
HAL Id: inria-00073004
https://inria.hal.science/inria-00073004

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On TAG and Multicomponent TAG Parsing
Pierre Boullier

To cite this version:
Pierre Boullier. On TAG and Multicomponent TAG Parsing. [Research Report] RR-3668, INRIA.
1999. �inria-00073004�

https://inria.hal.science/inria-00073004
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On TAG and Multicomponent TAG Parsing

Pierre Boullier

N ˚ 3668

Avril 1999

THÈME 3

On TAG and Multicomponent TAG Parsing

Pierre Boullier
�

Thème 3 — Interaction homme-machine,
images, données, connaissances

Projet Atoll

Rapport de recherche n ˚ 3668 — Avril 1999 — 39 pages

Abstract: The notion of mild context-sensitivity is an attempt to express the formal power needed
to define the syntax of natural languages. However, all incarnations of mildly context-sensitive
formalisms are not equivalent. On the one hand, near the bottom of the hierarchy, we find tree
adjoining grammars and, on the other hand, near the top of the hierarchy, we find multicomponent
tree adjoining grammars. This paper proposes a polynomial parse time method for these two tree
rewriting formalisms. This method uses range concatenation grammars as a high-level intermediate
definition formalism, and yields several algorithms. Range concatenation grammar is a syntactic
formalism which is both powerful, in so far as it extends linear context-free rewriting systems, and
efficient, in so far as its sentences can be parsed in polynomial time. We show that any unrestricted
tree adjoining grammar can be transformed into an equivalent range concatenation grammar which
can be parsed in

�������	�
time, and, moreover, if the input tree adjoining grammar has some restricted

form, its parse time decreases to
������
��

. We generalize one of these algorithms in order to process
multicomponent tree adjoining grammars. We show some upper bounds on their parse times, and
we introduce a hierarchy of restricted forms which can be parsed more efficiently. Our approach
aims at giving both a new insight into the multicomponent adjunction mechanism and at providing
a practical implementation scheme.

Key-words: range concatenation grammars, tree adjoining grammars, multicomponent tree ad-
joining grammars, mildly context-sensitive grammars, parsing time complexity.

(Résumé : tsvp)

�
E-mail: Pierre.Boullier@inria.fr�
This report is an extended version of both [Boullier, 1999b] and [Boullier, 1999c]

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

Téléphone : 01 39 63 55 11 - International : +33 1 39 63 55 11
Télécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30

Sur l’analyse des TAG et des TAG ensemblistes

Résumé : La notion de formalismes faiblements contextuels correspond à une tentative pour
exprimer le pouvoir formel dont on a besoin pour définir la syntaxe des langues naturelles. Ce-
pendant, toutes les incarnations de ces formalismes ne sont pas équivalentes. D’un côté, en bas
de la hiérarchie, on trouve les grammaires d’arbres adjoints et, d’un autre côté, vers le haut de
cette hiérarchie, on trouve les grammaires d’arbres adjoints ensemblistes. Ce rapport propose une
méthode d’analyse pour ces deux formalismes de réécriture d’arbres. Cette méthode, qui se décline
en plusieurs algorithmes, utilise les grammaires à concaténation d’intervalles comme formalisme de
définition intermédiaire de haut niveau. La grammaire à concaténation d’intervalles est un forma-
lisme syntaxique qui est à la fois puissant, puisqu’il étend les systèmes de réécriture non contextuels
linéaires et efficace, puisque ses phrases peuvent être analysées en temps polynomial. Nous mon-
trons que toute grammaire d’arbres adjoints, sans restrictions, peut être analysée en temps

����� ���
et que, de plus, si la grammaire d’arbres adjoints source a une certaine forme restreinte, le temps
d’analyse diminue en

� � ��
��
. On généralise l’un de ces algorithmes au traitement des grammaires

d’arbres adjoints ensemblistes. On montre des bornes supérieures pour le temps d’analyse des
grammaires d’arbres adjoints ensemblistes et l’on introduit une hiérarchie de formes restreintes
qui bénéficient d’un temps d’analyse moindre. Le but de notre approche est double : proposer
une nouvelle façon d’appréhender le méchanisme d’adjonction ensembliste et fournir un schéma
d’implantation réaliste

�

.

Mots-clé : grammaires à concaténation d’intervalles, grammaires d’arbres adjoints, grammaires
d’arbres adjoints ensemblistes, grammaires faiblement contextuelles, complexité en temps d’analyse.

�
Ce rapport est une version étendue de [Boullier, 1999b] et de [Boullier, 1999c]

On TAG and MC-TAG Parsing 3

1 Introduction

The notion of mild context-sensitivity is an attempt (see [Joshi, 1985] and [Weir, 1988]) to ex-
press the formal power needed to define the syntax of natural languages. However, all incarna-
tions of mildly context-sensitive formalisms are not equivalent. On the one hand, near the bottom
of the hierarchy, we find tree adjoining grammars (TAGs) [Vijay-Shanker, 1987] and some other
weakly equivalent formalisms, linear indexed grammars (LIGs) [Gazdar, 1985], head grammars
(HGs) [Pollard, 1984] and combinatory categorial grammars [Steedman, 1987]) (see [Vijay-Shanker
and Weir, 1994a] for a proof of their equivalence). On the other hand, near the top of the hierarchy,
we find multicomponent tree adjoining grammars (MC-TAGs) which are, in turn, equivalent to li-
near context-free rewriting systems (LCFRS) [Vijay-Shanker, Weir, and Joshi, 1987] and multiple
context-free grammars (M-CFGs) [Seki, Matsumura, Fujii, and Kasami, 1991]. This paper pro-
poses a polynomial parse time method for these two tree rewriting formalisms. This method uses
range concatenation grammars (RCGs) as a high-level intermediate definition formalism, and yields
several algorithms.

The notion of RCG is introduced in [Boullier, 1998a]; it is a syntactic formalism which is a
variant of simple literal movement grammar (LMG), described in [Groenink, 1997], and which is
also related to the framework of LFP developed by [Rounds, 1988]. In fact it may be considered to lie
halfway between their respective string and integer versions; RCGs retain from the string version of
LMGs or LFPs the notion of concatenation, applying it to ranges (couples of integers which denote
occurrences of substrings in a source text) rather than strings, and from their integer version the
ability to handle only (part of) the source text (this later feature being the key to tractability). This
formalism, which extends context-free grammars (CFGs), aims at being a convincing challenger as
a syntactic base for various tasks, especially in natural language processing. We have shown that the
positive version of RCGs, as simple LMGs or integer indexing LFPs, exactly covers the class PTIME
of languages recognizable in deterministic polynomial time. Since the composition operations of
RCGs are not restricted to be linear and non-erasing, its languages (RCLs) are not semi-linear.
Therefore, RCGs are not mildly context-sensitive and are more powerful than LCFRS,1 while staying
computationally tractable: its sentences can be parsed in polynomial time. However, this formalism
shares with LCFRS the fact that its derivations are CF (i.e. the choice of the operation performed at
each step only depends on the object to be derived from). As in the CF case, its derived trees can be
packed into polynomial sized parse forests. For a CFG, the components of a parse forest are nodes
labeled by couples

������� �
where

�
is a nonterminal symbol and

�
is a range, while for an RCG, the

labels have the form
�������� �

where
��

is a vector (list) of ranges. Since this grammar class is closed
both under intersection and complementation and since this closure properties are satisfied without
changing the component grammars, RCGs can be considered as a modular syntactic formalism. If
we add the fact that RCGs are both simple and understandable, and that they can be used as a support
for annotations such as probabilities, logical terms, feature structures, they seem to be an adequate
formalism in which the syntax of natural languages (NLs) can be directly defined. In this paper we
rather want to explore an indirect usage of RCGs as an intermediate implementation formalism. This
usage of RCGs has already been studied in [Boullier, 1998a] for syntactic formalisms such as TAGs,

1In [Boullier, 1999a], we argue that this extra power can be used in natural language processing.

RR n ˚ 3668

4 P. Boullier

LIGs or LCFRS. The TAG parsing case has been particularly studied in [Boullier, 1998b], but the
algorithm which transforms a TAG into an equivalent RCG is only proposed for a restricted class of
adjunction constraints, and, moreover, the

� � � � �
parse time is only reached when the original TAG

is in a special normal form.
The subject of TAG parsing inspired many researches but they all failed to beat the

� � � ���
parse

time wall.2 Thus, current researches in this field, can be divided into two parts. A first one which
tries to find parsing methods which can be efficiently implemented, and a second one, which tries
to identify linguistically significant TAG subclasses whose theoretical parse time is smaller than����� �	�

. In this paper, we try to reconcile these two approaches, and we first apply our method to TAG
parsing. We show two new ways to parse TAGs with RCGs. Both methods accept unrestricted TAGs
as inputs, however, the first one directly produces an equivalent RCG which is, in turn, transformed
into another RCG, while the second one first dissects the elementary trees of the input TAG before
applying a transformation into an object RCG. Both methods produce an equivalent RCG which can
be parsed in

� � � �	�
time. Moreover, if the initial TAG is in the restricted form introduced in [Satta

and Schuler, 1998], we show that the corresponding RCG has an
� � �
��

parse time. Afterwards,
we generalize the first of these algorithms in order to process MC-TAGs. This approach results in a
polynomial upper bound for the parse time of unrestricted MC-TAGs. The degree of this polynomial
can be improved if we restrict MC-TAGs to specific subclasses. Moreover, our approach gives a new
insight into the multicomponent adjunction mechanism while providing a practical implementation
scheme.

2 Range Concatenation Grammars

This section introduces the notion of RCG, more details can be found in [Boullier, 1998a].
A positive range concatenation grammar (PRCG) ��� ��� ��� ��� �
	 ��� �

is a 5-tuple where
�

is
a finite set of predicate names,

�
and

�
are finite, disjoint sets of terminal symbols and variable

symbols respectively,
��
��

is the start predicate name, and
	

is a finite set of clauses
�������������������

where ���! and each of
� � � � � � ����� � � �

is a predicate of the form
� ��"#� � ����� ��"%$ �

where &��(' is its arity,
�)
*�

and each of
"#+�
 �,��-.� �
/

, '1032405& , is an argument.
Each occurrence of a predicate in the RHS of a clause is a predicate call, it is a predicate definition

if it occurs in its LHS. Clauses which define predicate
�

are called
�

-clauses. This definition assigns
a fixed arity to each predicate name. The arity of the start predicate is one. The arity 6 of a grammar
(we have a 6 -PRCG), is the maximum arity of its predicates.

Lower case letters such as 7 ��8 �
9 � ����� will denote terminal symbols, while upper case letters such
as : �
; ��< �
= �
> � �����

will denote elements of
�

.

2Asymptotically faster methods are known, but they all possess large hidden constants. There are even some arguments
(see [Satta, 1994]) against the existence of faster algorithms with small constants.

INRIA

On TAG and MC-TAG Parsing 5

The language defined by a PRCG is based on the notion of range. For a given input string� � 7 � ����� 7�� a range is a couple
� 2 ��� � , 0)2 0 � 0 �

of integers which denotes the occurrence
of some substring 7 + +1

����� 7�� in � . The number
��� 2 is its size. We will use several equivalent

denotations for ranges: an explicit dotted notation like � �
	 ��� 	 ��
 or, if ��� extends from positions
2
�)' through

�
, a tuple notation �,2 � � ����� , or �,2 � � ��� when � is understood or of no importance. For

a range � 2 � � ��� , 2 is its lower bound and
�

is its upper bound. If 2 � �
, we have an empty range.

Of course, only consecutive ranges can be concatenated into new ranges. In any PRCG, terminals,
variables and arguments in a clause are supposed to be bound to ranges by a substitution mechanism.
An instantiated clause is a clause in which variables and arguments are consistently (w.r.t. the
concatenation operation) replaced by ranges; its components are instantiated predicates.

For example,
� � ��� � � � � � � 2 � � ��� � � 6 � � � � � ��� � ��� +1

� ��� � � � 2 +1
� � �

-1
� � � 6 � ��� -1 � � is an instantiation of the

clause
� � 7 = ��8 > 9 ��� � � �!� �,= �
> �"� �

if the source text 7 � ����� 7�� is such that 7�# +1 � 7 � 7 + +1 �8 � 7�� � 9
and 7�$ � �

. In this case, the variables
=

,
>

and
�

are bound to ��� +1
� � � �

, � 2 +1
� � �

-1
�

and
��6 � � � -1 � respectively.

For a given PRCG and an input string � , a derive relation, denoted by %&(' � , is defined on strings

of instantiated predicates. If an instantiated predicate is the LHS of some instantiated clause, it can
be replaced by the RHS of that instantiated clause.

The language of a PRCG �)� � � �
� ��� �
	 � � �
is the set

) � � � � * �,+ � � 	 � 	 �.-%&/' �10�2
An input string � � 7 � ����� 7�� is a sentence iff the empty string (of instantiated predicates) can

be derived from
� � �, � � �
� � . Note that the order of predicate calls in the RHS of a clause is of no

importance.3

The arguments of a given predicate may denote discontinuous or even overlapping ranges. Fun-
damentally, a predicate name

�
defines a notion (property, structure, dependency, . . .) between its

arguments whose ranges can be arbitrarily scattered over the source text. PRCGs are therefore well
suited to describe long distance dependencies. Overlapping ranges arise as a consequence of the
non-linearity of the formalism. For example, the same variable (denoting the same range) may oc-
cur in different arguments in the RHS of some clause, expressing different views (properties) of the
same portion of the source text. However, in this paper, we do not need the full power of RCGs and
we will restrict our attention to the simple subclass of PRCGs.

