjoy special properties,
and could their construction be turned into a functor ?

Extending the definition of regions and the construction of canonical nets in
order to take weighted inhibitor arcs into account is straightforward. Which
decision problems can be solved in this variant framework ?

Answering some of these questions will be the goal of further research.
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