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Abstract: The problem of adaptive estimation of the regression function f from noisy ob-
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Intervalles de confiance pour des estimateurs adaptatifs

sur des classes de Besov

Résumé : Le théme de ce rapport se situe dans le cadre de ’estimation adaptative d’une
fonction de régression f & partir d’observations bruitées. On s’intéresse & la norme Lo de
Perreur d’estimation pour des estimateurs adaptatifs par ondelettes. Nous proposons un
estimateur pour cette norme et nous montrons que ce dernier est minimax sur les classes de
Besov. Finalement un intervalle de confiance est associé & cet estimateur.

Mots-clé : Estimation adaptative, régression non paramétrique, intervalles de confiance,
estimateurs par ondelettes.
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1 Introduction

We consider the problem of recovering of unknown function f(z) : [0,1] — R from noisy
observations

i

where (w;), 4 = 1,..., N is the vector of independent and identically distributed Gaussian
random variables with Ew; = 0 and Ew} = o2.

In what follows we suppose that f belongs to the Besov body F (s, p, q, L) (refer to Section
2 for definitions), defined with the parameters (s, p, ¢, L). We consider a classical Lo-risk

(P ) = Eyllfn = fIZ = / (Fr(@) — f(2))%d.

It is well known how to construct the minimax on the class F(s,p,q, L) estimator fn, ie
the function f3 which is the minimizer of

R(]/C\N,f) = sup Efp(fNaf)a
feF

when the parameters (s, p, g, L) of the class are known a priori.

Furthermore, it is possible to provide “adaptive” estimation algorithms (cf. for instance
[1], [6] and [10]) which only use the observations but not the values of the parameters
(s,p,¢,L) and deliver an estimate fN of not worse quality than the parameter-dependent
ones. That is the ratio of the estimate risk R(fN, F) and the minimax risk R(f}{,, F) remains
finite as N — oo. However, those adaptive estimation algorithms do not typically provide
any information about the error my = ||fx — f||2-

If it is known a priori that f € F(s,p,q, L) then one can take 7} as the minimax rate of
convergence on the class F(s,p,q,L). On the other hand, this class contains also functions
which can be estimated with better rate. Indeed, this class contains, for instance, the balls
F(s',p,q,L) with ' > s. Then if the information that the unknown function belongs to such
an embedded class was available, one can expect to find an estimate fN which attains the
minimax rate of convergence which corresponds to the parameters (s',p, g, L) of this smaller
class and the bound Mm% would be rather pessimistic. On the other hand, it is also known
that if the accuracy of estimation is characterized with the L,-norm of the error the bound
Mm% cannot be improved in the minimax sense (cf. [13]). This motivate our choice of the
Ly-norm of the error my = ||fN — fll2 as the measure of the quality of the estimate to be
accessed. In fact we want to point out the value 7y(a) (a confidence interval) such that
for any a > 0 the ball Br,(fx, 7~ ()) in the Ly-space, centered at fy with radius 7 (a),
satisfies

Ps(f € Br,(fv,™v(a)) > 1 —a. (2)
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4 A. Juaitsky, S. Lamoert-Lacroix

In order to characterize the quality of the bound 7y we use the quadratic error:
[Es (v —mn)*)"2. 3)

The problem of constructing the confidence interval for adaptive regression estimation has
been studied in [11] in the context of the Sobolev classes'. Our objective here is to provide a
method to construct confidence intervals 7n(a) for adaptive threshold estimators proposed
in [5], [6] or [10]. We show that if no a priori knowledge of the parameters (s,p, g, L) of
the functional class is available, the problem of construction of confidence intervals cannot
be solved in the minimax sense. Indeed, in Theorem 1 below, a minimax on the class
F(s,p,q, L) lower bound for the rate of convergence of an estimate my of the error my is
established. We observe that the lower bound in (9) does not vanish if, for instance, the
only information available is that the unknown function is bounded (note that the adaptive
estimator fN is a good performer in this case). On the other hand, we show in Theorem 2
that if it is a priori known that f € F(s*,p*, 00, L), one can construct an estimate my
which is minimax optimal (up to a constant). Finally, a confidence interval is associated
with this estimate.

The paper is organized as follows: in Section 2 we recall some basic properties of Besov
classes and adaptive wavelet estimators. Then in Section 3 the lower bound for the rate
of convergence for Ly-error estimators is established. Next in Section 4 we provide an
confidence interval for adaptive estimators fy on the Besov class.