A clause is simple4 if it is

non-combinatorial: each argument of its RHS predicates consists of a single variable, and

non-erasing and linear: each of its variables appears exactly one time in its LHS and one time in
its RHS.

3In [Boullier, 1998a], we also define negative RCG (NRCG), which allows negative predicate calls. These negative calls
define the complement language w.r.t. 3 � of their positive counterpart. A range concatenation grammar (RCG) is either a
PRCG or a NRCG.

4This is not Groenink’s definition of simple.

RR n ˚ 3668

6 P. Boullier

A simple RCG is an RCG in which all its clauses are simple. If the maximum number of variables
per argument is

�
, we have an RCG in

�
-var form.

As an example, the following simple 3-PRCG in � -var form defines the three-copy language
* � � � + �
 * 7 ��8 2 / 2 which is not a CFL and is not even a TAL.

� �,= > � � � � �,= ��> ��� �
� � 7 = � 7 > � 7 � � � � �,= ��> ��� �
� ��8 = ��8 > ��8 � � � � �,= ��> ��� �
� � 0 � 0 � 0 � � 0

A parsing algorithm for RCGs has been presented in [Boullier, 1998a]. For an RCG � and an
input string of length

�
, it produces a parse forest in time polynomial with

�
and linear with + � + .

The degree of this polynomial is at most the number of free (independent) bounds in any clause. If
we consider a simple 6 -RCG in

�
-var form, its number of free bounds is less or equal to 6 � � � ' � .

More precisely, this number is �������	��

����� �+�� � � '�� � + � if
9 � denotes the

� th clause in
	

, 6 � is the
arity of its LHS predicate and

� +
is the number of variables occurring in its 2 th argument. In other

terms, the parse time is at worst
� � + � + ���	� with

� ���������	��

� � 6 � ��� � � where � � is the number of
different variables in

9 � .

3 Tree Adjoining Grammars

The most popular incarnation of mildly context-sensitive formalisms is certainly the TAG formalism.
Of course, a considerable amount of effort has been and is still being applied to implement efficient
TAG parsers. Most of them directly use the input TAG to implement their parsing algorithm. Among
this class of direct implementations, we can remark that a majority is based upon variants of Earley’s
algorithm.5 The use of another formalism to implement TAGs is not new either, and in particular,
LIGs have been used several times. Though context-sensitive linguistic phenomena seem to be more
naturally expressed within the TAG formalism, from a computational point of view, many authors
think that LIGs play a central role. For example, quoted from [Schabes and Shieber, 1994] “. . . the
LIG version of a TAG grammar can be used for recognition and parsing. Because the LIG formalism
is based on augmented rewriting, the parsing algorithms can be much simpler to understand and
easier to modify, and no loss of generality is incurred”. In [Vijay-Shanker and Weir, 1994b] TAGs
are transformed into equivalent LIGs. In [Vijay-Shanker and Weir, 1993] LIGs are used to express
the derivations of a sentence in TAGs. In [Vijay-Shanker, Weir and Rambow, 1995] the approach
used for D-Tree Grammars (DTGs) parsing is to translate a DTG into a Linear Prioritized Multiset
Grammar which is similar to a LIG but uses multisets in place of stacks. However, LIGs and TAGs
are equivalent formalisms see [Vijay-Shanker and Weir, 1994a]. In this paper, we proposed to use a
much more powerful formalism to implement TAGs, and we will show that the theoretical worst-case
complexity of the RCG-equivalent of a TAG is of the same order of complexity.6

5Of course we can found a lot of other basic techniques such as CYK, LR, LC, . . .
6Of course, this encouraging result must be practically validated by an implementation in order to show the impact of the

hidden constants and to compare the average case complexity with other existing TAG parsers.

INRIA

On TAG and MC-TAG Parsing 7

A TAG is a tree rewriting formalism where trees are composed by means of the operations of
tree adjunction and substitution. An introduction to TAG can be found in [Joshi, 1987]. Here, we
assume that the reader is familiar with the formalism and, in this introduction, we mainly want to
summarize our notations.

A TAG is a tuple � � � ��� ����� ��� ��� � � �
where

���
and

���
are finite disjoint sets of nonterminal

and terminal symbols,
�

is the finite set of initial trees and
�

is the finite set of auxiliary trees. Trees
in
�

are denoted by
"

’s and trees in
�

by 	 ’s. The nonterminal
�

is the start symbol. We refer to the
trees in

� -
�
as elementary trees. The set of nodes (addresses) in an elementary tree � is denoted

by ��
 and the set of all nodes in the elementary trees is denoted by ������� . For each node � , we
define its label

� 7 8�� � � to be an element of
� � - � � - * 0 2 . A node labeled by an element of

� �
(resp.� � - * 0�2) is called a nonterminal (resp. terminal) node. If a node is labeled

=
, we have an

=
-node.

A (sub)tree whose root is labeled
=

is an
=

-tree. In any elementary tree � , its root node denoted�
 and its inside nodes are nonterminal nodes. The leaves of elementary trees are nonterminal or
terminal nodes. Each auxiliary tree 	 has exactly one distinguished leaf denoted ��� and called its
foot node. In an auxiliary tree both the root and foot nodes bear the same label. The path from root
to foot is called a spine.

A non leaf node or a foot node is called an adjunction node. For each adjunction node � , we
define its selective-adjoining constraints by means of a function named 7 � � ; 7 � � � � � is the set of
auxiliary trees that can be adjoined at � and we write

� 2 �
 7 � � � � � if adjunction at � is optional.
Though substitution can easily be simulated by an adjunction operation, in order to be fully

general, we define TAGs with substitutions. A nonterminal leaf which is not a foot node is called a
substitution node. For each substitution node � , we define � 8 ��� � � � as the set of initial trees that can
be substituted at � , and we write

� 2 �
 � 8 ��� � � � if substitution is optional.7

The tree language of a TAG is defined as the set of all complete trees that can be composed,
starting from an initial

�
-tree, and in which no more mandatory adjunction or substitution can take

place. Its string language is merely the set of terminal yields of its tree language.

4 Basic Transformation from TAG to Simple PRCG

This section describes the algorithm, extracted from [Boullier, 1998b], upon which, the new algo-
rithms are based.

In this section, we will restrict our attention to TAG with the following properties: its initial
trees are all labeled by the start symbol

�
, which is not used somewhere else, and adjunction is not

allowed neither at the root nor at the foot of any auxiliary tree but is mandatory on inside nodes.
Note that the first restriction implies that substitution is disallowed (there is no substitution node),
and that the second restriction implies that for every internal adjunction node � , we have 7 � � � � � �
*�	 + � 7 8�� � � � � � 7 8�� � � 2 .

If we consider an auxiliary tree � and the way it evolves until no more adjunction is possible, we
realize that some properties of the final tree are already known on � . The yield derived by the part of

7As usual in TAG theory, we assume that we have both � �"!$#&%�')(�*,+-�/.02143)5604785 !�9:'&(�* 025 !�9:'&;=<�* and >?�@ 9 @:A '&(�*,+B>C.0�1�3)5�04725 !$9:')(�* 0�5 !�9:'&;:D�* .

RR n ˚ 3668

8 P. Boullier

� to the left (resp. to the right) of its spine are contiguous and, the left yield (produced by the left part)
lies to the left of the right yield in the input string. Thus, for any elementary tree � consider its �
internal adjunction nodes. We decorate each such node � + with two variables : + and

; +
(' 0!2�03�)

which are supposed to capture respectively the left and right yield of the trees that adjoined at � + .
The root and foot of auxiliary trees have no decoration. Each terminal leaf has a single decoration
which is its terminal symbol or 0 . Afterwards, we collect into a string �
 the decorations gathered
during a top-down left-to-right traversal of � . If � is an auxiliary tree, let � $
 and �

�
 be the part of �

gathered before and after the foot of � has been traversed. With each elementary tree � , we associate
a simple PRCG clause constructed as follows:	

its LHS is the predicate
� �
��
 � if � is an initial tree (

�
is the start predicate) or

	
its LHS is the predicate

� �
� $
 � � �
 � if � is an auxiliary

�
-tree;

	
its RHS is

� � �����
� �
with

� + � � + � : + �
; + � if
� + � � 7 8�� � + � .

Example 1 The following TAG

�
"

�

0

�	
�

7 �

��� 7

�	
�

8 �

��� 8

�	

���

where
"

is the initial tree and 	 � , 	 � and 	
 are the auxiliary trees,8 defines the language * � � +
�
 * 7 ��8 2 / 2 which is translated into the strongly equivalent simple PRCG

� � : � ;1� � � � � : � ��; � �� � 7 : � � 7 ;1� � � � � : � ��; � �� � 8 : � ��8 ;1� � � � � : � ��; � �� � 0 � 0 � � 0
As an example, the arguments of the LHS predicate of the second clause have been gathered

during the following traversal of 	 �
�

7 : � � ;1�

��� 7

7

7
8Each foot node is marked by an � .

INRIA

On TAG and MC-TAG Parsing 9

We know that TAGs, LIGs and HGs are three weakly equivalent formalisms though they appear
to have quite different external forms. Groenink has shown that HGs can be translated into equivalent
simple LMGs. We have shown that transformation from TAGs to RCGs also exists. In [Boullier,
1998a] we have proposed a transformation from LIGs into equivalent RCGs. While the process
involved to get an equivalent RCG for a TAG or an HG is rather straightforward, the equivalence
proof for LIG is much more complex and relies upon our work described in [Boullier, 1996]. This is
due to the fact that an RCG is a purely syntactic formalism in the sense that it only handles (part of)
the source text, exclusive of any other symbol. Therefore the stack symbols of LIGs have no direct
equivalent in RCGs and the translation process needs to understand what the structural properties
induced by these stack symbols are. An interesting property of all these translations is that the
power of RCGs comes for free. In particular, if the input TAG or LIG is in some normal form,9 the
corresponding RCG can be parsed in

� � ���	�
time at worst.

5 First Transformation from Unrestricted TAG to Simple PRCG

The algorithm in Section 4 is defined for a TAG with null adjunction constraint on its root and foot
nodes (i.e. 7 � � � � � �.* � 2 � 2), an obligatory adjunction constraint on its internal adjunction nodes (i.e.
7 � � � � � � *�	 + + � 7 8�� � ��� � � � 7 8�� � � 2), and with no substitution site.

Here, we will extend this algorithm in such a way that it can handle unrestricted adjunction
constraints. Afterwards, we will show that the generated simple PRCG has a particular form which
allows for a transformation into an other equivalent simple PRCG which can, in all cases, be parsed
in
����� �	�

time at worst.
The algorithm which, starting from a TAG, produces an equivalent simple PRCG, can be sum-

marized as follows.
Let � � �������
� ��� ��� � � �

be an input TAG. For every elementary tree �
 � -
� we decorate
each node �
 ��
 with symbols

	
if � is an adjunction node, it is decorated by two symbols :�� and

;
� called : ; -variables,

	
if � is an substitution node, it is decorated by a single symbol

�
� , its substitution variable, and

	
if � is a terminal node, it has a single decoration which is

� 7 8�� � � , its terminal label or 0 .
The symbols :�� ,

;
� and

�
� denote in fact variables which will be used in the clauses generated

by the TAG to RCG transformation algorithm. The RCG variables :�� and
;
� are left and right

decorations which capture, as in the basic algorithm, respectively the left yield and the right yield
of the trees that can be adjoined at � . Let � be a node of � and � be the yield of the subtree rooted
at � . After adjunction of a tree 	 into � (or any number of adjunctions within), the yield of the
subtree rooted at � becomes � $���� � , where � $ and � � are respectively the left and right yield of 	 .
The variables : � and

;
� span the occurrences (ranges) of � $ and � � respectively. On the other hand,

the RCG variable
�
� captures the yields of the trees that can be substituted at � .

9Auxiliary trees in TAGs are such that they have at most two internal nodes where the adjunct operation can take place or
the number of nonterminal symbols in the RHS of the LIG rules is at most two.

RR n ˚ 3668

10 P. Boullier

Afterwards, during a top-down left-to-right traversal of � , we collect into a decoration string
��
 the previous annotations. For an adjunction node, its : -variable is collected during its top-
down traversal while its

;
-variable is collected during its bottom-up traversal. Substitution variables

and terminal decorations are associated with leaves and are gathered during the traversal of this
leaf node. If � is an auxiliary tree, let � $
 and �

�
 be the part of �
 gathered, during the previous
traversal, respectively before and after the foot node of � (i.e. we have � $
 � : ��� ����� : � � and
�
�
 � ; � � ����� ; ���).

Now, we are ready to describe the TAG to RCG transformation algorithm.
We will generate a simple PRCG ��� � � ��� ��� ��	 ��� �

which is equivalent to the initial TAG
� � ��� � �
� ��� ��� � � �

. We assume that the set
�

of its predicate names and the set
�

of its variables
are implicitly defined by the clauses in

	
.

The generation process is divided into three phases, the initial phase, the main phase and the
bond phase.

