N
N

N

HAL

open science

SAVE - Simulated Annealing Applied to the Vertex
Elimination Problem in Computational Graphs

Uwe Naumann

» To cite this version:

Uwe Naumann. SAVE - Simulated Annealing Applied to the Vertex Elimination Problem in Compu-
tational Graphs. RR-3660, INRTA. 1999. inria-00073012

HAL 1d: inria-00073012
https://inria.hal.science/inria-00073012
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073012
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SAVE - Simulated Annealing applied to the Vertex
Elimination Problem in Computational Graphs

Uwe Naumann

N° 3660
April 1999

THEME 2

apport
derecherche

T

G4 I N RIA

SOPHIA ANTIPOLIS

SAVE - Simulated Annealing applied to the Vertex
Elimination Problem in Computational Graphs

Uwe Naumann *

Théme 2 — Génie logiciel
et calcul symbolique
Projet TROPICS

Rapport de recherche n° 3660 — April 1999 — 24 pages

Abstract: The chain rule - fundamental for Automatic Differentiation (AD) - can be ap-
plied to computational graphs representing vector functions in arbitrary orders resulting in
different operations counts for the calculation of their Jacobian matrices. Very few authors
have looked at this interesting subject so far and there is no generally accepted terminology
for dealing with these combinations of the forward and reverse modes of AD. The mini-
mization of the number of arithmetic operations required for the calculation of the complete
Jacobian leads to a computationally hard combinatorial optimization problem.

In this paper we will describe a new heuristic approach to the solution of the vertex eli-
mination problem in computational graphs which can easily adapted to the more general
case of eliminating edges. Simulated annealing is widely regarded as a suitable method for
solving combinatorial optimization problems. We will discuss different annealing schedules
and present some test results. Finally we will regard this approach in comparison with other
methods for computing Jacobians using a minimal number of arithmetic operations.

Key-words: Computational graph, vertex elimination, simulated annealing

* e-mail: Uwe.Naumann@sophia.inria.fr

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

SAVE - Recuit Simulé appliqué au Probléme de
PElimination des Noeuds du Graphe de Calcul

Résumé : Nous présentons une nouvelle approche de calcul de Jacobiennes basée sur
I’élimination des arcs dans le graphe de calcul. L’objectif de cette méthode est la mini-
misation du nombre de multiplications scalaires nécessaires i ’accumulation de la Jaco-
bienne d’une fonction vectorielle & un argument. Pour cela il faut résoudre un probléme
d’optimization combinatoire. La méthode de recuit simulé offre la possibilité de résoudre ce
probléme.

Mots-clés : Graphe de calcul, élimination des noeuds, recuit simulé.

Edge Elimination 3
Contents
1 Introduction 5
2 Simulated Annealing 11
3 Application to the Vertex Elimination Problem 12
3.1 Configuration 12
3.2 Rearrangements. e e e 13
3.3 Objective function L 13
3.4 Annealing schedule 15
4 Case Study 17
4.1 Speelpenning function oL oL 19
4.2 Steady state combustion problemo o000 20
4.3 Chebyshev quadrature problem L oL 21
5 Tests, Conclusion and Outlook 21

RR n° 3660

Edge Elimination 5

1 Introduction

Research in the field of Automatic Differentiation (AD) dates back as far as 1964, when
R. E. Wengert ([Wen64]) first proposed the automation of the calculation of derivatives by a
program in form of the basic forward mode. Since then a lot of work has been done in order
to make AD faster and more widely applicable (see [CoGr91] and [BBCG96]). AD is a fast
and convenient way for calculating directional derivatives of vector functions numerically
up to machine precision provided that it is given as a computer program. Notice, that
AD is completely different from the approach to computing derivatives numerically through
divided differences.
The computation of the Jacobian matrix of a vector function

F: R*"D2D—R"™ : x+—y=F(x) (1)

is essential in many numerical algorithms. For practical reasons most currently available
AD software packages provide only two approaches to calculating the Jacobian matrix of
F at the current argument — the forward and the reverse modes which are based on the
application of the chain rule to F' in two different ways. However, the chain rule can be
applied to computational graphs of vector functions in any arbitrary order, which results
in different operations counts for the calculation of the Jacobian matrix J. The general
task of efficiently evaluating J using an approach which is sometimes referred to as cross-
country elimination is conjectured to be NP-hard. The fact that Jacobians can be calculated
by eliminating intermediate vertices in computational graphs is well known since the late
1980’s. There are a few papers by various authors that motivate a closer look at this topic
[GrRe91], [Bis96]. However, there is no generally accepted terminology for dealing with
these combinations of the forward and reverse modes of AD, so far.

In our approach we expect the vector function F' to be such that it
can be decomposed into a sequence of scalar valued functions ¢ : IR? D
D, — IR that take a vector u € IR? as their argument and return a
value w = p(u). We call such functions elemental. In most cases
the vector function F' is given as a computer program written in some
high-level programming language such as C, C++ or Fortran. This
specification of F is called evaluation routine if it can be broken
down into a sequence of scalar assignments of the form (R 3)v; =
¢;(vi)icp,; by assigning the result of every elemental function ¢; that
occurs in the program to a unique intermediate variable v;. Here P;
is the index set of the arguments of ¢; and we denote its cardinality
by |P;|. Since our objective is to calculate the complete Jacobian of
a given vector function which consists of the partial derivatives of
Figure 1: (4,5) the m dependent variables yq,... ,ym—1 With respect to each of the

n independent variables xg, ... ,%,_1 it is fundamental to assume the
following;:

RR n° 3660

6 Uwe Naumann

Assumption 1.1 Given an evaluation routine of a vector function defined by Equation (1),
for some fized argument the elemental functions ¢; are well defined for j =1,2,...,g+m
and have jointly continuous partial derivatives

19} .
Cji = a—vi(pj (Uk:)k:er fO’I" 1€ Pj

of their respective arguments on some neighborhood D; C IR™ withn; = |P;|.

