N
N

N

HAL

open science

Parallelization of Finite Element Codes with Automatic
Placement of Communications

Laurent Hascoét

» To cite this version:

Laurent Hascoét. Parallelization of Finite Element Codes with Automatic Placement of Communica-

tions. RR-3646, INRIA. 1999. inria-00073026

HAL Id: inria-00073026
https://inria.hal.science/inria-00073026
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073026
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallelization of finite element codes
with automatic placement of communications

Laurent Hascoét

N° 3646
Mars 1999

THEME 4

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

Parallelization of finite element codes
with automatic placement of communications

Laurent Hascoét

Théme 4 — Simulation et optimisation
de systémes complexes
Projet Sinus

Rapport de recherche n°® 3646 — Mars 1999 — 25 pages

Abstract: We present a tool dedicated to automatic SPMD parallelization of
iterative mesh-based computations, and its application to existing codes. The
tool automatically places communication statements into the program, to man-
age the necessary updates between overlapping parts of the partitioned mesh.
It is parameterizable with a description of the type of overlapping between
sub-meshes. We present an application of this tool to two-dimensional and
three-dimensional Navier-Stokes flow solvers. Performance results are given.

Key-words: parallelization, SPMD, program analysis, program transforma-
tion, mesh partition, finite elements, Navier-Stokes

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Parallélisation de codes éléments finis
avec un placement automatique des
communications

Résumé : Nous présentons un outil destiné & la parallélisation SPMD auto-
matique de programmes de résolution itératifs basés sur des maillages. Nous
présentons la conception de l'outil et son utilisation. Cet outil insére dans
le programme les communications nécessaires pour tenir a jour les valeurs
aux frontiéres des sous-maillages. Il est paramétrable griace & une descrip-
tion du type de recouvrement choisi entre les sous-maillages. Nous présentons
I’application de cet outil & des solveurs Navier-Stokes a deux et trois dimen-
sions, et nous donnons des mesures de performances.

Mots-clés : parallélisation, SPMD, analyse de programme, transformation
de programme, partition de maillage, éléments finis, Navier-Stokes

SPMD parallelization with automatic placement of communications 3

Contents
1 Introduction 3
2 The Ezp2D, Imp2D, and NSC3DM Navier-Stokes solvers 5
3 The SPMD parallel execution model 6
3.1 Mesh Partitioningo oo 7
3.2 SPMD Program Generation 8
4 Automatic placement of communications 9
5 From an algorithm to a real tool 14
5.1 Alignment of dataand loops 14
5.2 Solution filtering oL 15
5.3 Multi-Procedural issues 16
6 Application to the Navier-Stokes solvers 17
6.1 Useofthetool 17
6.2 Performances 18
7 Related works 20
8 Conclusion 23

1 Introduction

For many application programs, parallelization is an appealing, but delicate,
way to improve performance. This is especially true in scientific computing.
In this domain, one category of programs deserves special attention. These are
the iterative computations on unstructured meshes. They are very widespread,
and consume a significant part of the computational resources. These programs
are natural candidates for parallelization.

There exist many parallelization techniques. This is due, to a large ex-
tent, to the numerous machine architectures. As the art evolves, a matching
emerges between the classes of programs and the parallelization techniques.

RR n’ 3646

4 L.Hascoét

For example, computations on unstructured meshes are now generally paral-
lelized through a geometric partitioning of the mesh itself. The parallelized
program uses the SPMD (Single Program Multiple Data) model. In this model,
each processor of a distributed memory computer runs the same program on
one particular portion of the original mesh. Communications are required
when a value must travel from a sub-mesh to another. Usually, this happens
only for values located on the border of sub-meshes. It is common practice to
duplicate a certain amount of these “border” values on the neighboring sub-
meshes. This allows us to defer communications until all the duplicated values
are out of date and need to be updated again.

The adaption of a program to this SPMD parallelization strategy requires
two main operations: Mesh Partitioning and SPMD Program Generation.
These will be discussed in detail in section 3. Writing the SPMD program
by hand is a delicate task. It requires knowledge of the application to find
the places where values travel between sub-meshes. It also requires knowledge
of the overlapping between sub-meshes, to correctly update duplicated values.
Therefore, we propose a tool that generates the SPMD program mechanically.
It is important to note that this is a specialized parallelization tool: this tool
makes sense only for computations on unstructured meshes. This is our de-
liberate choice, to trade generality for efficiency on a precise domain. Our
justifications are that:

e computations on unstructured meshes are a very frequent kind of pro-
grams. Generic parallelizers behave poorly due to the intensive use of
indirection arrays.

e the knowledge of how meshes are structured, and how programs behave
on meshes, allows an automatic choice of optimal communications in-
sertion. This would be out of reach of a generic parallelizer, because it
cannot infer this knowledge from the program.