2 Adaptive wavelet estimators

We start with the definition of functional classes used.

2.1 Besov body

Let ¢ér,1jr be a system of compactly supported orthogonal wavelets (suppy C [—A, A]
and suppy C [—A, A)]), ie. ¢(z) and Yji(z) = 27/29(29x — k), j = 1,..., constitute
(inhomogeneous) orthonormal wavelet basis of Ly(0,1) [14], [3]. Let m = max(1, Smax)-
We suppose that ¢ and ¢ € C™. This implies (see Ch. 7, [3]) that ¢(z) has | = [smax]
vanishing moments (here [-] is an integer part). We just note that wavelet basis on [0, 1] with
such properties can be constructed (see, for instance, [2]). Since the regression function and
the wavelets are compactly supported, there are at most (27 + 24 — 1) nonzero coefficients
at each resolution level j of the wavelet expansion of f. We suppose with some stretch that

! Note that this problems is closely related to that of sequential estimation (cf. [1])

INRIA
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this number is exactly 27, thus

oo 29—1

f@)=ad(@) + ) > Birtj(x),

=0 k=0

where
o= / f@)d(@)dz, B = / F@)biu(@)de.

From now on we suppose that the unknown function f belongs to some set F € Ly(0,1)
which is defined through the coefficients a and 3 of the wavelet decomposition of f:

oo 29—1

f(@) =ag(@)+ D > Bitju(a). (4)

7=0 k=0

992

We suppose that F is a “Besov body”* of wavelet coefficients:

F = F(s,pq,L)
- 1/q
= {f such that (Z ok [P)H/P + Z(?j(s+d/2_d/p)(z |Bj|P)?/P <L} (5)
k

j=0 kEZ

Following [5], [7] we choose the Besov classes because of their exceptional expressive power:
the Holder and Sobolev classes often referred to in the statistical literature can be obtained
for a particular choice of parameters s, p,q [14].

Note that if B, , s > (p~t=1)4, 0 < p,q < o0, is the Besov space (see [15]), then there
is C' > 0 such that

”f”B;q > C”f”qu: (6)

where || f||s;, is the norm of the Besov space and

1/q
o

£ lspa = laf + [ D@7+ g ),)0

=0
On the other hand, for any (p~! — 1); < s < m, there exists C' < co such that

Cllfllspg = 171

(cf. Theorem 2 in [4]. See also [7] for a discussion and useful references). In what follows
with some abuse of notations we refer to F(s,p, ¢, L) as the Besov class.

s
Bm’

2we borrow the terminology of D. Donoho and I. Johnstone [5].

RR n~ 3643



0 A. Juaitsky, S. Lamoert-Lacroix

2.2 Wavelet estimator

Consider the following problem: given the observations (1) to design an estimate fN of f
which uses only the observations y1, ..., yn (but not the knowledge of parameters s, p,q and
L of the class), such that for any class F(s,p,q, L) the ratio of the estimate risk

R(fn,F) = sup Ey||fx — I3
feEF

to the minimax risk

R(F) = inf R(fn, F)
N

remains finite as N — oco. Following [12] we call such estimates adaptive in order.
In the above problem the minimax rates of convergence were established in [5]. These

rates are attained by adaptive wavelet estimates fy, designed in [6], [10] and [1]. For our
model these estimates are constructed as follows: first we compute the coefficients

N . N .
. _ i N i . .
ar =N 1Zyi¢k(ﬁ)a Yjik =N 1Zyi'¢jk(ﬁ)a for j=0,...,jo,
i=1 i=1

where jo is such that % < 20 < % Then y;;, are shrinked to zero using the thresholding
rule:

Bit = 6(yji, \y)- (7)
Here 6(-) can be hard- or soft-thresholding rule, respectively,
8(z,A) = xljz>x or &(z,A) =sign(z)(z — A)4.

The threshold J; is selected from the observations using a kind of cross-validation procedure
which is different for the estimates provided in the papers cited above. Finally one put

jo 271
In(e) =ao(@) + Y D Bintiu(x). ®)
7=0 k=0
The risk R of these estimates satisfy
0_121} 2s

os+1 2 2
R(fy, ) SCLW””( ) " 4o (L"lﬁ’\f N).

=

INRIA
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3 Lower bound for confidence interval estimation

Suppose that the observations y; = f (%) +wj, i = 1,..., N of the function f are available.
It is known a priori that f € F(s,p,q,L).