The relation between the variables in a given evaluation routine can be visualized by a
directed acyclic graph CG = (V, E) which contains all information needed to be able to
compute the entries of the Jacobian. From now on we will refer to C'G as the computational
graph (also c-graph) We will distinguish between n = | X| minimal [independent], p = | Z|
intermediate and m = |Y| maximal [dependent] vertices:

X ={vicn,-.. v}, Z={v1,...,0}, Y ={vpt1,--- ,Vptm}.

There exists a directed edge (4, j) connecting a vertex v; with a vertex v; in CG if v; directly
depends on v; in F. As above we set P; [S;] to be the set of indices of all predecessors
[successors] of a vertex v;. According to Assumption 1.1 labels ¢;;, representing the local
partial derivatives, are attached to all edges (i, j) € E.

We are looking for a method of transforming the c-graph of F' such
that we get the Jacobian J at the lowest possible cost in terms of the
number of scalar multiplications involved in this process. In fact, if
by successively eliminating all vertices representing intermediate vari-
ables in the underlying evaluation program (which is equivalent to
eliminating all edges having either an intermediate vertex as source,
or having such a vertex as target, or both, i.e. all intermediate edges)
we get to a stage, where the c-graph represents a subgraph of the com-
plete bipartite graph K, ., and the labels ¢;; = dy;/0x; (i=0, ... ;n-1,
j=0, ... ,m-1) on the edges connecting the minimal vertices with the
maximal ones, are exactly the nonzero entries of the Jacobian matrix
of F. The elimination of intermediate edges represents the elemental
action that we will build on in our approach. It can be regarded as

Figure 2: (1,4) the the chain rule applied to evaluation routines in form of c-graphs.
Consequently we distinguish between two ways to eliminate an edge
in CG and we will refer to them as forward and backward edge elimination.

Graphically, the forward elimination of an edge (i,j) is equivalent to connecting all
predecessors of v; with v; (provided they have not been connected before as we do not
permit multiple edges) followed by updating the existing or generating the new local partial
derivatives and, finally, the deletion of (4,j). This is illustrated in Figure 1 for the edge
(4,5). In correspondence with the chain rule we multiply the values of successive edges
(,7) and (7, k) whereas we add the values of parallel edges having the same source and the
same target. Thus, the forward elimination of an edge (7,j) involves a number of scalar

v5

vg

i
i
o va s

INRIA

Edge Elimination 7

multiplications that is equal to the cardinality of the predecessor set of its source v;. We
will call this number the in-degree or forward Markowitz degree of (i, j) and denote it
by |P(i,j)| = |P,-|.

The graphic interpretation of the backward elimination of (1,4) is

shown in Figure 2. As in the case of forward elimination we simply vy
have to insert new edges connecting v; with all successors of v; (if they e (
do not exist already) and generate new or update the existing edge ‘\

labels correspondingly. Finally, (I,4) is removed from the c-graph. It

takes | S(; ;)| scalar multiplications to eliminate an edge (4, j) backward.

|S(i,;)| denotes the out-degree (backward Markowitz degree) of v o

(4,7) which is equal to the number |S;| of successors of the target v;. =

Let the length of a path connecting an independent vertex with a " "
dependent one be defined as the number of edges it consists of. Then
one can show that the sum of the total lengths of all distinct paths in
the c-graph is strictly monotonically decreasing during the process of v2 3
eliminating edges. We may conclude that edge elimination will always .,
terminate. This seems to be obvious but it is certainly crucial for our
approach. Figure 3: v4

The forward [backward] elimination of all out-edges [in-edges] of a

vertex v; leads to the elimination of v; itself (Figure 3). Consequently, the elimination of an
intermediate vertex v; involves |P;|-|.S;| scalar multiplications which is usually referred to as
the Markowitz degree of v; [GrRe91]. So far, the application of the chain rule to c-graphs
has been interpreted as vertex elimination. Even the few attempts to minimize the number of
multiplications needed to calculate the Jacobian are based on the idea of eliminating vertices
(see for example [Bis96] or [GrRe91]). However, there are problems where the optimal vertex
elimination sequence does not minimize the number of multiplications. Let us illustrate this
with the help of an example displayed in Figure 4. It shows a c-graph of a problem with
two independent, five dependent, and two intermediate variables. There are two different
vertex and numerous different edge elimination orders. The two vertex elimination orders
result in ((v;,vk)=5 + 10 =)15 and ((vg,v;)=4 + 10 =)14 multiplications. So, using a pure
vertex elimination strategy on this very simple example gives us the Jacobian for a cost of at
least 14 multiplications. Now, suppose we eliminate (i, j) separately before v, followed by
the elimination of v;. This would take only 13 multiplications which is obviously less than
14 = min {(vi, vx), (vk,v;)} in the pure vertex elimination mode. In [Nau99] we have given
an example for this. Furthermore, we have shown that the vertex-edge discrepancy does
not exceed a factor of (v/2(2—+/2)) ! for c-graphs containing two intermediate vertices. The
problem remains unsolved for the general case involving c-graphs with p > 2 intermediate
vertices. However, building on numerous test results we conjecture that the vertex-edge
discrepancy will be less or equal to 2 for the general case.