The initial phase simply connects the start symbol
�

with the initial
�

-trees. For every initial�
-tree

"
, we generate

� ��< � � " ��< �

The main phase generates one clause for each elementary tree. Let � be an elementary tree and
let ��
 be its decoration string. Of course, if � is an auxiliary tree, �
 is cut into its left part and right
part: ��
 � � $
 � �
 . With each such � , we associate a simple clause, constructed as follows:

	
its LHS is the predicate definition

" �
�
 � , if � is the initial tree

"
;

	
its LHS is the predicate definition 	 � � $
 � � �
 � , if � is the auxiliary tree 	 ;

	
its RHS is

� � �����
� + �����
� �
, ' 0!2�03� � � � + ��
 + with

–
� + ��� 7 � � � � + ��� � : � � �
; � � � , if � + is an adjunction node in �

 ,

–
� + ��� � 8 ��� � � + ��� � � � � � , if � + is a substitution node in �

 , and

–
� + � 0 , if � + is a terminal node in �
 .

The terms � 7 � � � � + ��� and � � 8 ��� � � + ��� are predicate names which respectively denote the adjunction
or substitution operations which can be performed at node � + .

The bond phase connects the adjunction or substitution sites with the corresponding trees which
are allowed by the adjunction or substitution constraints. For every nonterminal node �
 �
� ��� ,
we define the predicates � 7 � � � � + ��� and � � 8 ��� � � + ��� by the following clauses

	
If � is an adjunction node, for every �
 7 � � � � � we produce the clause

� 7 � � � � ��� � : �
; � � � � : ��; �

if �

� or
� 7 � � � � ��� � 0 � 0 � � 0

if � � � 2 � .

INRIA

On TAG and MC-TAG Parsing 11

	
If � is a substitution node, for every �
 � 8 ��� � � � we produce the clause

� � 8 ��� � � ��� � � � � � � � �

if �
 � or
� � 8 ��� � � ��� � 0 � � 0

if � � � 2 � .
Since these clauses are all simple and positive, and since predicates are all at most binaries, � is

a simple 2-PRCG.10

Let us now examine the complexity of the parsing algorithm for � . From the general result on
parsing with simple 6 -RCG in

�
-var form, we know that we have a polynomial time whose degree�

is at worst 6 � � � ' � . But, of course, our purpose is to express the result as a function of the
initial TAG parameters. If we consider the more precise formula

� � � �+�� � � ' � � + � , since for �
we trivially have 6 ��� , this gives

� � � ' � � � � � � ' � � � � where
� �

and
� � are the number of

variables of the first and second argument respectively. If we assume that & is the maximum number
of adjunction nodes in the elementary trees, since each such node is decorated by two : ; -variables,
we have

� � � � � ��� & . Thus, in the worst case, we get a
� � � � $ - � � parse time for unrestricted TAGs.

The idea is now to see whether � can be transformed into an equivalent RCG ��� with a better
parse time, and in particular whether we can reached the classical

����� �	�
bound. The purpose of

what follows is to transform each previously generated clause into a set of equivalent clauses in such
a way that the number of their variables (and thus the number of free bounds) is as small as possible.

If we consider the decoration string ��
 associated with any elementary tree � , and if we remem-
ber that this string has gathered : ; -variables during a top-down left-to-right traversal of � , it is not
difficult to figure out that ��
 is a well parenthesized (Dyck) string where the couples of parentheses
are the : and

;
-variables associated with its adjunction nodes and that its basic vocabulary is formed

both by
�

, the set of terminal symbols, and by the set of its substitution variables.
Fundamentally, a Dyck language is recursively defined from initial strings in its basic vocabulary

either by concatenation of two Dyck languages or by wrapping a Dyck language into a couple of
parentheses. Conversely, each Dyck string can be recursively and unambiguously decomposed (par-
sed) either into concatenation of two Dyck strings or into a wrapped Dyck string. In our case, at each
step of such decomposition of a Dyck (decoration) string � , we can associate an RCG clause which
exhibits either its decomposition into a wrapped prefix part �

�
and a suffix part � � or its unwrapping.

However, this process is slightly complicated by the fact that � , in the auxiliary tree case, is itself
decomposed into two arguments, a left argument � $ and a right argument �

�
. In what follows, we

only process this case and we leave the reader to figure out how single argument predicates can be
handled.

10In this paper, we will not address the correctness of the previous algorithm and we will assume that it generates a
simple PRCG which is equivalent to the original TAG. The proof method relies upon the fact that the generated clauses are
partitioned into three sets, the initial clauses (the � -clauses), the main clauses (the > or � -clauses) which are in bijection with
the elementary trees, and the bond clauses (the � !�# % '&(*�� or � @
	 9 @:A '&(*�� -clauses) which provide a link between an adjunction
or substitution node and the trees which are adjoined or substituted at that node. Any TAG derivation can be mapped onto a
PRCG derivation, and conversely the generated PRCG can drive a parsing algorithm that recovers the TAG derivations of the
input string.

RR n ˚ 3668

12 P. Boullier

Thus, for every auxiliary tree 	 whose decoration string is ��� � � $� � �� , instead of a single clause
of the form

	 � � $
 � � �
 � � � � ������� �
we generate the following sequence of clauses.

First, we produce

	 � : �
; � � � � $� � � �� � � : �
; �

in which the left and right decoration strings � $� and �
�� become parts of the name of a new predicate

� � $� � � �� � . The decoration string � $� � �� is a Dyck string which is decomposed as previously suggested.
Assume that at one step of this decomposition we have to define the predicate � � � � � � � .

If �
�
� � is in

� /
, we produce

� � � � � � � � � � � � � � � 0
If �

�
� � ��� = � � with �

 � - and
=

is a variable (either an : ; -variable or a substitution
variable) we produce, if

� �
and
� � are two new variables

� � � � � � � � � � � � � � � � � = � �� � � � � � � � � � � �
if �
� ��� = � �� or

� � � � � � � � � � � � � � � � � � = � �� � � � � �
if �

� ��� � , � � ��� � = � �� and � ��� � � � . Note that, in this later case, with the predicate call
� = � �� � � � � � , we enter the single argument processing part of � � .

If the leading variable of �
�
� � is a substitution variable say

�
� (i.e. �

�
� � � �

� � �� � �), we
produce

� � � � �� � � � � � � � � � � � � � � � � 8 ��� � � ��� � � � � � � �� � � � � � � � � � � �
If the leading variable of �

�
� � is an : -variable say :�� , we have �

�
� � � : � � � ; � � � � . The

generated clauses depend on whether
;
� occurs in �

�
or in � � .

If �
� � : � � � ; � � �� , we produce

� : � � � ; � � �� � � � � � � �� � � �� � � � � � � : � � � ; � � � � �� � � � �� � � � � � � � �� � � � �
If �

� � : � � �� , � � � � �� ; � � � �� , we produce

� : � � �� � � �� ; � � � �� � � � � � � �� � � �� � � � :�� � �� � � �� ; � � � � � � � �� � � � � �� � � � � �� �
And last, if �

�
� � has the form : � � �� � �� ; � , we generate

� : � � �� � � �� ; � � � :�� � � � � � ; � � � � 7 � � � � ��� � :�� �
; � � � � �� � � �� � � � � � � � �

INRIA

On TAG and MC-TAG Parsing 13

We have seen that each clause of � can be translated into a set of equivalent simple clauses either
in 2-var form for binary predicates (or in 3-var form for unary predicates). The 2-var form gives a
maximum of six free bounds11 (and the 3-var form gives a maximum of four free bounds). Thus, by
a grammar transformation at the RCG level, we have a method which parses the language defined
by an unrestricted TAG in worst case time

���������
. We can remark that, for presentation purpose,

we have used a two phase process which involves an intermediate RCG. Of course, the previous
algorithm can be easily changed into a one pass algorithm which directly generates an

� � � ���
simple

2-PRCG, equivalent to the original TAG.

6 Second Transformation from Unrestricted TAG to Simple PRCG

The idea of the algorithm depicted here is to dissect the elementary trees of a TAG in a way such
that each excised subtree directly generates an

���������
parsable clause at worst.

We will use for TAGs the notations and the vocabulary defined in Section 3, however, we need
some supplementary definitions.

The same symbol
"

or 	 will be used to denote both any elementary tree and the root node of
that elementary tree. If � is not a leaf node in some elementary tree, its 2 th daughter, from left to
right, is denoted � � 2 . A node on a spine is termed as spinal node. If the root of a (sub)tree is a spinal
node, we have a spinal tree. Thus, a spinal tree is a subtree of an auxiliary tree rooted on its spine.

A tree rooted at node � is denoted either by
����� if it is a spinal tree or by

�� � if it is a non spinal tree.12

The over hanging circle depicts its root node while the underlying triangles depict its subtrees. For
a given node � , we define a full open tree as the list of its daughter trees. This full open tree is noted
���� or � � according as � is a spinal or a non spinal node. An open tree is a list of consecutive daughter

trees *�� � 2 � � � 2 +1
� ����� � � � � 2 . In the sequel we will handle two kinds of open trees �� + and �+ � where �� +

denotes the left daughters whose rank is less or equal than 2 and �+ � denotes the right daughters whose

rank is greater or equal than 2 . By contrast with the term open, a “normal” tree will be sometimes
called a close tree.

For a given TAG � � ��� � ��� ��� � � ��� �
, we will build an equivalent simple 2-PRCG � ���� ��� ��� �
	 ��� �

. The start symbol of � is the start predicate of � and their terminals are equal.
Except for

�
, the predicates names of

�
are the previously defined close and open tree denotations.

The spinal tree predicates are binary while the non spinal tree predicates are unary. The set of
variables is

� � * : ��; �
= �
> �"� 2 where : and
;

(the : ; -variables) are always associated with
adjunction nodes and denote the left and right yields of the trees that can be adjoined at that node.
If a tree 	 is adjoined at node � , the variable : (resp.

;
) will be bound to the range of the left yield

(resp. right yield) derived by the part of 	 to the left (resp. right) of its spine. The other variables

11This maximum value is reached for an unwrapping operation when each of the two
���

-variables occurs in different
arguments. This case corresponds to an adjunction at a node which lays on a spine.

12Note that the > initial trees are also denoted by
�> � , and the � auxiliary trees by

�
�	�
 .

RR n ˚ 3668

14 P. Boullier

=
,
>

and
�

will span the yields of subtrees. And last, the set of clauses
	

is built, following the
transformation rules listed below.

In a first phase, we initialize
	

with clauses defining the start predicate
�

, these clauses are
issued from the initial trees whose root is labeled by the start symbol

�
. For each tree

"
 �
s.t.� 7 8�� " � � � , we add to

	

� � = � � �"
�
� = �

(1)

Afterwards, the elementary trees of
� - �

are processed in turn. Each elementary tree is cut into
smaller pieces, starting from the root. Intuitively, at each step, a (sub)tree is cut into two parts, its
root and its full open tree. The type of processing for the root node depends whether adjunctions are
allowed or not. While the processing of a full open tree consists of a partitioning into its constituent
parts which are either (smaller) open trees or close trees. Of course, this processing differs whether
spinal or non spinal open trees are considered. We iterate until the leaves are reached. If we reach a
substitution node, we apply the possible substitutions.

We first consider the transformation of non spinal close trees rooted at node � .
If

�� � is a non trivial non spinal close tree, we have

�
= � %

���� ��� 	

 7 � � � � � � �� � � : = ; � � �

	���
� : �
; � �� �

�,= � � 7 �

� 2 �
 7 � � � � � � �� � �,= � � �� �
�,= � ��8 � (2)

If
�� � is a leaf tree, depending of its label, we have

for an empty leaf (i.e. 0 � � 7 8	� � �)

� 0
� % �� � � 0 � � 0 (3)

for a terminal leaf 7 (i.e. 7 � � 7 8�� � � � 7
.�)

� 7
� % �� � � 7 � � 0 (4)

for a substitution node (i.e.
� � � 7 8�� � � ���)
*� �)

INRIA

On TAG and MC-TAG Parsing 15

� �
� %

��� ��
"
 � 8 �$� � � � �

�� � � = � � �"
�
� = � � 7 �

� 2 �
 � 8 ��� � � � � �� � � 0 � � 0 ��8 � (5)

Now, we consider the transformation of non spinal open trees rooted at � . The components of
such trees are processed from left to right in the case �+ � or from right to left in the case �� + .

For an open tree of the form �+ � , we know that the left daughters of � whose rank is less than 2
must not be considered, thus such a tree is processed by extracting its 2 th daughter and by iteratively
processing �+

+1 �
, until completion. Of course, this completion is reached when, after the extraction of

the 2 th daughter, the resulting open tree is empty.