Let fN be an adaptive estimate of f. Our objective here is to establish the lower bound
on the rate of convergence of the estimate of the error ||fy — f|l2- This bound cannot
be given for all estimates fN; indeed, the error of a trivial estimate fN (¢/N) = y; can be
estimated with parametric rate. However, if we limit our consideration to a class of “not-
trivial" estimates, which, of course, are the only estimates being of interest, such a bound
can be established. Such a class of “reasonably good" estimates can be defined in many
ways. We consider here the following

Assumption 1 hyp The estimate fN is “almost minimaz” on F(s,p,q,L), i.e. if

2 prEEST
VN = L251+1 (M) = ,

N

then for some C < oo

-1 ¢ 2]1/2
sip vyt [Brlliv - £I3] T <c
fE€F(s,p,q,L)

ote that this assumption holds for known adaptive estimates (cf. the estimate proposed
in [5], [6] or [10])

Let now for some 0 < § < 1, fo € F(s,p,4,(1 — §)L). We say that f belongs to
6‘7:,30(37p7 q, L) if f - f(] € ]:(37p7 q, 6L)

Theorem 1 Suppose that Assumption 1 holds for the estimate fN of f. Then there is an

absolute constant ¢y such that for any 0 < 6§ < 1, fo € F(s,p,q,(1 —6)L), s > 1/p, and any

estimate my of my = ||f — fN||2 it holds

2s+1/2=1/p

1 o2 Y
co(L8)Ts+2=27» ( “J) R for p<

. \274 2 =
ror Sl(lp . [Ef(mN —1mN) ] ' > co(L6)4_.gl+‘1 (‘TW) et for p>2 s>1/4,
€F 5y (s,p1a,
coLON~?%, for p>2 s<1/4,

The proof of the theorem is put in Section 5.

RR n-° 3643
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4 Adaptive threshold estimate with confidence interval

We present in this section an algorithm to estimate my for estimates fy proposed in [5], [6]
or [10]. Let fn be an adaptive estimator in the papers cited. We denote by A* = (A{, ..., A%),
. by 1
N/4 <270 < N/2, the adaptive thresholds used in its construction. Let (&;) be a RY°F -1,
vector of independent and identically distributed Gaussian random variables with E{;, = 0

and E{?k = % We suppose that (i) is independent of (w;) and that f € F(s*,p*, 00, L*).

a

2 .
Algorithm 1 Put o2 = 2, take jo such that N/2< 27 <N and

2 s ey

o2
A s (10)
(&)™ <2< 2(L)", for p*>2,
with j* = jo when j* > jo. Moreover define
kv (j —j*)+ with & >4y/log2  for p* <2,
A = (11)
00 for p*>2.
1. Compute the empirical wavelet coefficients
IS RN 1 & i ; . .
o= Zyﬁﬁ(ﬁ) and yjr = zyﬂpjk(ﬁ) 0<k<2 -1, j=0,...,jo-
i=1 i=1
2. Set
Yir, = Yik + ks Yji = Uik — &k, Aj = max(A], Aj);
and compute the estimates of wavelet coefficients
Bik = YjrLiy, 1>x; (12)
3. To terminate set
jo 291
In(@) =ad@) + ) Y Bivtin(@) (13)
J=0 k=0

INRIA
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and
3* jo 201

o= |2 (=B =20 ) D S (- Bi) —207) Ly, 1,00 (1)
=0 j=j*+1 k=0 +

Theorem 2 Let F(s,p,q, L) be a Besov class with s > 1/p such that F(s,p,q,L) C F(s*,p*,

00, L*) with s* > 1/p*. Then

~ 52\ &/(251)
up (B = Pl < GoUee ) (S2) T e, (15)
feF(s,p,q,L)

where e(N) = O (%‘%ﬂ) It also holds

X 5 2s*41/2—1/p*
(s IsF F2—2/p* x
Cy(L*) 3 +2=275" (_w) t2-2/p + e(N), P <2,
~ 271/2 N
sup  [Ef(mn —mn)?]" < . o\ 2s

*

(16)

Here Cy and Cy are constants which do not depend on N, L* and o2 and can be computed
explicitly for a given value of s*, p* and wavelet 1.

Remark: Using the bounds in (16) for the error My —my we can modify the estimation
algorithm above to construct a confidence interval 7. Indeed, for example when p* < 2, if
we set for a > 0,

2s*41/2—-1/p*

1 1 Is* +2-2/p*
Tmm=mN+——cwwmﬁﬁ?( ) e, (17)

NG

we obtain the following evident

2l

Corollary 1 The quantity v (), delivered by Algorithm 1 and (17), satisfies

2s*+1/2—=1/p*

ey P
) L],

2|

[B(ry(a) —mn)?])'"* 2 (1 + %) (L) e (

and for a <1

P(my > 1v(a)) < a.

