Sign Methods for Counting and Computing Real Roots of Algebraic Systems - Archive ouverte HAL Access content directly
Reports Year : 1999

Sign Methods for Counting and Computing Real Roots of Algebraic Systems

(1) , ,
1
Bernard Mourrain
Mihail N. Vrahatis
  • Function : Author

Abstract

In this report, we implement the concept of topological degree to isolate and compute all zeros of systems of nonlinear algebraic equations when the only computable information required is the algebraic signs. The basic theorems of Kronecker-Picard theory relate the number of roots to the topological degree. Recent fast methods, which work over fixed precision, are applied to determine the sign of algebraic systems. They are then combined with grid methods in order to estimate the total complexity of computing the topological degree.
Fichier principal
Vignette du fichier
RR-3669.pdf (246.39 Ko) Télécharger le fichier

Dates and versions

inria-00073003 , version 1 (24-05-2006)

Identifiers

  • HAL Id : inria-00073003 , version 1

Cite

Ioannis Z. Emiris, Bernard Mourrain, Mihail N. Vrahatis. Sign Methods for Counting and Computing Real Roots of Algebraic Systems. RR-3669, INRIA. 1999. ⟨inria-00073003⟩
104 View
101 Download

Share

Gmail Facebook Twitter LinkedIn More