� � 2
=

> � %
���� ���
>����� � �+ �

� = > � � �

� � 2� � = � �+
+1 �

� > � � 7 �

> ��� � �+ �
� = � � �

� � 2� � = � � 8 � (6)

For a right to left processing, we have

>
� � 2
=

� %
���� ��� 2��(' � �� +

��> = � � �
�
+
-1

��> � �

� � 2� � = � � 7 �

2#� ' � �� �
� = � � �

� � '� �,= � ��8 � (7)

Now, we consider the transformation of spinal trees rooted at � .
For each spinal close tree such as

��� � , we must handle both a possible set of adjunctions at � , and

the processing of the full open spinal subtree �� � . Thus, we have the transformation rule

�
= > � %

���� ��� 	

 7 � � � � � � �����

� : = �
> ; � � �

	���
� : �
; � �� � �,= �
> � � 7 �

� 2 �
 7 � � � � � � �����
�,= �
> � � ����

�,= ��> � � 8 � (8)

For each spinal open tree ���� rooted at � , we have, if � � 2 is its spinal daughter node

RR n ˚ 3668

16 P. Boullier

: � � 2
= >

; � % ����
� : = �
> ; � � �

�
+
-1

� : �
�

� � 2���
�,= �
> � �+

+1 �
� ; �

In that case, we note that the number of free bounds in the corresponding clause is six. We can
remark that, on the one hand, the left and right open trees �� + -1 and �+

+1 �
are independent of each other

and may thus be computed one after the other and, on the other hand, that any of them, or both, can
be empty. Thus, equivalently, if � � denotes an intermediate predicate name, we have the following
transformation rules

: � � 2
= >

; � %

�������������� �������������

: �� � ��; �� � �
��� ��
����
� : = �
> � � �

�
+
-1

� : � � � � = �
> � � 7 �

� � �,= ��> ; � � �

� � 2���
� = �
> � �+

+1 �
��; � � 8 �

: � � ��; �� � � ����
�,= ��> ; � � �

� � 2� �
�,= ��> � �+

+1 �
� ; � � 9 �

: �� � ��; � � � ����
� : = �
> � � �

�
+
-1

� : �
�

� � 2���
� = �
> � � � �

: � � ��; � � � ����
�,= ��> � � �

� � 2� �
�,= ��> � �

�
�

(9)

which generate clauses whose number of free bounds is now less or equal to five.
And last, for a foot node � , we have

�
� %

���� ��� 	

 7 � � � � � � �����

� : ��; � � �

	���
� : �
; � � 7 �

� 2 �
 7 � � � � � � �����
� 0 � 0 � � 0 ��8 � (10)

By inspection of all these generated clauses, we can verify that we have a simple 2-PRCG in 2-var
form. The degree of the polynomial time complexity of this grammar is the maximum number of free
bounds in each clause. We see that the maximum number of free bounds is six and is only reached
one time in the clause resulting of transformation (8a). Transformations (9a–d) cost five (recall that
they all arise as an optimization from a six free bound clause), while all the others contribute to a
number less or equal to four. This transformation explicitly ranks by cost the operations used in TAG
parsing. In particular, we confirm that the most costly operation is an adjunction at a spinal node.13

Thus, we have shown that any TAG can be translated into an equivalent simple 2-PRCG in 2-var
form which can be parsed, at worst, in

� � ���	�
time.

13As for the previous algorithm, we leave aside the proof of the correctness of the above algorithm.

INRIA

On TAG and MC-TAG Parsing 17

To account for the dependency of the input grammar size, we define + � + � � �
�������� � ' �+ 7 � � � � � + � + � 8 ��� � � � + � . We can easily see that the number of generated clauses is proportional to + � + .
Since the parse time of an RCG is linear in the size of its input grammar, we finally get an

� � + � + � � �
parse time for � .

Example 2 Consider once again the TAG of Example 1, printed below with new node denotations:

"*�

" � ' �

" � ' � ' 0

	 � �

	 � � ' 7 	 � � � �

	 � � � � ' � / 	 � � � � ��7

	 � �

	 � � ' 8 	 � � � �

	 � � � � ' � / 	 � � � � � 8

	
 �

	
 � ' � /

where
"

is the initial tree and 	 � , 	 � and 	
 are the auxiliary trees. Each node is decorated by
its label. We assume that we have the following constraints 7 � � � 	 � � � 7 � � � 	 � � � � ' � � 7 � � � 	 � � �
7 � � � 	 � � � � ' � � 7 � � � 	
 � � 7 � � � 	
 � ' � �.* � 2 � 2 and 7 � � � " � ' � � 7 � � � 	 � � � � � 7 � � � 	 � � � � � *�	 � � 	 � � 	
 2 .
This TAG is translated into the following equivalent set of clauses where each clause is annotated
by the transformation rule used.

Initialization phase

� � = � � �"
�
� = � � ' �

Transformation of
"

:

�"
�
�,= � � "�

�
� = � �

�
8 �

"�
�
� = � � �" � '� �,= � ��� 8 �

�" � '� � : = ; � � �

	 ����
� : �
; ��" � '� � � = � �

� 7 �
�" � '� � : = ; � � �

	 ���� � : �
; ��" � '� � � = � �
� 7 �

�" � '� � : = ; � � �

	
��� � : �
; ��" � '� � � = � �
� 7 �

" � '� � �,= � � �" � ' � '�
�,= � ��� 8 �

�" � ' � '�
� 0 � � 0 � � �

Transformation of 	 � :

RR n ˚ 3668

18 P. Boullier

�

	 ����
�,= �
> � � 	 ����

�,= ��> � ��� 8 �

	 ����
� : = �
> � � 	 �� �

� : �
�

	 � � ����
� = �
> � ��� � �

	 �� �
�,= � � �

	 � � '� �,= � ��� 8 �
�

	 � � '� � 7 � � 0 ��� �

�

	 � � �� �
� : = �
> ; � � �

	 ����
� : �
; � 	 � � ����

� = �
> � ��� 7 �
�

	 � � �� �
� : = �
> ; � � �

	 ���� � : �
; � 	 � � ����
� = �
> � ��� 7 �

�

	 � � �� �
� : = �
> ; � � �

	
��� � : �
; � 	 � � ����
� = �
> � ��� 7 �

	 � � �� �
�,= ��> ; � � �

	 � � � � '���
�,= ��> � 	 � � �� �

� ; � ��� 9 �
�

	 � � � � '���
� 0 � 0 � � 0 � ' 8 �

	 � � �� �
�,= � � �

	 � � � � ��
�,= � ��� 8 �

�

	 � � � � ��
� 7 � � 0 ��� �

Transformation of 	 � :

INRIA

On TAG and MC-TAG Parsing 19

�

	 ���� �,= �
> � � 	 ���� �,= ��> � ��� 8 �

	 ����
� : = �
> � � 	 �

�
� � : �

�

	 � � ����
� = �
> � ��� � �

	 �� �
�,= � � �

	 � � '� �,= � ��� 8 �
�

	 � � '� ��8 � � 0 ��� �

�

	 � � �� �
� : = �
> ; � � �

	 ����
� : �
; � 	 � � ����

� = �
> � ��� 7 �
�

	 � � �� �
� : = �
> ; � � �

	 ���� � : �
; � 	 � � ����
� = �
> � ��� 7 �

�

	 � � �� �
� : = �
> ; � � �

	
��� � : �
; � 	 � � ����
� = �
> � ��� 7 �

	 � � �� �
�,= ��> ; � � �

	 � � � � '���
�,= ��> � 	 � � �� �

� ; � ��� 9 �
�

	 � � � � '���
� 0 � 0 � � 0 � ' 8 �

	 � � �� �
�,= � � �

	 � � � � ��
�,= � ��� 8 �

�

	 � � � � ��
��8 � � 0 ��� �

Transformation of 	
 :
�

	
���
�,= ��> � � 	
���

�,= ��> � ��� 8 �

	
��� �,= ��> � � �

	
 � '���
�,= ��> � ���

�
�

�

	
 � '���
� 0 � 0 � � 0 � ' 8 �

7 Transformation from Restricted TAG to Simple PRCG

In [Satta and Schuler, 1998], the authors have identified a strict subclass of TAG which on the one
hand can be parsed in

� � ��
	�
, and, on the other hand, as they argued, keeps enough generative power

to capture the syntactic constructions of NLs that unrestricted TAGs can handle.14

14The claim of “linguistic relevance” of this subclass is neither discuss nor even advocate in this paper.

RR n ˚ 3668

20 P. Boullier

Let us call restricted TAG (RTAG), the subclass they defined. The purpose of this section is to
show that any RTAG can be transformed into an equivalent simple PRCG whose parse time behavior
is also

�����
 �
.

We will first introduce the RTAG subclass.
An auxiliary tree 	 is called a right (resp. left) tree if its leftmost (resp. rightmost) leaf is the

foot node and if its spine contains only the root and the foot node. For a left tree 	 , its foot node is
denoted by 	 � � (it is its � th daughter).

	

	 � ' � �
	

� $ 	 � �
Right Tree Left Tree

An auxiliary tree which is neither left nor right is called a wrapping tree.
The restrictions imposed on RTAGs are twofold:15

1. on the spine of a wrapping tree, there is at most one node that allows adjunction of a wrapping
tree. This node is called a wrapping node;

2. on the spine of each left (resp. right) tree, only left (resp. right) trees can be adjoined (the
adjunction of wrapping trees is prohibited).

For a wrapping tree 	
�

, its wrapping node is denoted by 	
�
� and its foot node is denoted by

� ��� .

�� 	
�
�

	
�

��� �
Wrapping Tree

15In [Schabes and Waters, 1994], the authors defined tree insertion grammars (TIGs), a restricted form of TAGs in which
only left and right trees (with a slightly more general definition), can be handled; wrapping trees are prohibited. Within these
restrictions, they reach a cubic parse time for TIGs. It can be shown that TIGs can be transformed into an equivalent cubic
time parsable 1-PRCG.

INRIA

On TAG and MC-TAG Parsing 21

The above restrictions do not in any way constrain adjunction at nodes that are not on the spine,
or adjunction of left or right trees on the spine of wrapping trees.

The algorithm of [Satta and Schuler, 1998] first performs a grammar transformation and after-
wards applies a tabular evaluation working bottom-up on derivation trees. This algorithm is specified
by means of inference rules. There are two ways to show that any RTAG can be transformed into an
equivalent PRCG:

1. each inference rule is directly coded into equivalent PRCG clauses or

2. we directly transform the initial RTAG (without any grammar transformation) into an equiva-
lent PRCG.

Below, we will investigate these two possibilities.

7.1 From Inference Rules to Simple PRCG

Here, we are not going to detail the transformation from the whole inference rule set to the corres-
ponding set of clauses. We will only consider the most complicated inference rules and see how they
can be translated. The most complicated step of the algorithm concern the adjunction of a wrapping
tree at a wrapping node.

2 � & � � � & � �
� 2 �: � : :�� ;

�
; ; �

	���� 	��	�

	 ��
 	 ��

	 �
	 �

	 �

	

	��

Table 1: Adjunction of a wrapping tree 	 � at a wrapping node 	 � .

It is shown that in RTAGs, we can always split each wrapping tree 	 into four parts at some
wrapping node, since this wrapping node is the only site on the spine that can host adjunction of a

RR n ˚ 3668

22 P. Boullier

wrapping tree. These four parts are named 	 ��
 , 	 ��
 , 	 ��� and 	 �	� , and respectively denote the
parts of 	 which are left-up, right-up, left-down and right-down to the wrapping node. Adjunction
of a wrapping tree 	 � at a wrapping node 	 � can thus be simulated by wrapping 	 around 	 � . This
simulation can be performed in four steps, executed one after the other. Each step composes the item
resulting from the application of the previous step with an item representing one of the four parts
of the wrapping tree 	 . For example if the tree 	 � can be adjoined at the wrapping node 	 � of 	 ,
there is an item of the form � 	 � ��� � & � & � ��� � � where � � � � & � is the range in the input string spanned by
the left part of 	 � (i.e. the subtree of 	 � lying to the left of its spine) and � & � � � � � � is the range in the
input string spanned by the right part of 	 � . If moreover we assume that the left-down part of 	 has
been recognized (i.e. there is an item of the form � 	 ��� � & � � � where � & � � � � , is the range spanning the
left-down part of 	 , rooted at the wrapping node 	 �),16 we can state that the wrapping of 	 � by the
left-down part of 	 has been performed, assuming that the upper bound of 	 ��� (i.e. �) is to the left
of the lower bound of the right range of 	 � (i.e. & �). More formally, we have the following inference
rule

� ����� ' $ ' ��� � ��� ' � ' $ ' $ � ' �	� ���
 � ' ���
� ' � ' �"' $ � ' � � � � 	 �
 7 � � ��< � � � ���5& �
where � 	 � : � �

denotes the partial recognition (here the low-down corner) of the wrapping of 	
around the unique wrapping node 	 � . If we assume a counterclockwise order, we will thus succes-
sively define � 	 ��; � �

, � 	 ��; � � , and then 	 itself by
� ��� � ' � � ' $ � � ��
 � ' ����� ' � ' �"' $ � ' �	� ���
 � ' �	��� ' � ' ��' � � ' � � � �

��� � �
� � ��� ' �	� ' + � � ��
 � ' �	��� ' � ' ��' � � ' �	� ���
 � ' ��
�� ' � ' ��' � � ' + � �
� ��� � ' + ' � � ��
 � ' ��
�� ' � ' ��' � � ' + � �� � ' + ' �"' � � ' + � �

If we assume that the previous ranges are denoted by the following RCG variables

Range � 2 � � ��� � � � � & � � & � � � � � � � � � & � � � & � � � � � � � � � � � 2 � �
Variable : � : :�� ;

�
; ; �

the four inference rules can be directly translated into the four clauses

� 	 � :�� � � : :�� �
; � � 	 ��� � : � � 	 � � : ��; �

� 	 ��; � � � : : � �
;
�
; � � 	 �	� � ; � � � 	 � : � � � : : � �
; �

� 	 ��; � � � : : � �
;
�
; ; � � � 	���
 � ; � � � 	 �
; � � � : :�� ��;

�
; �

	 � : � : : � �
;
�
; ; � � � 	 ��
 � : � � � 	 ��; � � � : : � �
;

�
; ; � �

where underlined sequences denote individual variables whose names indicate their (future) decom-
position into their atomic constituent variables.

