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L’algorithme de séparation du support

Résumé : Deux codes linéaires sont équivalents par permutation s’ils sont égaux a une
permutation pres de leurs coordonnées. Nous présentons ici un algorithme capable de cal-
culer cette permutation. Nous introduisons la notion de signature comme une propriété
d’une position d’un code telle que ’ensemble des signatures pour un code donné est glo-
balement invariant par permutation. Pour déterminer la permutation entre deux codes
équivalents, il suffit de trouver une signature a la fois discriminante et facile a calculer.
L’énumérateur des poids du hull d’un code permet de construire une telle signature pour
la plupart des codes.

Mots-clé : code, équivalence, hull, permutation, signature, invariant, énumérateur des
poids
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1 Introduction

The problem we address here is to know whether or not two given linear codes are permu-
tation-equivalent (i.e. one is obtained from the other by permuting the coordinates). If
they are, we also want to recover this permutation, which will be unique if and only if the
permutation group of the codes is reduced to the identity element.

In a recent paper [PR97], Petrank and Roth have discussed the computational difficulty
of this decision problem. They showed that the CODE EQUIVALENCE PROBLEM is not NP-
complete but also that it is at least as hard as the GRAPH ISOMORPHISM PROBLEM. Finding
a polynomial time algorithm able to make this decision would thus be of interest.

A tentative solution to the decision problem is given by the weight enumerator: two
equivalent codes have the same weight enumerator. This criterion is however incomplete.
Having the same weight enumerator does not imply that two codes are equivalent, but
we can then go further: we can examine the weight enumerators of all the codes obtained
by puncturing both of them in one position. If the codes are permutation-equivalent
then these two sets will be equal and, furthermore, the matches between the two sets of
enumerators may give us some information on the permutation. Unfortunately, computing
the weight enumerator of a code becomes computationally intractable when its size grows,
from [BMvT78] it is in fact NP-hard. A practical solution for large length will thus make
necessary the use of some other invariant property of a code, easier to compute.

First, we will introduce all the definitions necessary for a formal description of the
algorithm. An invariant will be a property of a code that does not vary if the code is
permuted. From any invariant, we can construct a signature, that is a set of properties,
one for each position of the code, which is invariant by permutation of the code support.

If the signatures of the positions of a code are all different, then the permutation bet-
ween this code and any other one, permutation-equivalent to it, can be recovered by simply
matching the sets of signatures of both codes. If the signatures are not all different, an
iterative procedure, which is efficient in most cases, will enable us to recover the permuta-
tion.

The main difficulty in the implementation of the algorithm lies in the choice of the
invariant. The most natural one, the weight enumerator of the code, is very discriminant
but rapidly becomes intractable. It is thus necessary to use another invariant: the weight
enumerator of the hull. The hull of a linear code [AK90] is equal to its intersection with
its dual, and it is generally of small dimension [Sen97b] though not always reduced to
{0}, at least in the binary case. This will provide a signature, not as discriminant as the
weight enumerator, but still discriminant enough to be successful in most cases after a
few refinements. The main interest of the hull is that, because of its small dimension, it
produces invariants that can be computed in polynomial average time and it thus makes
the algorithm practical for large length (> 1000).

Finally we give some considerations about the implementation in the binary case. In
particular, we show that, in the general case, the most expensive part of the algorithm is
a gaussian elimination on a square matrix of size equal to the length of the code.
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Notation

e We denote by F, the finite field with ¢ elements.

e For any integer n > 0, we denote by I, a set of cardinality n used to index the
coordinates of the words of F. For instance I, = {1,... ,n}.

For all z € F(? and all 7z € I,,, we denote by z; the i-th coordinate of x.

For all z in F' we denote by supp(z) = {i € I, | ; # 0} the support of z.

For all  in F' we denote by (x) the vector subspace of Fy* spanned by z.

For all subsets A of F;' we set by supp(A) = U, 4 supp() the support of A.