RR n-° 3643
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Note that the analogous results hold in the case p* > 2.

5 Proof of Theorems

In what follows C, C', C", C"" stand for positive constants which values may depend only
on the parameters s, p and g of Besov classes.

5.1 Proof of Theorem 1

We consider here only the case p < 2. The case p > 2 follows the same lines as that of
Theorem 1 in [11]. We transfer the problem in the space of wavelet coefficients. We say
that 3 € RN belongs to F(s,p,q, L) if

Z 9ia(s+1/2—1/p) 18,112 ] < L.
J=0

Let 8° € R" be a vector of wavelet coefficients. We say that 8 € 6Fz0(s,p,q, L) if
B—3° € F(s,p,q,6L). Now suppose that for some 0 < § < 1, 8° belongs to F (s, p, q, (1—6)L).
Let y = (yjk)j=o0,....jo,k=0,...,2i—1 € RV,

Yik = Bir + o (jk (18)

be the observation of the vector 8 = (B8;1) € RY, B € 6Fpo(s,p,q,L). Note that this also
implies that 8 € F(s,p,q,L). The vector ( = ({x) in (18) consists of independent and
identically distributed Gaussian random variables, E¢; = 0, B¢} = 1.

Let 6y an estimate of the quantity ||3 — 4||o. The proof of Theorem 1 results from the
following

Proposition 1 For any 0 < § < 1 and any $° € F(s,p,q,(1 — §)L), there exists C > 0

such that for all N sufficiently large, any estimate 8 and any estimate B

2 2))
. A pi — o (Ego(|168]13)) 2
i Bplow — 13- o) > o, AT B IOAR)
5 a0 0.0 (on + (B (18812)*)

INRIA
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where

pi = (8L)/(4s+2=2/p) o 5H=175

Indeed, if we set
Jo Jo
FOz) = Bhv(e), and f(z) = Bintbjk(x).
Jj=0 Jj=0

Then Assumption 1 implies that O'Ego(“B - 8132 = o(p?%), and

4s4+1-2/p

A 1/2 . o2\ TF=2/p
sup BBy — 15— Bll2)?] > co(sT)V/2=2/m) (N) _
BEF4o(s,p.q,L)

5.2 Proof of Proposition 1
Let 8° = (8,) € RY, 8° € F(s,p,¢,(1 — 6)L) and j* satisfy

2 2
L 23s+1—1/p . L 23s+1—1/p
o o

Note that for N sufficiently large, 27" < N since s > 1 /p- We define

8=\ = )\(5L)2—j*(s+1/2_1/2p), with A < min (i, (;) p) .

Next we set
§-k={ 0, if j#j
! &, if j=j",

where (&), k =0,...,27 " —11is a sequence of independent and identically distributed random
variables, such that P(§ =1) = P(§ = —1) = § and P(§ =0) = 1 —r with

r=271"/2 (19)

Finally, we define the vector 3(¢) in the following way: make another independent drawing
such that

ﬁ(f) _ B + B{, with probability 1/2
B0, with probability 1/2.

RR n-~ 3643
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Let
A={w:|€]3<3r2 1) (20)
Note that due to the definition of 3, the vector ) belongs to 0Fpo(s,p,q,L) on A. This
implies immediately 3% € F(s,p,q,L) on A. Consider the observation y = (y;1,) of 8,
Yk = ﬁj('i) + oGk,

where ((j1) is a sequence of independent and identically distributed Gaussian random va-
riables (independent of §) (;x ~ N(0,1).
We can write down

sup  Epo(Oy — |18 = Bll2)* > 70 (8, N),
B6f50(57p7Q7L)

where
ro0(8,N) = 2 Be { (Bpeo O — 18— BOIY + Byl — 1 — 1)) 18},

and E¢ stands for the expectation with respect to the distribution of &.
Let us denote 68 = 3 — 3° and let Z¢ stand for the likelihood ratio

P 21 Bt P2\ Pax! NG,
7 = oo _ H exp (ﬂCJ ke B §k> _ H exp (ACj*k&c _ fk).
k=0 k=0

dPpgo o 202 2

We set

(1]

=5 Y E{ge), (21)

(k,1)es

where S is a 2-dimensional array of indices
S = {(k,l) e,...,2" — 12 :k¢z}.
We define the events:
A = {w: EZ:< 26’\4/2},

23" —1

B = {w: Y Ggp<22},
k=0

D = {w: [86ll2 <4e (Egll6p12)/?},
F = {w: 52%29’*(21*—1)},

and
I'=AnBNDNE.