16Here, we ignore the three states � , � , and 3 indicating the progress of the recognition process.

INRIA

On TAG and MC-TAG Parsing 23

Note that the first argument of binary predicates always denote a left subtree and the second
argument a right subtree, thus any bound in the first argument is less or equal than the bounds in the
second argument. This naturally fulfills the conditions we have mentioned on the application of the
inference rules.

We easily verify that the maximum number of free bounds in the previous clauses is five.
The other inference rules of [Satta and Schuler, 1998], are simpler than those previously exa-

mined, and can be transformed into equivalent clauses whose number of free bounds is less than
five.

Therefore, we get an equivalent 2-PRCG which, as the original RTAG, has an
� � �
	�

worse parse
time behavior.

7.2 From RTAG to Simple PRCG

In this part we will study how the general transformation rules of Section 5 which transforms an
unrestricted TAG onto an equivalent PRCG can be modified in order to produce for RTAGs an
equivalent PRCG which can be parsed in worst case time

�����
 �
.

We assume that the auxiliary tree set
�

is partitioned into three sets
� $, � � and

� �
, which

respectively contains left, right and wrapping trees denoted by 	 $, 	 � and 	
�

. The restrictions of the
7 � � function to the codomains

� $, � � and
� �

are denoted 7 � � $, 7 � � � and 7 � �
�

.
As in [Satta and Schuler, 1998],17 without loss of generality and only for presentation facility,

we assume that, in a wrapping tree, there is always a wrapping node and that it differs both from the
root and the foot node.

First, let us consider the handling of left and right trees. For a left tree the adjunction constraints
of its root and foot nodes impose that any number of compositions will result in a tree whose
branches all lie to the left of its spine. Thus, we may consider that such an adjunction is a kind
of substitution occurring at an inside node. Such a node spans a contiguous portion of the source
text and can be represented by a single argument predicate. Of course, symmetric facts can be stated
for right trees. The associated transformation rules are listed below.

If 	 � is the root node of a right tree, we add one of the clauses

	 �

	 � � '
� %

���� ��� 	
�+
 7 � � � � 	 � � �

�

	 ����
� = ; � � 	 ����

�,= � �

	 �+
���

� ; �

� 2 �
 7 � � � 	 � � �
�

	 ����
� = � � 	 ����

�,= �

For each open tree 	 ���� where 	 � is the root node of a right tree, we add one of the clauses

17However, we do not assume neither that elementary trees are in binary branching form, nor that no leaf is labeled by � .

RR n ˚ 3668

24 P. Boullier

	 � � '
= � %

������������ �����������

	 �+
 7 � � � � 	 � � ' � �
��� ��
= ���� � 	 ����

� ; = � � �

	 �+
� �

� ; � 	 �� �
� = �

= ��� � 	 ����
� ; � � �

	 �+
� �

� ; �

� 2 �
 7 � � � 	 � � ' � �
��� ��
= ���� � 	 ����

�,= � � 	 �� �
�,= �

= ��� � 	 ����
� 0 � � 0

Note that we decided to handle trivial auxiliary trees like

	 �

	 � � '
as right trees.

If 	 $ is the root node of a left tree, we add one of the clauses

	 $

	 $ � �
� %

���� ��� 	
$+
 7 � � $ � 	 $ � �

�

	 $��� � : = � � �

	 $+
���

� : � 	 $��� � = �

� 2 �
 7 � � � 	 $ � �
�

	 $��� � = � � 	 $��� � = �

If 	 $ and 	 $ � � are the root and foot nodes of the left tree 	 $, for the open tree 	 $��� , we add one of

the clauses

=
	 $ � �

� %
���� ��� 	

$+
 7 � � $ � 	 $ � � � ��= �� � � 	 $��� �,= : � � 	 $
��� -1

�,= � �

	 $+
� �

� : �
� 2 �
 7 � � � 	 $ � � � �
= �� � � 	 $���

�,= � � 	 $
��� -1

�,= �

For a wrapping tree 	
�

, the idea behind its processing is as follows. Starting from the root,
we traverse its spine top-down, processing the nodes where the adjunction of left or right trees is
allowed until we find the (only) wrapping node 	

�
� . Then, we follow the spine bottom-up, starting

from the foot node � � � , until we reach 	
�
� , and then, only at that time, we process this wrapping

node.
For each spinal node � of a wrapping tree 	

�
which strictly dominates the wrapping node 	

�
� ,

the close spinal tree
��� � is transformed by

INRIA

On TAG and MC-TAG Parsing 25

�
= > � %

�������� �������

	 $
 7 � � $ � � � � ��� �
� : = �
> � � �

	 $���
� : � ����

�,= ��> �

	 �
 7 � � � � � � � ��� �
�,= �
> ; � � ����

�,= ��> � �

	 ����
��; �

� 2 �
 7 � � � � � � ��� �
�,= �
> � � ����

�,= ��> �

Each spinal open tree ���� , is processed by the unrestricted TAG transformation rules (9) of Sec-

tion 5.
When, in some wrapping tree 	

�
, during the top-down traversal, we reach the wrapping node

	
�
� , we trigger a bottom-up traversal, starting at the foot node � � � . Of course, during this traversal,

the yields of the trees, rooted on the spine, and laying to the left (resp. right) of this spine are
processed from right to left (resp. left to right). The symbols used to denote both the close and open
(spinal) trees during this bottom-up traversal and their associated predicate names are respectively� �� � and

� �� .

The bottom-up traversal is triggered by the clause

�

	
�
�

���

� = �
> � � ���

� ���
�

�,= �
> �

For any spinal node � � 2 (including the foot node), which is strictly dominated by the wrapping
node 	

�
� , the adjunction of left or right trees is described by

	
�
�

�

� � 2

� %

��������� ��������

	 $
 7 � � $ � � � 2 � �
���

� � 2�
�,= : �
> � � �

	 $��� � : �
���

� � 2 �,= ��> �

	 �
 7 � � � � � � 2 � �
���

� � 2�
�,= ��; > � � �

	 ����
��; � ���

� � 2 � = �
> �

� 2 �
 7 � � � � � 2 � � ���� �
� = �
> � � ���

� � 2 �,= ��> �

For any spinal node (including the foot node) � � 2 , which is strictly dominated by the wrapping
node 	

�
� , if � � 2 � denotes some intermediate predicate name, the processing of the associated bottom-

up open spinal tree
���

� � 2 , is described by

RR n ˚ 3668

26 P. Boullier

	
�
�

�
= >

: � � 2
;

� %

�������������� �������������

: �� � ��; �� � �
���� ���

���

� � 2 �,= : �
> � � �
�
+
-1

� : � � � 2 � � = �
> �

� � 2 � �,= ��; > � � ���� �
�,= ��> � �+

+1 �
� ; �

: � � ��; �� � �
���

� � 2 � = �
; > � � ���� �
�,= ��> � �+

+1 �
� ; �

: �� � ��; � � �
� �� �,= : �
> � � �

�
+
-1

� : �
����
�
�,= ��> �

: � � ��; � � �
���

� � 2 � = �
> � � ���� �
�,= ��> �

And last, for each wrapping node 	
�
� , we process the adjunction of wrapping trees

	
�
�

� %
���� ���
	
�
 7 � �

� � 	
�
�
� � � �

	
�
�

�

� : �
; � � �

	
�
���

� : �
; �

� 2 �
 7 � � � 	
�
�
� � � �

	
�
�

�

� 0 � 0 � � 0

Finally, we just have to examine the adjunction operations at non spinal node. We get the analo-
gous of the transformation rules (2) of Section 5.

If
�� � denotes a non trivial non spinal tree rooted at � , we have

�
= � %

������������� ������������

	 $
 7 � � $ � � � � �� � � : = � � �

	 $���
� : � �� �

�,= �

	 �
 7 � � � � � � � �� � � = ; � � �

	 �� �
� ; � �� �

� = �

	
�
 7 � �

� � � � � �� � � : = ; � � �

	
�
���

� : �
; � �� �
� = �

� 2 �
 7 � � � � � � �� � � = � � �� �
�,= �

Thus, we have seen how any RTAG can be directly transformed into an equivalent simple 2-
PRCG. Since in any clause produced by our transformation algorithm, there are at most five free
bounds, the RCG parser works in worst case time

������
	�
. Moreover, the general transformation

rules for unrestricted TAGs and the previous rules for RTAG can be easily mixed up and lead to a
unique transformation algorithm, working for any TAG and producing an equivalent simple PRCG.
This PRCG has the following property, its worst case time is

������
��
if the initial grammar is an

RTAG or
����� � �

if the initial grammar is an unrestricted TAG.

INRIA

On TAG and MC-TAG Parsing 27

8 Multicomponent TAGs

An extension of TAGs was introduced in [Joshi, Levy, and Takahashi, 1975] and later refined in [Jo-
shi, 1987] where the adjunction operation involves a set of auxiliary trees instead of a single auxiliary
tree. In a multicomponent TAG (MC-TAG), the elementary structures, both initial and auxiliary, ins-
tead of being two sets of single trees, as in TAGs, consist of two finite sets of finite tree sets. In
MC-TAGs, the adjunction operation of an auxiliary tree set is defined as the simultaneous adjunc-
tion of each of its component trees and accounts for a single step in the derivation process. This
multicomponent adjunction (MCA) is defined as follows. All trees of an auxiliary tree set can be
adjoined into distinct nodes (addresses) in a single elementary (initial or auxiliary) tree set.18 Of
course, if the cardinality of each tree set is one, an MC-TAG is a TAG. If the maximum cardinality
of the initial tree sets is 6 , we have a 6 -MC-TAG. In [Weir, 1988], the author has shown that the
languages defined by MC-TAGs are equal to the languages defined by LCFRS. The equivalence also
holds with M-CFGs.19

We can think of two types of locality for MCAs, one type, named tree locality, requires that all
trees in an auxiliary tree set adjoin to a unique tree of an elementary tree set; the other type, named
set locality, requires that all trees in an auxiliary tree set adjoin to the same elementary tree set, not
necessarily to a unique tree and not necessarily to all the trees in this elementary tree set. We choose
to cover the set-local interpretation of the term as it is more general and leads to equivalence to
LCFRS. However, this report will not address the linguistic relevance of MC-TAGs (see for example
[Kroch and Joshi, 1986], [Abeillé, 1994] and [Rambow and Lee, 1994]).

Example 3 (to be continued) Let � be a set-local MC-TAG in which the set of initial tree sets is� � * * " 2�2 and the set of auxiliary tree sets is
� � *�	 � � 	 � � 	
 2 , where each tree set 	 � , 	 � and

	
 contains three trees: 	 � �,*�	 ��� � 	 � � � 	 �
 2 , 	 � � *�	 � � � 	 � � � 	 �
 2 and 	
 �,*�	
 � � 	
 � � 	

 2 . The
elementary trees of � are depicted below20

"�� " �

" � ' �

0

" � � �

0

" � � �

0
18If the MCA operation is allowed into derived tree sets instead of elementary tree sets, we have a nonlocal MC-TAG. This

version of MC-TAGs has not yet been studied in details, and it is not known whether nonlocal MC-TAGs are polynomially
parsable (see [Becker, Joshi and Rambow, 1991]).

19This paper shows that any MC-TAG can be translated into an equivalent simple PRCG. In fact, we conjecture that
the converse is true and that simple positive RCGs, set-local MC-TAGs, LCFRS, and M-CFGs are all weakly equivalent
formalisms.

20The same denotation is used both for nonterminal nodes and their addresses, while terminal nodes are denoted by their
terminal labels or � . The root node of an elementary tree � is also denoted by � . Nonterminal nodes are annotated by their
nonterminal labels while terminal nodes have no annotations. In auxiliary trees, foot node labels are marked by an � . For
example, the root of tree ����� is the node ����� , whose label is � , and the foot node of this tree is �����	�
��
� .

RR n ˚ 3668

28 P. Boullier

	 � � 	 ��� �

7 	 �
� � � �

	 ��� � � � ' ���

	 � � �

7 	 � � � � �

	 � � � � � ' � �

	 �
 �

7 	 �
 � � �

	 �
 � � � ' � �

	 � � 	 � � �

8 	 � � � � �

	 � � � � � ' ���

	 � � �
8 	 � � � � �

	 � � � � � ' � �

	 �
 �

8 	 �
 � � �

	 �
 � � � ' � �

	
 � 	
 � �

	
 � � � ���

	
 � �

	
 � � � � �
	

 �

	

 � � � �

If we assume that adjunction is allowed neither at the root nor at the foot of any tree and that
MCAs are mandatory on inside nonterminal nodes, we can easily see that the language defined by
� is the non-TAL three-copy language * � � � + �
 * 7 ��8 2 / 2 . Each simultaneous adjunction of an
auxiliary tree set 	 � or 	 � produces respectively three related 7 ’s or three related

8
’s, while the MCA

of (the trees in) 	
 terminates the process.