In this paper, we present a tool for automatic generation of a SPMD pro-
gram for unstructured meshes. This tool determines the optimal locations
of communication calls, to give best performance of the parallelized program.
This tool is based on the method and algorithms presented in [4], that we shall
summarize in section 4. We also show here, how this tool was used to parallelize

INRIA

SPMD parallelization with automatic placement of communications)

existing 2D and 3D Navier-Stokes solvers. The rest of the paper is organized
as follows: Section 2 briefly introduces the original sequential Navier-Stokes
solvers. Section 3 presents precisely the SPMD model of parallel execution.
Section 4 describes the principle of our automatic SPMD program generation.
Section 5 explains the specific problems related to the “real” programs, and
how they were solved. Section 6 presents the application of our tool to the
Navier-Stokes solver, and the generated SPMD program. Section 7 compares
the present method with related techniques.

2 The Exp2D, Imp2D, and NSC3DM Navier-
Stokes solvers

Our application examples are two-dimensional and three-dimensional flow sol-
vers, that we shall refer to as Ezp2D, Imp2D, and NSC3DM. They solve the
compressible Navier-Stokes equations using a mixed finite element /finite vol-
ume method, designed on unstructured triangular meshes. Steady-state so-
lutions are obtained using a pseudo-transient approach which is based on a
linearized formulation. For FExp2D, this formulation is explicit, whereas for
Imp2D and NSC3DM, the formulation is ¢mplicit. Therefore in Imp2D and
NSC3DM, each time step requires the solution of a large sparse linear sys-
tem. Approximate solutions of these systems are obtained by using Jacobi
relaxations.

From a programming point of view, it turns out that the most frequent
operations on the mesh are of the type known as Gather-Scatter. These oper-
ations consist of a loop on all the mesh elements of a given kind, say, triangles.
For each triangle, the mesh structure gives a direct access to its three nodes.
The operations on this triangle are decomposed in three phases:

1. Gather: some values attached to the three nodes are read.

2. Compute: these values are used, with others, to compute three partial
results. Those are the contribution of the triangle to the total results of
its nodes.

3. Scatter: each partial result is accumulated into the total result of the
corresponding node.

RR n’ 3646

6 L.Hascoét

At the end of the loop on triangles, each node will hold the correct final result,
i.e. the accumulation of the partial results of all its neighboring triangles.

Table 1 gives a rough idea of the size of these codes. Comments are not
counted in the number of lines.

‘ Solver ‘ Exp2D ‘ Imp2D ‘ NSCS’DM‘
subroutines 13 18 34
lines 1500 1800 4800

Table 1: Sizes of application examples

3 The SPMD parallel execution model

As we saw in section 1, the SPMD parallel execution model requires two major
operations: Mesh Partitioning and SPMD Program Generation. As shown on
figure 1, these operations are independent. However, both require informa-
tion about the pattern of duplicated elements (overlapping pattern). Also, we
shall see that the particular SPMD program style used here, requires that the
partitioner represents sub-meshes in a precise manner.

Original mesh

[Overlapping Pattern Parallel

execution
Our
——{ SPMD program
Tool SPMD program
Original program

Figure 1: SPMD parallelization process

Sub-meshes +

Partitioning Communication lists

INRIA

SPMD parallelization with automatic placement of communications 7

3.1 Mesh Partitioning

The initial mesh must be partitioned into as many sub-meshes as there are
available processors. Any mesh partitioner can do that, provided it respects
the constraints given below.

A variety of techniques, such as the recursive bisection method, are used
to minimize the size of the interface between sub-meshes, therefore minimizing
the need for expensive communications. But, whatever mesh partition we end
up with, this will not affect the result of our SPMD program generator. Only,
the resulting SPMD program will perform better on a better mesh partition.
The partitioner is entirely in charge of dealing with load balancing. When one
processor is over-used or under-used, or when mesh refinement changes the
number of mesh elements in sub-meshes, the partition must be updated. This
task belongs to the mesh partitioner. But the SPMD program itself need not
be modified.

Following the decision of the user, the partitioner must create a certain
number of overlapping sub-mesh elements. This will allow many communica-
tions to be gathered, yielding a dramatic reduction of communication overhead.
This requires the partitioner to pre-compute and store the lists of overlapping
mesh elements, between any two given sub-meshes. These lists are later used
by the communication routines. It is worth comparing this approach with the
classical “inspector-executor” paradigm. Anticipating on section 7, we remark
that the present method amounts to leaving the “inspector” task to the mesh
partitioner.

For our application, all there is to choose is the amount of overlapping
between sub-meshes, that we call the overlapping pattern. In two dimensions,
we chose to set a one-triangle wide overlapping zone, as shown on figure 2.
Similarly in three dimensions, we set a onetetrahedron wide overlapping zone.
This choice will strongly affect the placement of communications by our tool.
Therefore, because of overlap and communication cost, this will affect the
performances of the resulting SPMD program. In [3], one can find a discussion
comparing various overlapping patterns. The best candidates seem to be:

1. One layer of overlapping triangles, with neighboring edges and nodes (cf
figure 2) .

2. Only one layer of overlapping nodes (cf figure 4).

RR n’ 3646