INRIA
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Lemma 1 There is C > 0 such that

Ego { EelZe(13¢15 - 28567)*1a]1r }

rg0(6,N) > C — (22)
(o + (Bso(16813)) *)
Proof: Since
Oy =118 =B8N = 0n = 18—l — (18— [8° + BE]ll> — 18— B°ll=),
when changing the integration measure, we have for 7450 (6, N) :
2040 (8,N) = Ego { B¢ (Zela(Aw — 166 — Bella + 16612)) + ARP(A) ), (23)

where Ay = 0x — ||8 — 8°||2. Note that

. Fe (2068 - Bells - 1661112 )
A = P(A) + E¢Ze1a

is the minimizer of (23) with respect to Ay. When substituting A% into (23) we get

1 3 2
n(6.N) > B { e [ 260189 - Bell — 10811 |
~ 2
_ B2 2
1+ E¢Z¢ 168 — BEll2 + [1681|2
Since the expression under the expectation Ego in (24) is positive, we can bound rgo from
below as follows:
- 2
_ 2 _ 2
2’!‘50((5, N) > Elgo #Eg ZE “‘Sﬁ @5“2 “65”2 Ial 1 7. (25)
L+ E¢Z¢ 168 — BEll2 + [168]|2
We use the bounds for F¢ Z; and ||§8]|2 on T and the one of ||3¢||2 on A to obtain from (25):
~ - 2
2 _ 92 T
2rgo(6,N) > Epo ¥E§ Z¢ 15€ll; — 2565 ¢ Ia| Ir
1+ B¢ Ze 1Bl2 + 2(|68]|2
Ego B { Ze(|1B€l13 - 28667 1a1r }

(1 +20) (\/372px +8¢% (Bpo(l58I3) )"

RR n~ 3643
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In order to continuer we need some notations. We denote

2 2
I, = %exp )\Cj*k_/\? +%exp _/\Cj*k_)\? R
2 2
Je = 2exp(AGer—%) —texp (=G — %),
Kp = Texp(AGen—24) —Texp(=AGur+4)+1—r

We have the following straightforward expressions

1
Egp(I}) = i(e’\2+e_)‘2),
2 2oz A2 2
Ego(Kk):E(e te )+1—7",

2 2
(e’\ —e ) ,

(e*Q + e”\Q) I

Ego(Jp) =

DN | =

Ego(IKy) =

N =

Lemma 2 For A < 1/4, we have

1) Ego [EeZe)* < e,

2)  Pgo(BeZe < 2¢V' /%) > 3/4.

Proof: 1) By (28) we have

29" 1

2 2’
Bpo [EeZ) = [[ Epo(K}) = [% (eAz + e—AZ) +1- r2] :

k=0

@

On the other hand, since A < 1/4 and (££2")" < 2 for 0 < z < 1, we have

2 2
er +e A

14+ X\
5 <14 X4,

INRIA
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and A . .
Ego [BeZg]” < [1+ X777 <.
Now 2) follows by the Tchebychev inequality. ]
Lemma 3 For A < 1/4, we have
Pao(F) >1— 6" —64027797/2,

Proof: When using the notations, introduced in (26), we have the following decomposition
of Z2in (21)

29" 1
E= ) En, whereZy =L H K.
(k,1)es n=0,n#(k,!)
This gives immediately EgoZy; = 1 and
Eg= =2 (27" —1). (31)

Now we have

Var{Z} = Y Y [Eg{EuSmm}—1].

(k,1)ES (n,m)ES
Consider the following decomposition of the set S x S:

(Sx8)y = {((k1),(mn)eSxS:k#n,m,l#n,m},
(S x 9 {((k,1),(m,n)) € SxS:k=n,l=mor k=m,l =n},
(Sx8)2 = SxS\{(SxS)U((SxN}.

Il

When using the results of (27) - (30), we obtain on this decomposition (as in the proof of
Lemma 2):

(1 + Xr)* ((k,1), (m,n)) € (S x 8)o,
Epgo{ZuEnm} <{ €N (1+A1)? ((k, 1), (m,n)) € (S x S)1,
M1+ M1+ M)2 ((k, 1), (m,n)) € (S x 9)a.