The adjunction and substitution constraints which apply to MC-TAGs are more complex to define
than those which apply to TAGs. First, we choose to process substitutions as a particular case of
MCAs and, second, we choose to identify (valid) MCAs by means of functions –the set of adjunction
covers– defined below.

The reason why substitutions are treated as adjunctions is simply based upon the remark that the
notion of substitution nodes disappears in MC-TAGs since adjunction of some tree in an elementary
tree during an MCA can be hosted at some time by a leaf node (substitution) or, at some other time,
by an internal node (adjunction).21

At each time, for an elementary tree set � , we have to identify the nodes in �
 where MCAs
can take place. This identification first results in a partition * � � � ����� � � � � ����� � � � 2 of �
 in which
each element � � is the set of nodes at which a single MCA of some auxiliary tree set � � can occur.
Of course, if � � is some auxiliary tree set 	 + , we have + �1� + � + 	 + + and if � �#� � (a nil adjunction),
we have + �1� + � ' . Second, for each node �
 � � , we must know which tree of 	 + can be adjoined

21If adjunction is allowed at leaf nodes, note that the halting problem can be controlled by 1�3)5 adjunction constraints at
foot nodes. Equivalently, and without loss of generality, we can prohibit nonterminal leaf nodes (and thus substitutions) since,
each such leaf node can be transformed into an inside node bearing a single empty daughter node.

INRIA

On TAG and MC-TAG Parsing 29

at � . Thus we assume that for each � � , there is a bijective mapping � � from � � to 	 + called local
adjunction cover. We also define a function � , called adjunction cover, from �
 to

- � �
�� 	 + - * � 2 � 2
s.t. � � � ' 0 � 0�� , the restriction of � on � � is the local adjunction cover � � . Without loss of
generality, we assume that all the MCA constraints of a given elementary tree set can be expressed
by a finite set of adjunction covers.22 Thus, associated with each elementary tree set � , we assume
that there is a finite set of adjunction covers. Each such adjunction cover � defines, on the one
hand � local adjunction covers � � � ����� � � � � ����� � � � , and, on the other hand, an � -partition ���
 �*=� � � ����� � � � � ����� � � � 2 of the adjunction nodes �
 of � , s.t. each � � is the definition domain��� � � �"� � of ��� , and s.t. for each node �
 �

 , � � � �
 - ���
�� 	 + - * � 2 � 2 is the tree which is adjoined
at � .
Example 3 (to be continued) The various MCA constraints associated with the MC-TAG for the
3-copy language are expressed in terms of adjunction covers as follows

	
There are three adjunction covers �

�
� , �

�� , and �

� for the initial tree set * " 2 .

�	�� �.* � " � � 2 � � � � " � ' � 	 �
� � � � " � � � 	 � �

� � � " � � � 	 �

� 2 � ' 0 � 0 � .

	
The corresponding partitions of � � are

� ��
�� � *�* " 2 � * " � ' ��" � � ��" � � 2 2 � ' 0 � 0 � .

	
For each auxiliary tree set 	 � and 	 � , we have three adjunction covers.

If ' 0 � 0 � � ' 0�2 0 � , these six functions are defined by

�	�� � � * � 	 + � � � � 	 �
� � � � 	 + � � � � 	 � �

� � � 	 +
 � � � 	 �

� �

� 	 + � � � 2 � � � � 	 + � � � 2 � � � � 	 +
 � � 2 � � �� 	 + � � � � ' � � 2 � � � � 	 + � � � � ' � � 2 � � � � 	 +
 � � � ' � � 2 � � 2
and the corresponding partitions are

	 � �

� �� � � *�*�	 + � 2 � *�	 + � 2 � *�	 +
 2 � *�	 + � � � � ' 2 � *�	 + � � � � ' 2 � *�	 +
 � � � ' 2 � *�	 + � � � � 	 + � � � � 	 +
 � � 2 2 .	
For 	
 , we have a single adjunction cover

� �����.* � 	
 � � � 2 � � � � 	
 � � � 2 � � � � 	

 � � 2 � � � � 	
 � � ' � � 2 � � � � 	
 � � ' � � 2 � � � � 	

 � ' � � 2 � � 2
and the corresponding partition is

	 � � � �� � �.* *�	
 � 2 � *�	
 � 2 � *�	

 2 � *�	
 � � ' 2 � *�	
 � � ' 2 � *�	

 � ' 2 2 .
Now, we are ready to show that for any set-local 6 -MC-TAG there is an equivalent simple � 6 -PRCG.

22The way such a knowledge is acquired from a grammar, either by a direct specification or by some computation from
more “local” adjunction constraints, such as the !$#&% function, lies outside the scope of this paper.

RR n ˚ 3668

30 P. Boullier

9 Transformation from MC-TAG to Simple PRCG

The transformation of any MC-TAG into an equivalent simple PRCG is based upon a generalization
of the basic transformation algorithm from TAG to simple PRCG proposed in Section 5.

Without loss of generality, we assume that initial tree sets are singletons whose root nodes are all
labeled by the start symbol

�
. As for TAGs, each individual tree is decorated, and these annotations

are gathered into decoration strings. The only difference is that, if we allow nonterminal leaf nodes,
they are annotated, as the inside adjunction nodes, with two : ; -variables (: � and

;
� for the node

� instead of the single substitution variable
�
�).

With each elementary tree set � , we associate a single decoration string �
 , assuming some
ordering on the trees of � . For an initial tree set, which is a singleton, �
 is the decoration string
of that single tree. For an auxiliary tree set 	 + whose elements are the trees 	 + � , . . . , 	 + � , . . . ,
	 + $ � � & + � + 	 + + , its decoration string � � � is the concatenation of the decoration strings ����� � of its
component trees ����� � � ����� ����� � � � � ����� � ����� � where each substring ����� � , as in TAGs, is cut in two
parts � � � � � � $� � � � ���� � , the left one has been collected before the foot node while the right one has

been collected after the foot node. This means that � $��� � has the form : � � � � ����� : � � � � , while �
�� � � has

the form
; � � � � ����� ; � � � � if the root and the foot nodes of 	 + � are respectively denoted by � ��� � and

� ��� � .
For each elementary tree set � , and for each adjunction cover � , we associate a unique clause� � ��� � �����
� � ������� � , constructed as follows:

	
If � is an initial tree set

"
, we have

�4� � � ��� �� � , where
� �� is a string built from the decoration

string � � , in replacing each : ; -variable : � or
;
� , such that � � � � � � 2 � , by the empty string.

	
If � is an auxiliary tree set 	 + �.*�	 + � � ����� � 	 + � � ����� � 	 + $ � 2 , we have

� � � 	 + ��� � ' $� ��� ��� � ' �� ��� � ����� ��� � ' $� � � �
� � ' �� � � � ����� ��� � ' $� �	� � ��� �

' �� �	� � � where
� � ' $� � � and

� � ' �� � � are respectively built from � $��� � and �
�� � � , the left

and right decoration strings of the auxiliary tree 	 + � , in replacing each : ; -variable : � or
;
� ,

such that � � � � � � 2 � , by the empty string. Note that the arity of the predicate name 	 + is
twice the cardinality of the auxiliary tree set 	 + , since, as for TAGs, the description of each
individual auxiliary tree takes two arguments.

	
Its RHS is produced analogously, whether we consider initial or auxiliary tree sets. Let
� � � ����� � � � � ����� � � � be the local adjunction covers of � and ���
 � *=� � � ����� � � � � ����� � � � 2 ,
� � � � � � � � � � be the corresponding partition of �
 . For each local adjunction cover � �
whose codomain

9 � ��� � � ��� � is not * � 2 � 2 , if 	 $4� 9 � ��� � � �"� � � *�	 $ � � ����� � 	 $ �
� ����� � 	 $ � 2 , we

generate the predicate call
� �*� 	 $ � : � ��; � � ����� � : �

��;
�
� ����� � : �

��;
�
�

where : � � : � and;
� �

;
� if 	 $ � � �"� � � � , �
 �1� . If

9 � ��� � � �"� � �.* � 2 � 2 , we have
� � � 0 .

Here, we will assume the correctness of this algorithm.
However, we can easily check that this process only builds simple clauses and that the maximum

arity of its predicates is � 6 , if we start from a 6 -MC-TAG.

Example 3 (to be continued) The decoration string � � of the initial tree set * " 2 is

INRIA

On TAG and MC-TAG Parsing 31

	
� � � : � : ��� ��; ��� � : ��� � ; ��� � : ���
 ; ���
 ; � .

The decoration strings of the auxiliary tree sets 	 + , ' 0 2 0 � and their auxiliary trees 	 + � ,
' 0 � 0 � are

	
� � �4� � $����� � �� ��� � $� ��� � ������ � $��� � � �� � � , ' 032 0 � such that

– � $��� � � : � � � � � : ��� � � � : ��� � � � �
�

with '1032�0 � , ' 0 � 0 � , ' 0 6 0 � and � � � 7 � � � � 8 ;
– �

���� � � ; � � � � � � � ; � � � � � ; � � � with '1032�0 � and '10 � 0 � ;

– � $��� � � : ��� � : � � � � � with ' 0 � 0 � ;

– �
�� � � � ; � � � � � ; � � � with ' 0 � 0 � .

For the various adjunction covers, in erasing the : ; -variables associated with the
� 2 � constraints,

we get

	 � �

�� � : ��� � ; ��� � : ��� � ; ��� � : ���
 ; ���
 with '10 � 0 � ;
	 � �

� � ' $� � � � � � : ��� � � � with '10�2 0 � � ' 0 � 0 � � ' 0 � 0 � � ' 0!6 0 � � � � � 7 � � � � 8 ;
	 � �

� � ' �� � � � ; � � � � � with '1032�0 � � ' 0 � 0 � � ' 0 � 0 � ;
	 � � � � ' $� � � � ��� � � � ' �	�� � � � 0 with ' 0 � 0 � .
Afterwards, applying the previous transformation rules, we get the clauses

� � : ��� � ; ��� � : ��� � ; ��� � : ���
 ; ���
 � � 	 �	� : ��� � � ; ��� � � : ��� � � ; ��� � � : ���
 � ; ���
 �� � : ��� � ; ��� � : ��� � ; ��� � : ���
 ; ���
 � � 	 � � : ��� � � ; ��� � � : ��� � � ; ��� � � : ���
 � ; ���
 �� � : ��� � ; ��� � : ��� � ; ��� � : ���
 ; ���
 � � 	
 � : ��� � � ; ��� � � : ��� � � ; ��� � � : ���
 � ; ���
 �
	 ��� 7 : � � � � � � ; � � � � � � 7 : � �
� � � � ; � �
� � � � 7 : � � � � � � ; � � � � � �� 	 � � : � � � � � � ; � � � � � � : � ��� � � � ; � ��� � � � : � � � � � � ; � � � � � �
	 � � 7 : � � � � � � ; � � � � � � 7 : � �
� � � � ; � �
� � � � 7 : � � � � � � ; � � � � � �� 	 � � : � � � � � � ; � � � � � � : � ��� � � � ; � ��� � � � : � � � � � � ; � � � � � �
	 � � 7 : � � � � � � ; � � � � � � 7 : � �
� � � � ; � �
� � � � 7 : � � � � � � ; � � � � � �� 	
 � : � � � � � � ; � � � � � � : � ��� � � � ; � ��� � � � : � � � � � � ; � � � � � �
	 � � 8 : ��� � � � � ; ��� � � � � 8 : ����� � � � ; �
��� � � � 8 : ��� � � � � ; ��� � � � �� 	 �	� : ��� � � � � ; ��� � � � � : �
��� � � � ; �
��� � � � : ��� � � � � ; �
� � � � �
	 � � 8 : ��� � � � � ; ��� � � � � 8 : ����� � � � ; �
��� � � � 8 : ��� � � � � ; ��� � � � �� 	 � � : ��� � � � � ; ��� � � � � : �
��� � � � ; �
��� � � � : ��� � � � � ; �
� � � � �
	 � � 8 : ��� � � � � ; ��� � � � � 8 : ����� � � � ; �
��� � � � 8 : ��� � � � � ; ��� � � � �� 	
 � : ��� � � � � ; ��� � � � � : �
��� � � � ; �
��� � � � : ��� � � � � ; �
� � � � �
	
 � 0 � 0 � 0 � 0 � 0 � 0 � � 0

RR n ˚ 3668

32 P. Boullier

Now we will address the parse time (of the RCG version) of 6 -MC-TAGs.
If we apply, to our case, the general formula which gives the degree of the polynomial parse time

for a simple RCG i.e.
� � �������	��

� � � �+�� � � '�� � + � , we get

� � �������	��

� � 6 � � � � � if
9 � is the

� th

clause, � � is the number of RCG variables within
9 � , and 6 � is the arity of its LHS predicate. In

a 6 -MC-TAG, we have 6 �.0 � 6 and if � is the maximum number of nonterminal nodes hosting a
non

� 2 � adjunction constraint, we have � ��0 � � . Thus, any 6 -MC-TAG can be parsed at worst in����� � � � -�� � � time.

10 MC-TAG parsing optimization

For TAGs, we have found two generation techniques which both result in the famous
� � � ���

parse
time. We can remark that this parse time does not depend neither on the form of the elementary
trees nor on the number of adjunction nodes in a tree. The transformation in Section 5 operates at
the RCG level and produces an equivalent simple PRCG in 2-var form. This transformation directly
relies on the fact that the decoration strings of its elementary trees are elements of a Dyck language
where the parentheses are couples of variables such as

� :�� ��; � � . Of course, the question whether
the generalization of such a technique applies to MC-TAGs, comes immediately at mind.

