Sign Methods for Counting and Computing Real Roots of Algebraic Systems

Abstract : In this report, we implement the concept of topological degree to isolate and compute all zeros of systems of nonlinear algebraic equations when the only computable information required is the algebraic signs. The basic theorems of Kronecker-Picard theory relate the number of roots to the topological degree. Recent fast methods, which work over fixed precision, are applied to determine the sign of algebraic systems. They are then combined with grid methods in order to estimate the total complexity of computing the topological degree.
Type de document :
Rapport
RR-3669, INRIA. 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00073003
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:34:05
Dernière modification le : mercredi 17 octobre 2018 - 17:02:07
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:31:03

Fichiers

Identifiants

  • HAL Id : inria-00073003, version 1

Collections

Citation

Ioannis Z. Emiris, Bernard Mourrain, Mihail N. Vrahatis. Sign Methods for Counting and Computing Real Roots of Algebraic Systems. RR-3669, INRIA. 1999. 〈inria-00073003〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

235