2 Generalities

2.1 Equivalence of codes

Two codes C and C’ of length n over F, are equivalent [MS77, p. 40] if there exist a
permutation o on I, and a sequence (7;);c, of n permutations on F, such that C' = ¢(C)
where ¢ : (z;)icr, = (Ti(To-1(3)))ier,-

If ¢ maps any linear code into a linear code then each =; is the composition of a
scalar multiplication with a field automorphism. The scalar multiple may vary for each
coordinate, but the field automorphism must be the same.

Definition 2.1 [Ber96] Let C be a code of length n over ¥,. For every permutation o on
I, all vectors a = (a;)icr, in (F;)" and all field automorphisms 7 of ¥y, we define

(a;0,m)(C) = {(7(ao-1()To1(i) )ict, | (Ti)ier, € C}-
We will say that C and (a;o,7)(C) are equivalent.

For our purpose, we consider a more restrictive definition.

Definition 2.2 Let C' be a code of length n over ¥,. For all permutations o on I, we
define

o(C) = {(%*1(1'))@% | (Zi)ier, € C}.

We will say that C and o(C) are permutation-equivalent or o-equivalent, which we denote
by C ~ o(C).

The two definitions coincide in the binary case, otherwise they don’t. The set of all
permutations on [, equipped with the composition, forms the symmetric group of I,
denoted by S,,. For any code C' of length n, we can define a particular subgroup of S,
called the permutation group of C.

INRIA
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Definition 2.3 The permutation group of a code C' of length n, denoted by Perm(C), is
the subgroup of all the elements o of S, such that o(C) = C.

If for every pair (7, j) of elements in I, there exists o € Perm(C) such that (i) = j, the
permutation group of C'is said to be transitive. The permutation group always contains the
identity permutation. If it doesn’t contain any other element we will say that it is trivial.
If the permutation group of a code C' is non-trivial and if C’ is permutation-equivalent to
C, then several permutation will satisfy C' = o(C).

2.2 Punctured and shortened codes

For any subset .J of I,,, we denote by &; the words of F' of support included in J. For a
singleton J = {i} we will simply write &;.

Definition 2.4 Let C' be a code of length n and let J be a subset of I,. The code C
punctured in J s defined by

Cy=(C+E)NEn\-
The code C shortened in J is defined by
C\J = Cmgjn\J.

The code C'; consists of all elements of C' where the coordinates indexed by J are replaced
by zeroes. The code C\ is the subset of all codewords of C whose coordinates indexed by
J are equal to zero. If C' is linear then both C; and C\; are linear.

In the usual definition of punctured and shortened codes [MS77, Ch. 1. §9.], the po-
sitions indexed by J are removed, producing codes of length n — |J|. Our definition will
allow the indexing of the coordinates of both C; and C\; with the same set I, as for C.
Furthermore, these three codes are living in the same Hamming space F, in particular
we have C\; = C; N C. We list below, without proof, various properties of shortened and
punctured codes.

(a) Commutativity. Both operations commute, that is, for all codes C of length n and
all subsets J and J' of I,, we have (C;); = Cyuy and (C\s), ;, = C\juyr. Furthermore,

if J N J' =0 then (C\y),, = (C)\,-

\J!

(b) Intersections and sums. Let B and C be two codes of length n and let J be a
subset of I,,. We have (BN C’)\J =B\ ;NC\y=B;NC and (B +C’)\J D B\y+C\y,
with equality if J Nsupp(B) =0, and (B+C); =B;+C;and (BNC); C B;NCy,
with equality if J N supp(B*) = 0.

(c) Equivalence. For all codes C of length n, all subsets J of I, and all permutations o
of I,, we have 0(Cy) = 0(C),(;y and o(C\5) = o(C), ;-

RR n°3637
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(d) Duality. Puncturing and shortening are dual to each other. For all linear codes C' of
length 7 and all subsets J of I, we have (C;)* = C; © £; and (C\))" =Cr @ &, =

CH+&;.
We will set Cy = (C*); and C3 = (C), ;-

(e) Hulls. (see Definition 5.1 page 14 ) For all linear codes C of length n and all subsets
J of I,, we have H(Cj) = H(C’\LJ) = C;NC* and H(C\y) =H(C7)=C7ynC.