For a Jacobian matrix J associated with a given vector function F' we are going to think
about a way to compute all its entries at a minimal cost. For reasons described in [Nau99|
we have decided to regard the number of multiplications required to compute the complete

RR n° 3660

8 Uwe Naumann

Jacobian as the cost and we will denote this objective function by Cost{J}. Specifically,
we will take the c-graph CG of F' and we will search for an edge elimination sequence that
minimizes Cost{J}.

The successive elimination of edges from the c-graph defines the
so-called metagraph

M = M(CG) = (Var, Exr)

the vertices wy, € M of which represent all different c-graphs that
could possibly be derived from CG by edge elimination. Labeling
the edges in M with the cost of getting from the graph represented
by their source to the one associated with their target we end up
with a shortest path problem on the metagraph. The edge labels are
considered to be the distances and we will refer to this problem as
the general edge elimination problem. The difficulties arise from
the fact that both the number of vertices and the number of edges in Figure 4: Surprise
the metagraph depend on the number of intermediate vertices in the

original c-graph exponentially. Therefore, an exhaustive search as well as any algorithm for
computing a shortest path in M are not practicable. In order to decrease the complexity
of the problem to solve we have to make certain restrictions, thus reducing both size of the
metagraph defined by the number of its stages and the number of different paths to check.
This approach will lead to subgraphs which are then subject to an analogous shortest path
problem. With every restriction p we can associate a corresponding minimal cost Cost,{J}
of computing the Jacobian by solving the shortest path problem on the induced subgraph
M, C M of the metagraph, i.e. Cost,{J} = ¢, - Cost{J} for some ¢, > 1. Obviously, we
would like the factor to be as small as possible as for large values c, the chosen restriction
p would not be very useful. One possibility is the restriction to eliminating vertices in the
c-graph which will be exploited in this paper. This approach leads to the so-called vertex
metagraph M~y C M an instance of which is shown in Figure 5. For further information
on the general edge elimination problem refer to [Nau99].

We have developed new and adapted some well-
known algorithms for solving the combinatorial
optimization problem. These methods contain lo-
cal heuristics as well as dynamic programming al-
gorithms and a collection of simulated annealing
schedules for the computation of nearly optimal
vertex elimination sequences. The latter will be
looked at more closely in this paper. All the ap-
proaches proposed are implemented as parts of a
C++ program named OESCOMP, which all our
test results will be based on.

Considering local heuristics for edge or vertex
Figure 5: Vertex Metagraph Mv elimination in c-graphs there are, obviously, two

INRIA

Edge Elimination 9

trivial cases: Let v; < v; denote the situation where a vertex v; is eliminated before v;. The
elimination order yielding

Yw, € M : v <v; & 1<]

will be referred to as the forward vertex elimination mode (V_F). Analogous, we define
the backward vertex elimination mode (V_B). Both V_F and V_B are considered
to be equivalent to the corresponding edge elimination modes. Since our objective is to
minimize the cost of computing the complete Jacobian it certainly makes sense to think
about how cheaply a particular intermediate vertex v; can possibly be eliminated. The
logical result would be to order all intermediate vertices increasingly by their Markovitz
degrees at each stage of the metagraph. At a particular stage wy € My we eliminate the
vertex with the lowest Markovitz degree among all intermediate vertices. This approach is
known as the Lowest-Markovitz-Degree-First (V_LM) strategy:
wy € My : Vi < V; =4 |P,|k|Sz|k < |P]|k|S]|k

Here |P;|i [|S:|x] denotes the number of predecessors [successors| of a vertex v; € CG at
a certain stage wy € My in the (vertex) metagraph. As a well-known heuristic for the
minimization of the generated fill-in during the solution of sparse systems of linear equations
the Markovitz based approach to the vertex elimination problem in c-graphs has already been
examined in several papers like for instance in [GrRe91]. However, numerous tests showed
that, in general, V. LM does not deliver optimal elimination sequences.

Let us consider an improved version of the VLM heuristic. We define the input-
dependency degree of a vertex v; € Y U Z as id; = k if there are paths connecting a
maximum of ¥ minimal vertices with v;. Analogous the output-dependency degree of a
vertex v; € X U Z is od; = k if a maximum of ¥ maximal vertices are reachable from v;.
For a vertex v; € Z we define its dependency degree as dd; = id; - od;. The dependency
degree of a vertex is invariant with respect to the pure vertex elimination strategy which
makes it ideal for the implementation of new heuristics. In particular, we have implemented
the

Lowest-Relative-Markowitz-Degree-First heuristic (V_LR):
wr € My : v; <v; & |Pi|k-|Si|k—ddi < |Pj|k~|5j|k—ddj.

Numerous test showed that this heuristic is superior to V_LM in most cases. We will
illustrate this using an example given by the c-graph displayed in Figure 6. Obviously, it is
easy to solve the resulting vertex elimination problem in three intermediate variables. It is
even possible to check all different orders. Notice that V. LM does not deliver the minimum
in this very simple case. It behaves like V_F resulting in 22 multiplications. Considering
V_LR we have dd; = 6, ddz = dd3z = 9 and since 6 — 9 < 4 — 6 the vertex vz is eliminated
first. At the next stage we get 6 —9 < 8 — 6 and therefore V. LR would act the same way
as V_B delivering the minimal operations count which is 18 for this example.

RR n° 3660

10 Uwe Naumann

Considering strategies for edge elimination we
have, among others, proposed the class of fill-in
based heuristics. The fill-in generated by the eli-
mination of an intermediate edge (¢,) is defined
as the number of edges in the c-graph after minus
the number of edges before the elimination. Ev-
ery edge labeled with an elementary partial deriva-
tive is a potential factor in the elimination process
which represents the computational process of ac-
cumulating the complete Jacobian. A logical con-
sequence of these observations is to keep the num-
ber of these factors as low as possible which im-
plies the minimization of the locally produced fill-
in. This idea is exploited in the Lowest-Fill-in-
First edge elimination heuristic (E_ LF). Here,
we always eliminate the edge producing the lowest
fill-in next.