Unfortunately, the answer is no. For an MC-TAG, we consider the set of nodes �
 of an elemen-
tary tree set � , a partition �
 � *=� � � ����� � � +�� ����� � � � 2 of �
 s.t. an MCA can take place at each
� + , and the tuples � + � � : � � �
; � � � ����� � : � � ��; � � � ����� : ��� � � � �
; ��� � � � � containing the : ; -variables
: � � , ; � � , � �
 � + in some order. It is not difficult to see that the decoration string �
 associated
with � is not, in the general case, an (extended) Dyck string w.r.t. the parentheses of the � + ’s since
the nodes in � + are freely located within � and this may lead to an unbalanced decoration string �
 .
Therefore, it seems that the method used for TAGs cannot be generalized to MC-TAGs. The purpose
of this section is to study another way to decrease the parse time complexity of MC-TAGs.

As in Section 9, for each elementary tree set � � *�� � � ����� � �"� � ����� � � � 2 (we assume that � is
ordered), its set of nodes is denoted by �
 and its decoration string ��
 is the concatenation of ��
 � ,
. . . , �
 � , . . . , �
�� where �
 � is the decoration string of � � . Each �
 � has the form : ��� � ����� ; ��� � if �
 �
is the root node of ��� . Moreover, if � is an auxiliary tree set each ��
 � has the form � $
 � � �
 � , where � $
 �
(resp. �

�
 �) is the prefix (resp. suffix) of the decoration string gathered before (resp. after) ��
 � , the

foot node of ��� . Of course, we have � $
 � � : � � � ����� : � � � and � $
 � � ; � � � ����� ; � � � .
For some �	� ��
 , a tuple

�
� � � � � � ����� � � + � ����� � � $ � � is called a decoration vector of the tree

set � iff the �
+
’s are non-overlapping substrings of ��
 , occurring in that order in ��
 and the string

�
� �����

�
+ �����

�
$

contains all the : ; -variables of � , and only those variables. More formally, we
have

	
�
 � � �� � � � �� ����� � + � �+ ����� � $ � �$ and

	 �
 ��
 % : � ��; �

��� � � � � � � and �
 �
 � ��
 % :�� �
; �
�� � �� � �� � � � � �� � � � � �� , if
���

denotes
the set of variables occurring in � .

The number & of components of a decoration vector is its size.

INRIA

On TAG and MC-TAG Parsing 33

As an example, if 	 + is an auxiliary set of trees of cardinality 6 , if ��� � � � $����� � �� ��� ����� � $� � � � �� � �
is its decoration string and if � � � is its set of nodes, the tuple

�
� � � � � � $� � � �� � ����� � � $�

�
�
�

�
� � � � is a

decoration vector of 	 + , for � � � . Its size is � 6 . Such a decoration vector is called initial.
We know that any individual MCA is entirely defined by a function, its local adjunction cover � � .

In order to apply � � , the set of nodes of its definition set
� � � � � � � must be identified. More precisely,

since we deal with RCGs, the � + ��� � � � � � + : ; -variables decorating the nodes of
� � � � � � � must occur-

red altogether within a single clause. Of course, the same condition holds for all the local adjunction
covers defining a given adjunction cover. Thus we are faced with the following problem. Let 	 + be an
auxiliary tree set and let � � �#� � $� ��� � �� ��� ����� � $��� � � �� � � be its decoration string. Let � � � ����� � �"� � ����� � � �
be the local adjunction covers of � , an adjunction cover of 	 + , and let � �
 � *=� � � ����� � � � � ����� � � � 2 ,
�1� � ��� � � �"� � be the corresponding partition of ��� � . Starting from the initial decoration vec-
tor

�
� � �1� � � $� ��� � � �� ��� � ����� � � $� � � � � �� � � � � � � , we want to build a sequence of decoration vectors from

which, at some steps, the : ; -variables associated with each � � can be simultaneously extracted.
However, we must be aware that each component of a decoration vector is also a complete argument
of some predicate, and as such denotes a (contiguous) range of source symbols. Thus, if a variable is
isolated in the middle of some component, its extraction will obligatory result in the creation of two
arguments (one for the prefix part and the other for the suffix part). If we remember that the degree
of the polynomial parse time is proportional to the predicate arities, we can easily figure out that the
way and the order in which this sequence of extractions is performed is not neutral.

If we define an � -partition * � � � ����� � �1� � ����� � � � 2 of some set of nodes � , the idea is, star-
ting from a decoration vector

�
� for � , to define � decoration vectors

�
�
�
, . . . ,

�
��� , . . . ,

�
�
�

. Each
such decoration vector will, at turn, produce other decoration vectors until we get a decoration vec-
tor which contains all and only those variables implied in a given MCA. In order to do that, each
component string �

+
of

�
� is cut into substrings in such a way that each substrings only contains

: ; -variables associated with the � � ’s. Each of these substrings, becomes in turn a component of a
new decoration vector

�
� � . Of course the substrings which contain the variables associated with � �

are components of
�
� � . More formally, let

�
� � � � � � ����� � � +�� ����� � � $ � � be a decoration vector for � .

If * � � � ����� � � � � ����� � � � 2 is a partition of � into � non empty subsets; we call splitting of
�
� by

*=� � � ����� � � � � ����� � � � 2 the � decoration vectors
�
�
� � � �

�� � ����� �
�
�$
�
� � � ,. . . ,

�
� � � � � � � � ����� � � �$ � � � � ,

. . . ,
�
�
� � � �

�� � ����� �
�
�$�� � � �

. The
� th component of

�
� � is denoted �

�
� (i.e.

�
��� � � � � �

�
�). This

component, which only contains : ; -variables of � � , is a substring of some component �
+

of
�
� . Let� � � � ����� � � � + � ����� � � �$ be respectively the numbers of substrings in �

� � ����� �
�
+ � ����� �

�
$

which only contains

: ; -variables of � � . We define the numbers 6 � � � ����� � 6 �+ � ����� � 6 �$ by 6 � � � � 6 �� �)6 � � � � � � � ����� � 6 �+ �
6 �+ � � � � � + � � � ����� � 6 �$ � 6 �$ � � � � �$ � � . The components of

�
� � , which originate in �

+
, are located in

�
� �

at indexes ranging from 6 �+ �(' to 6 �+ � � �+ . Thus, the components of
�
��� , ' 0 � 0(� , are extracted

from each �
+
, '1032405& , as follows

	
�
+ � �

��
�
�
� �� -
� � �� ����� � �$ �� � � �

�
� �� - $ ��

�
�
$ ��

	 �
�� � �� ����� � �$ �� � � �

�
$ �� � � �� � �� �� -

� � �� ����� � �$ �� � � �
�
� �� - $ ��

� �$ ��	
. . .

RR n ˚ 3668

34 P. Boullier

	 � � � �� � � � �� ����� � � � �$ ��� �
� �

� � � � �$ � � � � �� � �� �� -
� � �� ����� � �$ � � � � � � � �� - $ � �

� �$ � �	
. . .

	 �
�
�
�� �
�
�
�� ����� � � �

�
$ � � �
� �

� � � �
�

$ �� � �
�
�
�
� - � ����� �

�
�
�
� - $

�
�

If �
+�
.� /

, we can note that �
+

does not contribute to any
�
� � ’s. We also see that, in the general case,

a splitting by some partition is not unique since a component, say
�
� � � � � , which contains several

variables can always be cut in two parts.
Let � be a covering function for some � , � � � ����� � � � its associated local covering functions and

� �
 � *=� � � ����� � � + � ����� � � � 2 , � + � � � � � � + � the corresponding partition of �

 . Starting, from
the initial decoration vector � � � � � � if � is an initial tree

"
or from � � $� � � �� � ����� � � $�

�
�
�

�
� � � if � is an

auxiliary tree set 	 of cardinality 6 , we want, by successive splittings, build � decoration vectors
� ����� � � � � ����� � � ����� � � � � ����� � � ����� � �

�
which are qualified of final. Of course, at each step the partition

which defines a splitting must be compatible with the partition � �
 . This means that the set of nodes
� of each decoration vector � ����� � � must be the union of sets in � �
 (i.e.

� ; � *�2 + ' 0 2 0
� 2 � � � - +
 � � +). Note that, usually, a sequence of successive splittings is not unique.

Now, we are ready to state how to generate a simple � 6 -PRCG from a 6 -MC-TAG.
For each initial tree set

"�+
and for each adjunction cover � of

"#+
, we generate the clause

� ��< � � � � � � � � �
��< �

where � � *�� + �
 � � � and � � � � �� � 2 � 2 and
� � � is the decoration string � � � of

" +
in which all the

: ; -variables : � and
;
� associated with the nil nodes � of � � � � � have been erased. The unary

predicate name � � � � � � � is associated with the (one component) initial decoration vector � � � � � � , and<
is some RCG variable.
For each auxiliary tree set 	 + of cardinality 6 , and for each adjunction cover � of 	 + , we generate

the clause

	 + � : � �
; � � ����� � : �
�
;
�
� � � � $� ��� ��� ������ � ����� � � $� � � � � �� � � � ����� ��� $� � � ��� �� � � � � �

� : � �
; � � ����� � : �
�
;
�
�

where � � *�� + �
 �C��� and � � � � �� � 2 � 2 and each
� $� � � or

� �� � � is the decoration string � $� � � or �
�� � �

in which the : ; -variables associated with the nil nodes of ��� � � � have been erased. The predicate
name � � $� ��� � � �� ��� � ����� � � $� � � ��� �� � � � ����� ��� $��� � ��� ���� � � � � of arity � 6 is associated with the (� 6 component)

initial decoration vector � � $����� ��� �� ��� � ����� ��� $��� � ��� ���� � � ����� � � $� � � � � �� � � � � , and the : + ’s and
; +

’s are RCG
variables.

For each not yet defined predicate name � � � � ����� � � +�� ����� � � $ � � � , associated with the decoration
vector � � � � ����� � � + � ����� � � $ � � , if *=� � � ����� � � � � ����� � � � 2 , � � � is a partition of � , which is com-
patible with � , we generate the clause

� � � � ����� � � + � ����� � � $ � � �
��� � � ����� ��� + � ����� ��� $ � � � � ����� � � �����
� �

if the splitting of � � � � ����� � � +�� ����� � � $ � � by *=� � � ����� � � � � ����� � � � 2 gives the � decoration vectors
� �
�� � ����� �

�
�$
�
� � � , . . . , � � � � � ����� � � �$ � � � � , . . . , � �

�� � ����� �
�
�$ � � � �

. Each predicate call
� � has the form

INRIA

On TAG and MC-TAG Parsing 35

� � �� � ����� ��� �$ � � � ��
��� �� � ����� ��� �$ � � , where

� �
� , ' 0 � 0 &�� is the string �

�
� in which the leading and

trailing elements in
� - have been erased and the underlined terms

� �
� , '*0 � 0 &�� denote RCG

variables. In the LHS, each argument
� +

is the string �
+

in which each substring such as
� �
� as been

replaced by the corresponding RCG variable
� �
� .

For each not yet defined predicate name � � � � ����� � � $ � � � , if � are nodes at which a single MCA
of 	 + defined by � takes place, we generate

� � � � ����� � � $ � � �
�
�
� � ����� �

�
$ � � 	 + � : � �
; � � ����� � : � ��; � � ����� � : �

�
;
�
�

if the cardinality of the auxiliary tree set 	 + is 6 , and if ���
 � we have � � � � � 	 + �.� % :(� �
:�� �
; � � ; � .

In this paper, we assume that the previous transformation gives a simple PRCG which is equi-
valent to the original MC-TAG. We will now address the parse time complexity of the resulting
RCG.

When a splitting of � � � � ����� � � $ � � by � � *=� � � � � � ����� � � � 2 gives the � decoration vectors
� �
�� � ����� �

�
�$
�
� � � , � � �� � ����� � � �$ � � � � , . . . , � � �� � ����� � � �$�� � �

�
the number of variables in the associated

clause is & � � & � � ����� � & � and the corresponding number of free bounds is & � & � � & � � ����� � & � .
Of course, if � � � � ����� � � $ � � is an initial decoration vector and if � is the partition associated with the
covering function � , we are in the unoptimized generation case and &/� & � � & � � ����� �1& � � � � 6 ��� � ,
where � is the maximum number of nonterminal node hosting a non nil adjunction constraint. The
purpose of the previous generation strategy is to find a splitting sequence, which starts from some
initial decoration vector and leads to final decoration vectors, while minimizing (at each step) the
number of free bounds. However, it must be clear that, in some cases, this minimum number of
free bounds can be the maximum value �

� 6 � � � .23 However, fairly often, several variables can be
grouped together within the same decoration vector component (from which, altogether, they will be
extracted later on during another splitting), leading to a decreased parse time.