(f) Dimension. For all linear codes C of length n and all subsets J of I,,, we have
dim(C;) = dim(C) — dim(C N &) and dim(C\ ;) = dim(C) — |J| + dim(C*+ N &;).

If J = {i} is a singleton, we will set C; = Cy;; and C\; = C\f}-

3 Invariants and signatures

3.1 Invariants

Let L£,, denote the set of all codes of length n, and let £ = Un>0 L,, be the set of all codes.

Definition 3.1 An invariant over a set E is defined to be a mapping L — E such that
any two permutation-equivalent codes take the same value.

For instance the length, the cardinality or the minimum Hamming weight are invariants
over the integers. The Hamming weight enumerator is an invariant over the polynomials
with integer coefficients.

Applying an invariant, for instance the weight enumerator, may help us to decide
whether two codes are equivalent or not. Two codes with different weight enumerators
cannot be equivalent. Unfortunately we may have inequivalent codes with the same weight
enumerator, though this only occurs with a small probability when the codes are chosen
randomly.

3.2 Signatures

Any invariant is a global property of a code,. We need to define a local property, that is a
property of a code and of one of its positions. Such a property is obtained, for instance,
by applying an invariant on punctured codes.

3.2.1 Definition

Definition 3.2 A signature S over a set F' maps a code C of length n and an element
i of I, into an element of F and is such that for all permutations o on I,, S(C,i) =

S(a(C),a(1)).

INRIA
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Signatures do exist. For instance, we can associate to any invariant V' the signature Sy, :
(C,1) = V(Cy).

Now, if we have an invariant V, and wish to answer the question: “Are C and C'
permutation-equivalent?”, we can go a little further than just compute V(C) and V(C").
If these codes are permutation-equivalent with C' = ¢(C) then we have V(C;) = V(C'5(1))
for all ¢ in I,,. Thus not only V(C) = V(C"), but also the multisets (i.e. a given element
can appear several times) V = {V(C;),i € I,} and V' = {V(C";),i € I,,} are equal.

We may now start to solve to the second part of our problem: “If C and C' are
permutation-equivalent, find the permutation between them”. If for any signature S, we
have S(C,i) # S(C',7) then o(i) # j. Thus, the image of ¢ by ¢ has to be chosen among
the indexes j verifying S(C’,j) = S(C,i). The number of distinct values taken by a
given signature for the code C is thus of crucial importance to measure how efficient it is.
Furthermore, if the mapping i — S(C, 7) takes a different value for all elements of I,, then
the permutation between C' and any of its permuted versions can be recovered.

3.2.2 Partition associated to a signature and a code

For any signature S and any code C of length n, if we relate the two indexes 7 and 7 if and
only if S(C,i) = S(C,j), we define an equivalence relation. Its cosets produce a partition
of I, and this partition will match with any other obtained from a code C' ~ C.

Definition 3.3 Let S be a signature over E. For any e in E we define J. = {i € I, |
S(C,i) = e}. We will call (Je)eer the (C,S)-partition of I,. For any subset L of E, the
set Upep Je = {i € I, | S(C, i) € L} is called a (C, S)-discriminated subset of I,.

NoTE 1 — Of course we have I, = UgegJ, and J, N Jo = 0 if e # €'. Thus the J.’s form
a partition of I, in the usual sense.

NotTE 2 — If E' is an infinite set then almost all the J,.’s are equal to the empty set.

Proposition 3.4 Let C be a code of length n, let S be a signature over E and let (Je)ecr
be the (C,S)-partition of I,,. For every permutation o on I, (6(Je))eck is the (c(C),S)-
partition of I,,.