A different approach to solving the general edge
elimination problems is built on the representation
of thg Jacobiz}n as f:hained matrix productg The Figure 6: CG
algorithm which will be denoted by DP is des-
cribed in [Nau99).

Edge elimination in c-graphs makes full use of the structural sparsity of the given prob-
lem. It is often possible to reduce the number of multiplications required to accumulate
the complete Jacobian by a factor of three and more compared to the method proposed by
Newsam and Ramsdell [NeRa83]. The savings compared to the dense forward and reverse
modes are even more significant. When presenting test results in Section 5 we will consider
the achieved values relative to lower bounds for values of the best choice out of dense forward
and reverse modes (DM), i.e.

vg (v17)

(e30)

v_3 v_9 v

Costpyv{J} = min{n(m + p),m(n + p)},

and the corresponding minimum operations count achieved by a uni-directional approach of
the method by Newsam and Ramsdell (NR) which is

Costnr{J} = min{a(m + p), n(n + p)}.

INRIA

Edge Elimination 11

2 Simulated Annealing

Simulated annealing is a global optimization method that distinguishes between different
local optima. Starting from an initial point, the algorithm takes a step and the function
is evaluated. When minimizing a function, any downhill step is accepted and the process
repeats from this new point. An uphill step may be accepted. Thus, the algorithm can
escape from local optima. This uphill decision is made by the Metropolis criterion. As the
optimization process proceeds, the length of the steps decline and the algorithm closes in on
the global optimum. Since the algorithm makes very few assumptions regarding the function
to be optimized, it is quite robust with respect to combinatorial problems. The degree of
robustness can be adjusted by the user.

In general, combinatorial optimization problems are characterized by an objective func-
tion to be minimized (the overall Markovitz degree in our case) and a discrete, very large
configuration space (the p! different orders in which we can eliminate the p intermediate ver-
tices in the c-graph). Furthermore, the concept of direction telling us about going downhill
or not does not exist in our context.

The roots of the simulated annealing algorithm lie in metallurgy. During the annealing
process of metal its atoms form crystals. An optimal crystal is one with a configuration of
lowest energy E. If we run the cooling process too fast then the crystals will not reach the
optimal configuration. On the other hand, we do not want the annealing process to take too
long. The goal is to find a useful compromise between the robustness of the algorithm and
its speed. This is done by varying certain parameters within the algorithm.

Let us assume that we are looking for the configuration which minimizes a certain cost
function. The algorithm can then be formulated as follows: Starting off at an initial configu-
ration, a sequence of iterations is generated. Each iteration consists of the random selection
of a configuration from the neighborhood of the current configuration and the calculation of
the corresponding change in the cost function. The neighborhood is defined by the choice
of a generation mechanism, i.e. a "prescription" to generate a transition from one configu-
ration into another by a small perturbation. If the change in the cost function is negative
the transition is unconditionally accepted. If the cost function increases the transition is
accepted with a probability based upon the Boltzmann distribution

P(E) ~ eFT

where k is a constant and the temperature T is a control parameter. This temperature is
gradually lowered throughout the algorithm from a sufficiently high starting value (i.e. a tem-
perature where almost every proposed transition, both positive and negative, is accepted)
to a "freezing" temperature where no further changes occur. In practice, the temperature
is decreased in stages and at each stage the temperature is kept constant until thermal
quasi-equilibrium is reached. The whole of parameters determining the temperature decre-
ment (initial temperature, stop criterion, temperature decrement between successive stages,
number of transitions for each temperature value) is called the cooling schedule.

RR n° 3660

12 Uwe Naumann

Consequently the four key ingredients for the implementation of simulated annealing are:
1. the definition of configurations of the system;

2. a generation mechanism, i.e. the definition of a neighborhood on the configuration
space; a generator of random changes in the configuration;

3. the choice of a cost function (analog of energy) the minimization of which is the goal
of the procedure;

4. a control parameter T and a cooling schedule telling us after how many random changes
in configuration each downward step in 7" is taken. The assignment of this schedule
requires deeper insight into the problem and trial-and-error experience.

The traveling salesman problem

In [PTVF92] we have found a concrete illustration of how to approach combinatorial op-
timization problems by simulated annealing. The traveling salesman problem (TSP) be-
longs to the class of NP-complete problems whose computation time for an exact solution
grows exponentially with its size. For an exhaustive discussion of NP-completeness refer to
[GaJo79].

The TSP may be regarded as the "mother" of all transport optimization problems. A
salesperson visits n cities with given coordinates (x;,¥;), returning finally to his city of
origin. Each city is to be visited only once while making the route as short as possible. This
leads to the objective function

E= Z V(@i = 2ig1)? + (Yi — yig1)? (Zn41,Yn+1) = (21,91)) (2)

which is taken just as the total length of the journey. The above is equivalent to finding
a Hamilton cycle of minimal length in the complete graph K,, with edges representing the
distances between the cities. The vertex elimination problem in a c-graph is very similar to
the TSP. Thus, many algorithms that work well for the latter can often easily be adapted
to serve our purposes.