On the other hand, we have for the cardinality of the subsets

card(S x §)y = 277(277 —1)(27" —2)(27" - 3),
card(S x S); = 2277 (27 —1),
card(S x §), = 4277 (277 —1)(27 -2).

RR n~ 3643
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Finally, we conclude that for A < 1,
_Var{Z}  _
R -DF =

< M —1+160r.

N1+ Mr)t = 1+ 202N (1 4+ M2 — 1]+ 422X (14 143 — 1),

However, due to (31), by the Tchebychev inequality

o L

Pso (E < 2i"=1(28" — 1)) = Py (E — EpE > 2120 - 1))
< 4(e — 1)+ 640r < 6X* + 640r

for A <1/4. When substituting the value of r from (19) we obtain the lemma. [ |

On the other hand, by Assumption 1

2t 1
Pyo ([168]12 > 4™ (Bpo188]3)' ) < T

Along with the results of Lemmae 2 and 3 this gives

Ppo(T) > Pgo(A) — Pgo(BY) = Pgo(D) = Pgo(F),

27" 1
Z 3/4_167—6A4—6407'—Pﬂ0 277 Z §.]2*k>2 y
k=0
> ¢ >0 (32)

for N large enough. We are to study the cross term in the numerator of the right-hand side
of (22).

Lemma 4 Let
M = Epo { | e ZeBop™€l|Bel3 | 10}
Then there is C > 0 such that

1
2

M < Cplyo (Eapo(I68113)) *
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Proof: We have

23" 1 29" —1 29"
M = BEpd| > 68i1Be(&Ze)+ D Z 6Bj+k Be (&7 Ze)| 1r ¢
k=0 k=0 1=0,1£k
< M, + M,

With the previous notations,

J

-1 -1
My = BPEs Z 8Bs 1 cn I K|y

.7

1=0,1%k
23" _1 23" 1

< BPEg Z |5ﬂ1*k|—|Jk| I xir
1=0,1k

On the other hand, note that |sh(z)| < |z|ch(x), thus |Ji| < A|(jx|Ix. Since LI, < Ky, we
obtain

23" 1

My < APEBgoS | D 16850kllGerl | BeZelr o
k=0
1/2

27" _
< APEg 168l | Y G E¢Zelr

Due to the bounds on I' and the values of B and 27", the right hand side of the latter
inequality can be bounded by

1
M8V2e5Y plio (Ego([16813)) -
On the other hand, we get for M»

21" 1 20" 1 21" 1
My = B Y > EgpoS8Bklindki [ Kap,
k=0 1=0,l%k n=0,n#k,l
1
) 23" 1 2" 1 X 23" 1 2
S ,637"2 Z Z (Eﬂoéﬂ?*klp)z Ego (JkIl H Kn)2
k=0 1=0,l%k n=0,n#k,l

Now using (27) - (30) we obtain as in the proof of Lemma, 2

]_ 2 2.1 >3 1
My < (e —e )i Y (Bplplin)
< 223N — e ) EeN pRo (Bpo(1I86112) 2
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what finishes the proof of the lemma. [ ]

Lemma 5 There is a constant C > 0 such that for any A < 1/4,

EﬁOEE {ZE]-AC]-F} < Cexp (_%23‘*/2) ]

Proof: By the Cauchy inequality, we have

1
2

EgpEg{Zelaclr} < Po(A”)7 Pyo(T)7 (Ego B { 22})

We decompose
29" 1

EpEc {7} = [[ M
k=0

where , ,
My = Bgo [ 5 exp (22Gjex = A?) + S exp (—2AGjoi = A) +1 = 7] .

When taking the expectation, we obtain My, = rexp(A\2) + 1 — r. Since e)* < 1+ 3A2 for
A < 1, we have

EgoBe {7} < exp (3x%27/2) .

On the other hand by the Bernstein inequality,

1A 9r221" 2
P(A®) = P | — 2>3r/2] <2 b
f( ) 3 2]* k;] Ek > r/ S 2€Xp 27.(1 — 7') +r )

2exp (—%21*/2) .