Proof: Straightforward from the definition of a signature. <&

The (C, S)-partition of I, is the partition obtained by applying the signature S to every
positions of the code C. A (C, S)-discriminated subset of I,, is a set of positions that we
are able to recognize on any code permutation-equivalent to C. If C' ~ C" = ¢(C), to any
(C, S)-discriminated subset J of I, corresponds the (C’,S)-discriminated subset

J'={iel,| S i) e S(C, 1)} =al)),

and then we have, in particular C';; = o(CY}).
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3.2.3 Discriminant signatures

The thinner the associated partition is, the better the corresponding signature will be. In
the worst case, only one element of the partition is non empty (and equal to I,,), which
means no position can be distinguished from any other. In a favorable case, the partition
contains at least two non-empty elements, and ideally, it contains n singletons, which means
that we were able to find a distinct property for each position of the code.
Definition 3.5 Let C' be a code of length n.
o A signature S is said to be discriminant for C' if there exist © and j in I, such that
S(C,1) # 5(C,j).
o A signature S is said to be fully discriminant for C' if for all i and j distinct in I,
S(C,1) # 5(C,j).

If C" = 0(C) and if S is fully discriminant for C, then, for all 7 in I,,, there exists a unique
element j in I, such that S(C,i) = S(C’, j), and we have o(i) = j. We can thus obtain
the permutation o.

Comparing signatures.

Definition 3.6 Let S and T be two signatures and let C be a code of length n.
o We will say that T is more discriminant than S for C, and denote it by S <c T, if
Vi,j € I,, T(C,1)=T(C,j)= S(C,i)=5(C,j).

We wnill say that S and T are equivalent for C', and denote it by S =c¢ T, if S I¢ T
and T ¢ S. We will say that T is strictly more discriminant than S for C, denoted
by S<cT,if S<cT and S Zc T.

o We will denote by S AT, S =T or S < T according to whether T is respectively
more discriminant than, equivalent to or strictly more discriminant than S for any
code C'.

Note that the order <¢ is not total in general, neither is <.

Constructing new signatures from others.

Definition 3.7 Let S and T be two signatures.
e The product of S and T is defined by S x T : (C,1) — (S(C,1),T(C,1)).
e The dual of S is defined by S+ : (C,3) — S(C*+,4).
e The signature S is said to be self-dual if S = S*.

We always have S < S x T and the product S x S+ is always self-dual. Most of the
signatures we will consider are self-dual, and if not, we can consider their product with
their dual signature instead.

INRIA
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Existence of discriminant signatures. It is possible to produce a signature, which
has a prohibitive algorithmic cost, that will be more discriminant than any other signature,
and whose associated partition is as thin as the permutation group allows.

Proposition 3.8 Let M be the signature defined for any code C' of length n and any
position 1 in I, by

M(C,i) = {(o(C),0(Ci)) | o € Sn} .

The (C, M)-partition of I, is formed by the orbits of the elements of I, under the action
of Perm(C). Moreover, for all signatures S, we have S < M.

In particular, the result above implies that

¢ a fully discriminant signature exists for C if and only if the permutation group of C
is trivial,

e a discriminant signature exists for C' if and only if the permutation group of C is not
transitive.

The following technical lemma will be useful to prove the proposition.

Lemma 3.9 If there exists o in Perm(C) such that C; = o(C;) then there exists  in
Perm(C) such that C; = (C;) and j = 7 (3).

Proof: Let i and j be two elements of I,, and let ¢ be an element of S,, such that C' = o(C)
and C; = 0(C;). We denote j' = o(i) and we have j' # j or the problem is over. Let 7
denote the transposition between j and j'.

We have C; = o(C;) = (C),(;y = Cy and thus, in particular supp(C) \ {7} = supp(C}) =
supp(Cj) = supp(C)\{j'}. Since j # j', neither j nor j' are in supp(C) and 7 € Perm(C).
This implies 7 = 7 o 0 € Perm(C) and 7(i) = j. O

Proof: (of Proposition 3.8) Let 7 and j be two elements of I,,. If i and j are in the same
orbit under the action of Perm(C) then there exists ¢ in Perm(C') such that j = o(i) and
thus C = 0(C) and C; = 0(C), ;) = 0(C), that is M(C,4) = M(C, j).

Reciprocally, if M(C,i) = M(C,j) then there exists ¢ in Perm(C) such that C' = o(C)
and C; = 0(C;). From Lemma 3.9 we can assume j = o(¢) and thus ¢ and j are in the
same orbit.