3 Application to the Vertex Elimination Problem
As a problem in simulated annealing the vertex elimination problem is handled as follows:

3.1 Configuration

The vertices are numbered 7 = 1,... ,p and each of them has a Markovitz degree |P;|x. - | S; |k
depending on the stage wy in the metagraph. A configuration is a permutation of the indices
1,...,p interpreted as the order in which the intermediate vertices are eliminated. The key

INRIA

Edge Elimination 13

difference between our problem and the traveling salesman problem is that the Markovitz
degree is not a static value. It rather depends on the vertices that have been eliminated
so far. However, in the TSP every city has its static coordinates making this problem even
"easier" to solve. (This is not to be taken literally as the TSP is proven to be NP-hard ...)

3.2 Rearrangements

We use a slightly altered version of the moves suggested by Lin ([Lin65]). There are two
types of moves:

1. If (41,... ,ip) is the current elimination sequence then we remove a dense subsequence
(4j,-.- ,%j+%) and replace it with itself in the opposite order making
(. .. 77;j—177:j+k7 . ,ij,ij+k+1, .)

the next elimination sequence to be regarded or

2. a dense subsequence (i, ... ,i;4x) is removed and then replaced in between two indices
i1, i, on another, randomly chosen, part of the elimination sequence, i.e. (i,... ,ip)
becomes

(. .. ,ijfl,ij+k+1, A ,il,ij, P ,ij+k,ir, ..)

provided that [> j + k. Otherwise, we get

(7il7ij7--‘ 7ij+k¢77;7‘7"' 7ijflaz.j+k+17-")

for r < 5. We do not permit other rearrangements apart from these two.

3.3 Objective function

We intent to minimize the cost of accumulating the complete Jacobian matrix of a vector
function by solving the shortest path problem in the metagraph M~ which is induced by the
restriction to pure vertex elimination. Since the Markovitz degree of a vertex is dynamically
changing throughout the elimination process its calculation is rather expensive (O(p)) having
in mind that we will have to compute it numerous times during the simulated annealing
algorithm. Notice that the computation of the Euclidean distance between two cities in the
TSP which is part of Equation (2), is comparably cheap.

RR n° 3660

14 Uwe Naumann

ES=MAX(V_FV_B); m=COST(ES);
CG: p>0 min=m; mprev=m; logm = log(m);
t=m/logm;
il = (int) (p*(2*atan(l) - atan(p/30 - 1))); ilc = 0;
ol = (int) (p*(2*atan(1) - atan(p/100))+50); olc=0;
[

Y
[accepted =0; zeros=0; olc++; j
I
Y
[ESI’ = RANDOM_CHANGE(ES); m = COST(ES);]

ZErostH+;

0 »
1
Y

[ES: EST; accepted++; mprev=m;]
|
Y
O m
1

min=m; ESmin=ES;

°

1

0
B

1

ESmin (min) @
1

0

—

[t:m/(olc* logm);)

Figure 7: Simulated Annealing Algorithm

INRIA

Edge Elimination 15

3.4 Annealing schedule

Figure 7 shows how the implemented simulated annealing algorithm works. It starts with an
initial elimination sequence (ES) which we have chosen to be the maximum out of forward and
backward vertex elimination modes in terms of the number of multiplications required for
the accumulation of the complete Jacobian. At the beginning of the optimization procedure
we do not want to be the cost m of ES close to the minimum. In this case it would become very
likely that the algorithm stops after just one iteration without delivering any improvement.

Our simulated annealing algorithm consists of two main

zo0 TS ——— loops — an outer loop (counter: olc) and an inner loop
(counter: ilc). For both of them we define upper bounds

for the number of iterations they will perform (ol and il).

150

00 il*ol is the maximal number of iterations (the maximal
number of elimination sequences that are generated and run)
50 before the algorithm stops, even if it has not converged. It

may happen that one and the same elimination sequence is
s w0 w0 a0 2z w0 s w0 checked twice or even more often, although it is very unlikely.

o

100

e We make sure that we get a result within a reasonable time
* span by setting ol and il. Its quality strongly depends on
w the parameters of the simulated annealing algorithm.
w0 Figure 8 shows the development of i1 and ol depending

on the number p of intermediate variables in the c-graph
C@G. Notice that for our algorithm we always assume that
s 10 w0 w0 0 ao w0 w0 there is at least one vertex to be eliminated from C'G. The

maximal number of cooling steps lies always between 50 and
Figure 8: Loops 150. It increases rapidly for small values of p, whereas it

converges to 150 for larger graphs. Analogous, we observe
a steep ascent in the first part (0<p<50) of the curve for il. Again, it settles for a value
around 40 for increasing numbers of intermediate variables. Choosing both values as we
did assures that the algorithm will always terminate after a reasonable and in most cases
sufficient run-time.

20

o

The "temperature" t is lowered with every iteration of the outer loop and it is kept
constant while running through the inner loop. Within the latter we randomly change the
elimination sequence using the two rearrangements suggested above. Whether this new, so
far temporary, order (EST) is accepted or not depends on the Metropolis criterion. It returns
a boolean variable which issues a verdict on whether to accept a reconfiguration leading to
a change d=m-mprev in the objective function COST. If <=0 EST will always be accepted. If
d>0 the answer of METROP (d) will only be positive with probability exp(-d/t). As we have
already pointed out, t is not changed within the inner loop. However, with every iteration
(olc) of the outer loop we reinitialize t as t=m/(olc*logm). Notice that the new value of
t depends on the current Markovitz degree, i.e. it depends on the cost of the last accepted

RR n° 3660

16 Uwe Naumann

elimination sequence. With this approach we get
mj—1
(4 —1) - log(mo)

m;

¢ = L —
! J - log(mo)

tjy1 =
From the above we can derive the cooling rate A;:

A, = bt _U=)omy

tj Jmj—1

Why have we chosen to let t develop this way? Suppose we have taken a step upwards
(accepted an elimination sequence which results in an increase of the objective function),
i.e. m; > m;_1. Then we do not want to continue the cooling process at the same speed as
before since this could lead to being unable to leave the current "valley". So, the temperature
is permanently lowered as a result of the increasing outer loop counter olc. However, the
extend up to which the system is cooled depends both on the current temperature and on
the change of the Markovitz degree during the last iteration. This approach turned out to
work well in most cases.