Due to the bound on ), this implies the lemma. ]

IA

Note now that

Epo [ZelBeN31a1r] > Bgo [25121a11] > p*P( N A).
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Hence, when using (32) and the bound of lemma 5, from (22)
Ego { el (13613 — 43587 €)13¢3)1a]1r |
(v + Eni6812) )’

Ego { (Pao (TN A)phy = ooy + 18]12)2%" Bl Zelae] — | Be[Ze ATl GE3N1r |
(o + (B 6812)) )’

onPh = Phon + (B (1813)) )24 e 3 — g (Bpo (165113))

rgo(6,N) > C

’

CI

1
2

> —
(ov + (Em(16513)) )
> C///pz p%\f (Eﬁo |6/3|| 25
(o + (En1681)) )’
for N large enough. ]

5.3 Proof of Theorem 2

We start with the translation of our estimation problem into the space of the sequences of
wavelet coefficients. For the sake of simplicity we suppose that N = 27°. For the computation
of wavelet coefficients in the case N # 27° the reader can refer to [4].

We set

Jjo 27 1

fio(®) =a'd(@) + D> Bipbju(@) (33)

7=0 k=0

where

N
1 i i
=5 2 IG9(5) Bin= Zf Wi (<
i=1
Then the empirical wavelet coeflicients satisfy:

a:al+<-, y]k:/g‘;k+<]k)

with

1 & i 1 < i
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We present here a summary of properties of the sequence of empirical wavelet coefficients.
The next lemma is an immediate corollary of Proposition 1 in [4].

Proposition 2 Suppose that f € F(s,p,q,L) with s > 1/p. Then there is a constant Cy

(which depends on the wavelet used) such that the sequence 8' = (&', Bjx) satisfies
8' € F(s,,4,CoL) and |f = fioll = O(L2 ) = 0 (LN ), (34)

where s' =s—1/p+1/2 forp< 2 and s' = s for p > 2.

if we denote
1/2

Jo
miy = fn = fioll = | D_ 185 — 85113

=0
Then due to (34) we can bound my = ||fN — fioll2 as follows:
my —miy| < |If = fioll2 < CLN ",
This implies immediately that if m/y = ||fN — fjoll2, then
[Es(fn —mn)’1"? = [Bp(n —miy)*|Y?| < CLN . (35)

So to show the upper bounds in Theorem 2 it suffices to control the value [Ef(my —
m'y)?]*/2. Furthermore it follows from (34) that the coefficient B}, satisfies (up to an
“absolute constant”) the same norm relation (5) as the true coefficients (. Since this is
the only property of wavelet coefficients used in the study of the estimate my, with some
abuse of notations we substitute in the sequel 5}1; for Bji,. this give the model

Yix = Bjk + Cjk (36)

for empirical wavelet coefficients.

Now note random variable ¢ and (j;, have Gaussian distribution with E{ = E(;, = 0.
Furthermore, since the sequences ¥ (%), =1,..., N are orthonormal for different j and
k, the variables (j), are mutually independent and EC};, = %

Let us now turn to the proof of Theorem 2 itself. We consider here only the case p* < 2.
The case p* > 2 follows the same lines as that of Theorem 2 in [11].

Let A7* be the “minimax" thresholds for the estimation of the function f on the class
F(s*,p*,q*, L"), defined in [5]. It can be easily verified that A; < AJ* for 0 < j < jo. This

implies that the adaptive estimate fN with “corrected" thresholds A} still possess minimax
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rate of convergence on any Besov class embedded in F(s*, p*, ¢*, L*). Due to the results of
[5], [6] and [10] gives the bound (15) of Theorem 2.
We denote
Vik = Bik = Bin, 2k = Yik — Bin

and

G = Yk — Bik = Gir + &iv e = Vi — Birx = Gir — &j-
Then we conclude from (36) that ((j;,) and ((j}) are two uncorrelated (and thus mutually in-
dependent) sequences of independent and identically distributed Gaussian random variables

with EC), = B(j, = 0 and B(C},)* = B(C)? = %

Let m/y =/ ;":0 [|7;.1? then the difference M3, — (m/y)? can be rewritten as:

J* jo  29-1
@3 — (m 2l < Sz B =20 )+ Y 3 (e 207 = 21, ma0
j=0 j=7*+1 k=0
jo  29-1
2
= > D Viliglene
j=j*+1 k=0
i jo 291
; 2
= UG =210+ ) 30 D (G = 20"y, 500
3=0 J=j*+1 k=0
J* jo 291 jo  29-1
T 1 T »n 2
2D G D D Gl ene| T Do D Bkl <ae
j=0 j=j*+1 k=0 j=3*+1 k=0
4 .
= Y 6. (37)
i=1
We have the following immediate estimate:
1/2 "
[E(&ﬁ\})f] < 020" 1252, (38)
In order to continuer we need some technical results.
Lemma 6
Lyw>re < Lgulzae/2 + LG sae/2s (39)
o0
Liyni<ao < Z1\ﬁjk\<(2+1),\a1|gjk|zl>\a§ (40)