If, as in the TAG case, we want to get a worst case parse time which does not depend upon the
number of adjunction nodes within an elementary tree set, we must impose some restrictions on the
initial 6 -MC-TAG. First we will assume that the associated simple PRCG is of arity � 6 . As already
noticed, this is not a restriction on the input MC-TAG (in each splitting, the sizes of the resulting
decoration vectors are bounded by � 6), but this restricts the number of splitting sequences and may
thus not lead to an optimal solution. Second, we limit the total number of components used at each
splitting step. Since for a 6 -MC-TAG we have to isolate at least � 6 : ; -variables, this total number
of components must be at least � 6 (if we assume that each tree of an auxiliary tree set of cardinality
6 adjoined at spinal nodes of 6 different trees), and thus, is of the form � 6 � 9 , 9 �3 . In this case the
parse time complexity has the form

������� � - � � and we say that we have an MC-TAG in
9
-split form.

It seems that the first interesting class within this
9
-split form hierarchy is for

9 � � . In this case,
all the arguments of a predicate definition of arity � 6 contain a single variable, except that there is

23Imagine a TAG (� 0 �) in which all elementary trees contain a single nonterminal node which can host a non nil
adjunction (� 0 �), if moreover, in some auxiliary tree � , this unique adjunction node (is a spinal node, the LHS of the
associated clause has the form � ' 	 ��� 		� +
� ��� � � * , 	 + 	�� +
� +
� � � 3 � whose number of free bounds is 4, equal to the value of

 '�������* .

RR n ˚ 3668

36 P. Boullier

either one argument with three variables or there are two arguments with two variables each. Note
that the parse time complexity of a 6 -MC-TAG in 2-split form is

� � ��� � - � � .24

Example 3 (concluded) It is not difficult to see that our optimized generation strategy, when applied
to our example, exactly gives the same simple PRCG. In fact, the original grammar is a 3-MC-TAG
in 0-split form, and its worst case parse time is thus

����� � � �
. However, we can remark that on

the one hand, all the
;

-variables are bounded to an empty range, and, on the other hand, that
any instantiation of a 	 + -clause succeeds (or fails) in a time linear with the sum of the sizes of its
arguments, thus, we can easily figure out that the 3-copy language can be parsed in cubic time. This
parse time even decreases to linear if we remark that the three variables : ��� � , : ��� � and : ���
 must
be bound to ranges of equal sizes.

11 Conclusion

In this paper, we first proposed two methods to implement a TAG parser in
����� � �

time. These
algorithms use RCGs, a powerful high level syntactic description formalism, as an intermediate
object language. Since [Boullier, 1998b], we know that RCGs can be used to implement parsers for
TAGs. However, the

����� � �
bound was only reached with a restricted form of adjunction constraints

and when the initial TAG was in some normal form. In particular, this normal form assumes that
elementary trees are in a binary branching form, form in which the original structure has disappeared.
At the contrary, the algorithms presented here, work for completely unrestricted TAGs though their
corresponding parsers still work in

������� �
time at worst.

For a linguistically significant restricted form of TAGs that can be parsed in
�����
��

, we have
shown that its RCG version can also be parsed in

�����
 �
time, whether we start from the interme-

diate representation introduced in [Satta and Schuler, 1998], or directly from the elementary trees
representation. We have even noticed that our algorithm for unrestricted TAGs can be modified to
take into account the restricted form, and results in a single translation algorithm which produces
RCGs which can be parsed in

������
��
at worst when the original TAG is in restricted form. The RCG

formalism even guarantees that restricted parts of an unrestricted TAG are processed in
�����
	�

at
worst.

Afterwards, we have shown that any set-local MC-TAG with unrestricted multicomponent ad-
junction constraints can be translated into an equivalent simple PRCG. This PRCG, in turn, as any
other RCG, can be parsed in polynomial time. However, in the general case, the degree of this
polynomial depends both on the maximum number 6 of elementary trees in a tree set and on the
maximum number � of adjunction nodes in a tree set: we showed that an MC-TAG can be parsed at
worst in

����� � � � -�� � � time. In order to release from the � parameter, we define an optimized genera-
tion algorithm which always succeeds and tries to define some value

9
leading to a grammar in the

so-called
9
-split form. For 6 -MC-TAGs in

9
-split form, the parse time of its equivalent simple PRCG

is
� � � � � - � � . This

9
parameter depends on the relative places where multicomponent adjunctions

can take place.

24The linguistic relevance of such a restriction will not be examined. However, we can remark that any unrestricted TAG
is a � -MC-TAG in 2-split form.

INRIA

On TAG and MC-TAG Parsing 37

If we assume that, in order to be (linguistically) interesting, an MC-TAG must be at least as
powerful as a TAG, the first subclass, in the split form hierarchy, corresponds to

9 � � , for we
have noticed that TAGs and 1-MC-TAGs in 2-split form are equivalent. Of course, in this case, both
parsers work in

���������
time at worst. However, the linguistic relevance of the split form hierarchy

still has to be demonstrated though it can easily be shown that multiple agreements of degree 6 (i.e.
* 7 � � 8 � � ����� 7 � �

8 �
�
+ � � ' � 6 ��� 2) can be defined by a

� 6 � ' � -MC-TAG in 0-split form and that
duplication of degree 6 (i.e. * � � + �
 * 7 ��8 2 / � 6�� � 2) can also be defined by a 6 -MC-TAG in
0-split form.25

The usage of RCGs as an intermediate structure may result in several advantages. First, since the
RCG formalism is simple, the transformation proposed in this paper gives another view of the (ra-
ther complicated) adjunction or multicomponent adjunction mechanism and may help to understand
when and why they are costly to implement. Second, since RCGs can be efficiently implemented,
we are convinced that these methods are good candidates for practical TAG or MC-TAGs implemen-
tations.

References

[Abeillé, 1994] Abeillé A. (1994). Syntax or Semantics? handling Nonlocal Dependencies with
MCTAGs or Synchronous TAGs In Computational Intelligence, Vol. 10, No. 4, pages 471–485.

[Becker, Joshi and Rambow, 1991] Becker T., Joshi A. and Rambow O. (1991). Long distance
scrambling and tree adjoining grammars. In Proceedings of the fifth Conference of the European
Chapter of the Association for Computational Linguistics (EACL’91), pages 21–26.

[Boullier, 1996] Boullier P. (1996). Another Facet of LIG Parsing In Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics (ACL’96), University of Ca-
lifornia at Santa Cruz, California, 24–27 June, pages 87–94. See also Research Report No
2858 at http://www.inria.fr/RRRT/RR-2858.html, INRIA-Rocquencourt, France,
Apr. 1996, 22 pages.

[Boullier, 1998a] Boullier P. (1998). Proposal for a Natural Language Processing Syntactic Back-
bone. In Research Report No 3342 at http://www.inria.fr/RRRT/RR-3342.html,
INRIA-Rocquencourt, France, Jan. 1998, 41 pages.

[Boullier, 1998b] Boullier P. (1998). A Generalization of Mildly Context-Sensitive Formalisms.
In Proceedings of the Fourth International Workshop on Tree Adjoining Grammars and Related
Frameworks (TAG+4), University of Pennsylvania, Philadelphia, PA, 1–3 August, pages 17–20.

[Boullier, 1999a] Boullier P. (1999). Chinese Numbers, MIX, Scrambling, and Range Concatena-
tion Grammars In Proceedings of the 9th Conference of the Europwean Chapter of the Association
for Computational Linguistics (EACL’99), Bergen, Norway, June 8–12.

25Recall that cross agreements of degree � (i.e.
� !�� �� � � �-! � �� 9�� �� � � ��9 � ���� 1��
	 ���) is a TAL.

RR n ˚ 3668

38 P. Boullier

[Boullier, 1999b] Boullier P. (1999). On TAG Parsing In
� ème conférence annuelle sur le Traitement

Automatique des Langues Naturelles (TALN’99), Cargèse, Corsica, France, July 12-17.

[Boullier, 1999c] Boullier P. (1999). On Multicomponent TAG Parsing In
� ème conférence annuelle

sur le Traitement Automatique des Langues Naturelles (TALN’99), Cargèse, Corsica, France, July
12-17.

[Gazdar, 1985] Gazdar G. (1985). Applicability of Indexed Grammars to Natural Languages. In
Technical Report CSLI-85-34, Center for Study of Language and Information, 1985.

[Groenink, 1997] Groenink A. (1997). SURFACE WITHOUT STRUCTURE Word order and tracta-
bility issues in natural language analysis. PhD thesis, Utrecht University, The Netherlands, Nov.
1977, 250 pages.

[Joshi, Levy, and Takahashi, 1975] Joshi A., Levy L. and Takahashi M. (1975). Tree adjunct gram-
mars. In Journal of Computer ans System Sciences, 10, pages 136–163.

[Joshi, 1985] Joshi A. (1985). How much context-sensitivity is necessary for characterizing struc-
tural descriptions — Tree Adjoining Grammars. In Natural Language Processing — Theoritical,
Computational and Psychological Perspective, D. Dowty, L. Karttunen, and A. Zwicky, editors,
Cambridge University Press, New-York, NY.

[Joshi, 1987] Joshi A. (1987). An Introduction to Tree Adjoining Grammars. In Mathematics of
Language, Manaster-Ramer, A., editors, John Benjamins, Amsterdam, pages 87–114.

[Kroch and Joshi, 1986] Kroch A. and Joshi A. (1986). Analyzing Extraposition in a Tree Adjoining
Grammar. In Discontinuous constituents, syntax and semantics, Edited by Huck and Ojeda.
Academic Press, New York, vol. 20, pages 107–149.

[Pollard, 1984] Pollard C. (1984). Generalized Phrase Structure Grammars, Head Grammars and
Natural Language. PhD thesis, Stanford University.

[Rambow and Lee, 1994] Rambow O. and Lee Y.-S.. (1994). Word Order Variation and Tree Ad-
joining Grammar. In Computational Intelligence, Vol. 10, No. 4, pages 386–400.

[Rounds, 1988] Rounds W. (1988). LFP: A Logic for Linguistic Descriptions and an Analysis of
its Complexity. In ACL Computational Linguistics, Vol. 14, No. 4, pages 1–9.

[Satta, 1994] Satta G. (1994). Tree adjoining grammars parsing and boolean matrix multiplication.
In Computational Linguistics, 20(2), pages 173–192.

[Satta and Schuler, 1998] Satta G. and Schuler W. (1998). Restrictions on Tree Adjoining Lan-
guages. In Proceedings of the 36th Annual Meeting of the Association for Computational Lin-
guistics and 17th International Conference on Computational Linguistics (COLING-ACL’98),
Université de Montréal, Montréal, Québec, Canada, 10–14 August, vol. II, pages 1176–1182.

[Schabes and Shieber, 1994] Schabes Y. and Shieber S. (1994). An Alternative Conception of Tree-
Adjoining Derivation. In ACL Computational Linguistics, Vol. 20, No. 1, pages 91–124.

INRIA

On TAG and MC-TAG Parsing 39

[Schabes and Waters, 1994] Schabes Y. and Waters R. (1994). Tree Insertion Grammar: A Cubic-
Time Parsable Formalism That Lexicalizes Context-Free Grammar Without Changing the Trees
Produced In Technical Report, TR-94-13, Mitsubishi Electric Research Laboratories, June, 35
pages.

[Seki, Matsumura, Fujii, and Kasami, 1991] Seki H., Matsumura T., Fujii M. and Kasami T. (1991).
On multiple context-free grammars. In Theoretical Computer Science, Elsevier Science, 88, pages
191–229.

[Steedman, 1987] Steedman M. (1987). Combinatory grammars and parasitic gaps. In Natural
language and Linguistic Theory, 1987.

[Vijay-Shanker, 1987] Vijay-Shanker K. (1987). A study of tree adjoining grammars. PhD thesis,
University of Pennsylvania, Philadelphia, PA.

[Vijay-Shanker, Weir, and Joshi, 1987] Vijay-Shanker K., Weir D. and Joshi A. (1987). Characte-
rizing Structural Descriptions Produced by Various Grammatical Formalisms. In Proceedings of
the 25th Meeting of the Association for Computational Linguistics (ACL’87), Stanford Univer-
sity, CA, pages 104–111.

[Vijay-Shanker and Weir, 1993] Vijay-Shanker K. and Weir D. (1993). The Used of Shared Forests
in Tree Adjoining Grammar Parsing. In Proceedings of the 6th Conference of the European
Chapter of the Association for Computational Linguistics (EACL’93), Utrecht, The Netherlands,
pages 384–393.

[Vijay-Shanker and Weir, 1994a] Vijay-Shanker K. and Weir D. (1994). The equivalence of four
extensions of context-free grammars. In Math. Systems Theory, Vol. 27. pages 511–546

[Vijay-Shanker and Weir, 1994b] Vijay-Shanker K. and Weir D. (1994). Parsing some constrained
grammar formalisms. In ACL Computational Linguistics, Vol. 19, No. 4, pages 591–636.

[Vijay-Shanker, Weir and Rambow, 1995] Vijay-Shanker K., Weir D. and Rambow O. (1995). Par-
sing D-Tree Grammars. In Proceedings of the fourth international workshop on parsing techno-
logies (IWPT’95), Prague and Karlovy Vary, Czech Republic, pages 252–259.

[Weir, 1988] Weir D. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms. In
PhD thesis, University of Pennsylvania, Philadelphia, PA.

RR n ˚ 3668

Unit é de recherche INRIA Lorraine, Technop ôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unit é de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit é de recherche INRIA Rh ône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unit é de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit é de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr
ISSN 0249-6399