Throughout the entire annealing process we always keep track of the minimal Markovitz
degree (min) resulting from any of the elimination orders that were checked so far. Thus, we
do not entirely depend on the convergence of the algorithm. Even a very good elimination
sequence which was found "by luck" in the high temperature phase of the annealing process
can be the result of running the algorithm. After each outer loop iteration we check the exit
criterions. There are three of them:

1. The maximal number of iterations to be performed is reached (olc==0l).
2. During the last outer loop iteration none of the rearrangements has been accepted.

3. We have chosen to accept all rearrangements which do not lead to any change in
the cost function. However, if the only accepted rearrangements are those which
are invariant with respect to the cost (accepted == zeros) we will also stop the
algorithm.

Finally, the simulated annealing algorithm delivers the elimination sequence with the mi-
nimal cost, i.e. a vertex elimination order which approximates the minimal number of
multiplications required for the accumulation of the complete Jacobian.

Summarizing the above we have the following list of parameters which can be experi-
mented with when looking for an optimal annealing schedule:

e initial elimination sequence;
e initial temperature;
e cooling rate;

e types of rearrangements;

INRIA

Edge Elimination 17

e number of iterations with constant temperature;
e number of cooling steps;
e acceptance philosophy.

There is certainly plenty of room for experiments. We have implemented four additional
versions of our simulated annealing algorithm. In SA R we use the reversal of dense subse-
quences as the only rearrangement action. SA T is similar except for only transportation
of dense subsequences being allowed. Furthermore, we have experimented with two different
annealing schedules. SA _ CS is similar to the described method with

m;—1 A, = [ZES T J-m;

t; = - = = — ,
Y Tt T (1) my

i.e. we have slowed the cooling process down. In SA CF we increase the temperature in
the second step, which can be regarded as the generation of a new random initial elimination
sequence, as we accept almost every rearrangement. Then we cool the system down with
m;_ t; 2 - m;
t; = 721 = A, = g+l _ ‘.72J
J tp (G +1)?-my

which is much faster then in the main method. In the algorithm described by Figure 7 we
have used the following symbolism:

ES, EST, ESmin € IN?: elimination sequences;
m,mprev,min € IV U {0}: cost values;
il,ilc,0l,0lc € IN U {0}: for loops;

t € R: temperature;

logm € IR: logarithm of initial cost;

accepted,zeros € IN U {0}: counters.

Now, it should be straight forward to follow the logic behind our simulated annealing algo-
rithm.

4 Case Study

The success of simulated annealing depends on extensive tests and variation of parameters.
Of course, we would like the algorithm to deliver nearly optimal results in virtually all
cases without always having to adapt the parameters to the given problem. Furthermore, it
should not run too long even for large-scale problems. We have applied SAVE to many test
problems out of which we will discuss a small subset in detail. As supported by the results
achieved our version of the simulated annealing algorithm performs well on a large number
of problems. However, there are certain exceptions indicating that it is impossible to come
up with a strategy (annealing schedule) which is universally optimal.

RR n° 3660

18

Uwe Naumann

SA_Cs

SA_CF

=

==

40

35

30

25

20

40

35

30

25

20

40

35

30

25

20

40

35

30

25

20

40

35

30

25

20

Temperature

-

@
=
S
.
@
N
S

-

@
=
S
.
@
N
S

~

@
=
1)
=
@
N
S

@
=
1)
=
@
N
S

Changes

1200

1000

800

600

0 1000 2000 3000 4000

5000

1200

1000

800

600

0 1000 2000 3000 4000

5000

1200

1000

800

600

400

200

0 1000 3000 4000

5000

1200

1000

800

600

400

200

o

1000 2000 3000 4000

5000

20

-40

1200

1000

800

600

400

200

o

1000 2000 3000 4000

Figure 9: SAVE on SPF

5000

Markovitz degree

INRIA

Edge Elimination 19

4.1 Speelpenning function

The first test problem is due to Speelpenning [Spe80] and represents a simple chained product
of the n independent variables:

y=f(x)= 1:[;. (SPF)

For n = 50 the c-graph contains 48 intermediate vertices. It can be checked that V. B
is optimal on this problem using 96 multiplications for the computation of the gradient of
f. On the other hand, running V_F results in an overall Markovitz degree of 1224 as a
consequence of the successive increase of the in-degrees of the intermediate vertices.

Using Figure 9 we will compare all variations of our simulated annealing algorithm which
form the five rows of the table. The three columns show the development of the tempera-
ture over the first 20 steps, the changes in the objective function after each iteration, and
the course of the overall Markovitz degree which we intent to minimize, respectively. We
have plotted the values for the temperature and the Markovitz degree with respect to the
outer loop iterations, whereas the changes in the cost are shown for every single elimination
sequence that has been checked, i.e. for each iteration of the inner loop. Apart from dif-
ferences in the run-time the five methods converged to different final values of the overall
Markovitz degree:

SA C|SA T|SA R|SA CS|SA CF
min 129 154 189 136 142
tuser 93 sec 63 sec 105 sec 171 sec 37 sec

Furthermore, we observe the following:

1. Neither a higher nor a lower cooling rate lead to improvements in the value of the
objective function. However, the run-time of SA CF undercuts the one of SA C
by a factor of nearly 3. Still it delivers an acceptable result.