=0
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Proof: The proof of (39) is immediate. To show (40) we decompose 1), |<xq:

o

Lyi<ae = Lyniaacligi<ans + Lg<as O Line<igye<(t41)r0
=2

o0 (¢}
< gieane + D Vg <e2re ge>ine < D gl <+2a0 L >in0
=1 =0

1/2 . ‘o o o (w
Lemma 7 [E(agg>)2] < C (20202 + (L¥)P" 20207 /293" (P 497 /2-1)/2)

Proof: In the decomposition below we use (39) and first take the expectation over the
distribution of ((j}) and then over that of ((j;):

jo 2941
2
E(6§V))2 = 20’4E Z Zl|y;k|2)\jo (41)

J=j*+1 k=0
jo 2941 oo
4 1 i@
< 2t 33 (1,0 PG> 20)

Jj=j*+1 k=0

T N -2 NP N AN
< 22 tig j:jZ*H g0 +4o j:j2*+12 exp(—l—G)— N Iy (42)

Let us estimate IJ(;). Recall that A; = k+/j — j*. Due to the definition of the class F(s*,p*,
w? L)7

2P Hlg4—p" ([ *)P" Jo_ og—j(s*p*+p*/2-1)

1y < — >

© */2
j=j*+1 (.7 J )p
o 2L et 2 i 9~ l(s"pHp" /2-1)
— Iip* — lp*/2
< (LX) gt Pt T2 (43)

Since & in the definition (11) of \; satisfies k* > 16log2, we can bound I](\?) as follows:
(2) 195 ol aall 195" S K 495"
——) < log2——) ) < 27 44
I <40%2 12_12 exp( 16)_402 lg_lexp(l(og 16))_00 (44)
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When substituting (43) and (44) into (42) we obtain the bound announced in the lemma.
|

Lemma 8 Suppose that there is C < oo such that L* > Co(log N)4s"+1)°/2 Then

1/2 2 s*
[B6?] T < cl@)FFos + \flog No®).

Recall that it holds for the adaptive estimate EN

s EyllBy — I3 < C[(1) 71 (o10g N) ™57 + 0% log N]
FeF(s*,p*,q*,L*)

(cf, for instance Theorem 1 in [5]). When taking the expectation over the distribution of
(%) and then over the distribution of ((},) we obtain:

1/2

Jo

1/2

2|EY Illbe®|  <2[Elnl30"]
Jj=0

1/2
|86
< C [(L*)ﬁa%(mgm% + 1ogNa2] .
One can easily verify that if L* > Co(log N)48"+1)*/2 then

[E(5§3>)2]1/ C< o[y 4 g Ne?].

1/2 . v epe sy s
Lemma 9 [E(&%)V] < C(L*)P o2—p 2—i*(s"p"+p"/2-1)

Proof: The decomposition (40) yields

jo 29-1 o

1/2 .
(BT < Y 3 S Baliscein P (1G] > Dyo)

j=j*+1 k=0 1=0

jo  29-1 00
<D Y Bl Y BT g < P (1G] = o)
j=3*+1 k=0 =0
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Jo * Sk k) * i 12/\2
=i 120
< Oy o™ z 2P P [2=1) (5 _ jxy(2=p7)/2

Jj=j*+1
< C(L*) 2p23(sp+p/2 1)

From (37), using the results of (38) and Lemmas 7 — 9, we obtain
[B(m2 — (msv)2)2]1/2 < C (zj*/2g2 F(L¥)P 202 P 29=0" (50" 407 /2-1) /2
+(L*)”* 2P 9=i" (s 4" /2-1) | (L*)2/(48*+1)083*/(43*+1)
log N0'2) .

The condition L* > Co(log N)*s*+1)*/2 and the choice of j* in (10) now results in the
bound

4s* 41— 2/p

(B - iy ?P] < o (@) o) (45)

Note that (cf. proof of Theorem 2 in [11]) for any v > 0

m2 m2 2 R
( N N) +2( 2 2)_|_,Y2_

(My —my)* > 2 my — my
We set
ry — \/(L*)2s*+1 1/p* a-gz*ii ?;i 0-2 logN
Then (16) follows from (35) and (45). [ |
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