2. Starting with the V_F-based elimination sequence, the reversal of substrings could
be expected to lead to a good solution in a short time. Obviously, this is not the
case. Why? The reason lies in the structure of the Speelpenning function. Whenever
we eliminate the vertices of a part of the c-graph backward this can be regarded as
"good" for the value of our objective function. However, running forward is certainly
bad. Now, if we allow the reversal of sub-strings of a given elimination sequences to be
the only rearrangement in the annealing process this can lead to the repeated negation
of savings made in the current step by the rearrangements to come.

3. Depending on the accepted rearrangements and the resulting Markovitz degree the
temperature is lowered at varying speeds. Especially, this becomes clear when looking
at the graphs for SA CS in the fourth row of Figure 9.

RR n° 3660

20 Uwe Naumann

4. The largest decreases in the objective function value are achieved in the high temper-
ature phase. This is certainly not very surprising.

5. It might often be advantageous to choose a high cooling speed in order to get useful
estimates for the savings that can be expected.

It is difficult to state something of general validity when speaking about the method of
simulated annealing applied to computationally hard combinatorial optimization problems.
However, the approach that we have chosen as our main method (SA _C) turned out to
deliver the best results in virtually all cases.

4.2 Steady state combustion problem

The steady state combustion problem (SSC) is the variational formulation of the underlying
boundary value problem [ACM91]. For the examination of the behavior of simulated annea-
ling we have chosen the case with n = 4 independent variables. This leads to a relatively
small c-graph containing 103 intermediate vertices which is suitable for having a closer look
at our algorithm.

SA C converged to an elimination sequence that took 123 multiplications to compute
the gradient. The V_B-based sequence (142 multiplications) served as the starting point.
The best known value of the objective function achieved by V_LR as well as the dynamic
programming approach and the method SA _ CS is 122. Figure 10 shows the courses taken
by the temperature ¢ and by the Markovitz degree m;.

With i1=47 and 01=130 the algorithm had to terminate af-

® S — ter checking 6110 vertex elimination sequences. In fact, it
% performed only 59 outer loop iterations corresponding to
& the generation of 2773 (not necessarily different) elimina-
% tion orders after which one of the exit criterions described

15

in Section 3 was met. Exploiting one of the advantages of
our simulated annealing algorithm the Markovitz degree is
increased repeatedly, thus, being able to escape from local
0 10 20 30 40 50 60 minima.

10

155

150 Markoutz degree = Obviously, the savings which can possibly be achieved
145 are not so remarkable that they could justify the effort. It
140 makes sense to apply simulated annealing to the vertex eli-
135 mination problem in c-graphs if we care about the result
130 only and ignore the time that it took to compute the eli-
125 mination sequences. In most cases heuristics will deliver
12 e sequences which are nearly as good (or better) at a much

higher speed.
Figure 10: SSC

INRIA

Edge Elimination 21

4.3 Chebyshev quadrature problem

Both the SSC and the Chebyshev quadrature problem (CQ) are taken from the MINPACK
test problem collection [ACM91]. For the latter we have chosen the case n = 15 and
m = 16 resulting in a c-graph of reasonable size. Remember that we always take either the
V_F- or the V_B-based elimination sequence as an initialization of the simulated annealing
algorithm, depending on which of them delivers the higher cost. Starting with a relatively
"bad" initial elimination sequence turned out to be advantageous for the behavior of the
algorithm in many cases. Now, this function represents a counterexample as the starting
sequence is obviously "too bad" for a problem of the given size and structure. The operations
count resulting from the application of the backward vertex elimination mode (8400) is about
four times as large as the one of the forward mode (1980). The algorithm "cools the system
down" to 4842 which is approximately half the number of multiplications compared to its
starting value. However, it does not reached the value which was calculated for V_F.

Figure 11 shows the development of the Markovitz degree.

After some ups and downs in the first section of the annea- 7500
ling process, caused by the initially high temperature, the 7000
cost decreases continuously, unfortunately, not reaching the 6500
minimum. As a way out we could think of slowing the cool- 00
ing process down in order to allow more iterations to be
performed. Representing this approach SA CS results in
a cost of 4343. In fact, we observe an improvement com-

Markovitz degree ——

5500

5000

pared to SA _C, although it is not very encouraging when ~ ®*0 s 10 5 2 = = = © & =
taking into account that it took about four times as long to)
achieve the improvement. Figure 11: CQ

5 Tests, Conclusion and Outlook

We have applied the simulated annealing method to more than a hundred test problems out
of which we will present a small but representative subset. The numbers of scalar multipli-
cations resulting from different approaches will be listed for the following test problems:

FDC: Flow in a driven cavity problem;
FCH: Flow in a channel problem;

WAT: Watson function;

DIE: Discrete integral equation function;
VDI: Variably dimensioned function;
GDF: Gaussian data fitting problem.

RR n° 3660

22 Uwe Naumann

The above examples are taken from the MINPACK test problem suite [ACM91]. In the follow-
ing table we will compare the values delivered by the SA C method with the theoretical
operations counts that can be achieved using state-of-the-art AD-technology (see Section 1).
Here, @ [] denotes the maximal number of nonzero elements per row [column] in the Ja-

cobian.

| | n [p [m |[[a,m | DM | NR [SA C||NR /SA C|
FDC [16 | 984 | 16 | 11 | 16000 | 11000 | 1234 8.9
FCH | 32 | 1209 | 32 9 | 39712 | 11169 | 851 13.1
WAT | 7 | 1683 | 7 7 | 11830 | 11830 | 5183 2.3
DIE | 20 [2499 | 20 | 20 | 50380 | 50380 | 1660 30.3
VDI | 100 | 504 | 100 | 100 | 60400 | 60400 | 10337 5.8
GDF | 11 | 1625 | 65 | 11 | 18590 | 18590 | 1477 12.6

Considering the ratio between the optimal one-sided Newsam-Ramsdell approach and the
simulated snnealing method applied to vertex elimination we observe that, in fact, large
savings can be achieved. Obviously, this cannot be the case for the computation of sin-
gle gradients. However, for {n,m} > 1 we get a significant decrease of the number of
multiplications involved in the accumulation of the Jacobian for virtually all problems.

The next table shows a comparison between the different approaches to the solution of
the shortest path problem. We have also listed the values achieved by the better choice out
of the forward and the backward vertex elimination modes, denoted as [V_F,V_B]|. Notice
that these results imply that we know which of the two methods is actually "the better
choice". The differences between the results delivered by V_F and V_B can be very large
in some cases.

[[[VFVB/[VILIM|VLR|[E LF]| DP [SA C |
FDC 930 1338 | 930 | 1106 | 930 | 1234
FCH 941 845 845 941 | 845 | 851
WAT 6473 4240 | 4240 | 4240 | 4240 | 5183
DIE 2059 1659 | 1659 | 2001 | 1659 | 1660
VDI | 20400 10401 | 10301 | 103001 | 10301 | 10337
GDF 1430 1430 | 1430 | 1625 | 1430 | 1477

For most real-world problems the generation of optimized derivative code based on either
forward or backward vertex elimination sequences combined with the pre-elimination of all
hoisting vertices would result in remarkable savings in the overall operations count. The fact
that it is not clear a priori whether we should prefer the forward or the backward approach
is one of the problems. At this point it could be useful to exploit the strength of heuristics

INRIA

Edge Elimination 23

for determining nearly optimal vertex elimination sequences for almost all sorts of c-graphs.
V_LR turned out to be very consistent, while being only slightly more expensive than the
pure uni-directional methods. It could be worth to analyze selected evaluation routines
deeper by using more costly optimization methods like dynamic programming or simulated
annealing. However, the additional effort is justified only if the resulting derivative code is
generated once and is then used over and over again as the runtime of a simulated annea-
ling algorithm is in general by magnitudes larger than a pure forward or backward approach.

To summarize the above, it appears to be useful to work on the automatic generation
of optimized adjoint code based on different elimination sequences. In order to be able to
handle large-scale evaluation programs the hierarchical approach has to be implemented
efficiently. Therefore, we require tools for analyzing the code which generate some (ide-
ally standardized) intermediate form which contains all the necessary information ([Bro98§],
[BRM96]).

The proof of the NP-completeness of the general edge elimination problem has not been
given yet. Our conjecture about the small constant vertex-edge discrepancy has a more
practical relevance. To support the search for its proof the implementation of a simulated
annealing algorithm for optimizing edge elimination sequences could be useful. The principle
is the same as for vertex elimination sequences. We simply have to adapt the annealing
schedule such that rearrangements including both forward and backward elimination of
edges become possible.

RR n° 3660

24 Uwe Naumann

References

[ACM91] B. AVERIK, R. CARTER, AND J. MORE, The Minpack-2 test problem collection
(preliminary version), Technical Memorandum No. 150, Mathematical and Com-
puter Science Division, Argonne National Laboratory, 1991.

[BBCG96] M. BERz, C. BiscHOF, G. CORLISS, AND A. GRIEWANK, EDS, Computational
differentiation: techniques, applications, and tools, STAM, Philadelphia, PA, 1996.

[Bis96] C. H. BiscHOF, Hierarchical approaches to automatic differentiation, in [BBCG96],
pp- 83-94.

[BRM96] C. BiscHOF, L. ROH, AND A. MAUER, ADIC: An extensible automatic differen-
tiation tool for ANSI-C, Preprint ANL/MCS-P626-1196, Argonne National Labora-
tory, March 1997.

[Bro98] S. BROWN, Models for automatic differentiation: A conceptual framework for ex-
ploiting program transformation, PhD thesis, Computer Science, University of Hert-
fordshire, Hatfield, England, February 1998.

[CoGr91] G. CorLiss AND A. GRIEWANK, EDS, Automatic differentiation: theory, imple-
mentation, and application, STAM, Philadelphia, PA, 1991.

[GaJo79] M. R. GAREY AND D. S. JoHNSON, Computers and intractability - a guide to
the theory of NP-completeness, W. H. Freeman and Company, San Francisco, 1979.

[GrRe91] A. GRIEWANK AND S. REESE, On the calculation of Jacobian matrices by the
Markowitz rule, in [CoGr91], pp. 126-135.

[Lin65] S. LIN, Bell System Technical Journal, Vol. 44, pp. 2245-2269.

[Nau99] U. NAUMANN, Efficient calculation of Jacobian matrices by optimized application
of the chain rule to computational graphs Ph.D. thesis, Institute for Scientific Com-
puting, Dresden University of Technology, 1999.

[NeRa83] G. NEwWsAM AND J. RAMSDELL, Estimation of sparse Jacobian matrices, SIAM
J. Alg. Discr. Meth., 4 (1983), pp. 404-417.

[PTVF92] W. H. PrESS, S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY,
Numerical recipes in C, Cambridge University Press, 1992.

[Spe80] B. SPEELPENNING, Compiling fast partial derivatives of functions given by algo-
rithms, Ph.D. thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana-Champaign, January 1980.

[Wen64] R. E. WENGERT, A simple automatic derivative evaluation program, Comm. ACM,
7 (1964), pp. 463-464.

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