Finally, to prove that S < M, we have to prove that for all codes C' of length n and all ¢
and j in I, such that M(C,i) = M(C, j), we have S(C,i) = S(C, j). We have

M(C,i) = M(C,5) = (o € Perm(C) | j =0(i))
= (S(C,1) = S(c(C),0(i)) = S(C, 7)) .

RR n~°3637
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4 The support splitting algorithm: an algorithm to
find the permutation between two equivalent codes

Let C and C' be two permutation-equivalent codes of length n. If we assume that we know
a signature S which is fully discriminant for C, then a very simple procedure, that requires
the computation of 2n signature, will provide us with the permutation between C' and C".

procedure permutation
input: code C, C'; signature S
for ¢,j in [, do
if S(C,i) = S(C', ) then
oli] «j
return(o)

Of course, a fully discriminant signature will not necessarily be available, and even if it
is, it may be too expensive to compute. If a signature S is discriminant but not fully
discriminant for the code C, then we cannot obtain the permutation. However, the (C, S)-
partition of I, gives us a classification of all elements of I, according to their signatures. We
present in the next section a means to “refine” a discriminant signature, and its associated
partition, to produce (hopefully) a fully discriminant one. As discrimination is relative to
a code, the refinements will also depend on each particular code.

4.1 Refining a discriminant signature

Let S be a signature over E which is not fully discriminant for C'; after computing all the
S(C,i) we can partition I, into Ji,...,Js (with s <n). If C" is o-equivalent to C we will
obtain a partition Ji,...,J! such that J| = o(Jy),...J., = o(Js). If J is equal to any of
the Ji’s, or to any union of them, J' = o(J) can be likewise obtained from the J;’s. The
codes C; and C'y are also o-equivalent and thus, by computing all the S(Cj,7) and all
the S(C' i, 1), we may obtain additional information on 0. More formally, we have:

Proposition 4.1 Let T be a signature over E. Define for any subset L of E, for all codes
C of length n and all elements i of I,, the mapping St.1, by

ST,L(Cv Z) = S(CKT,L(C)’ 7‘) (1)
where K7.1,(C) ={i € L, | T(C,i) € L}, is a signature.

Proof: We put K = Kr 1(C), from Proposition 3.4 we have Kr (0(C)) = o(K) for any
permutation 0. From o(Ck) = 0(C), (), and the definition of a signature, we have:
Sr,.(0(C),0(i) = S(0(C)gxy o))
= S(a0(Ck),0(1))
= S(Ck,i) = Srn(C,1).

INRIA
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This proves that Stz is a signature. o

If two code codes C and C' are o-equivalent, then for any (C,7T)-discriminated subset
J = Kr(C) we have J' = o(J) = Kr(C'), and the two codes C; and C'j are o-
equivalent. We can thus try to apply the signature 7" on them to obtain more information
on o. That’s exactly what St does.

Hopefully the product signature T' x Sp,; will be strictly more discriminant than T for
C. Note that even if S is self-dual, it may not be the case for Sy, and it may be useful
to consider S’T, L =09571 X S%’ .- Let S be a self-dual signature over E, we try to construct
a sequence 71; of signatures with

procedure fd_signature
input: code C; signature S
10Ty« S
while |T3(C, )| < n do
L Cr ,I’Z(Ca In)
T 1T X gTi,L
1+—1+1
return(7;)

Here the inclusion L Cg T;(C, I,,) means that the set L is chosen at random. In practice,
making a random choice is not bad, since most refinements are successful, but the use of
singletons for L is computationally more efficient. Moreover, some other heuristic may be
involved in the choice of L (see section 5.3.1).

The algorithm is efficient when the instances are chosen at random, however, we did
not manage to prove anything on the termination or on the complexity, even if we restrict
ourselves to codes with a trivial permutation group.

At last, remark that the existence of a fully discriminant signature S for C' and the
equality {S(C,i),1 € I,} = {S(C",i),i € I,} will allow us to obtain a unique possible
permutation o between C' and C’, but doesn’t necessarily imply that C' = ¢(C). This last
equality still has to be checked, though it seems very difficult to build a pair of inequivalent
codes taking the same set of values for a fully discriminant signature.

4.2 Examples
4.2.1 Two small examples with non-linear codes

We present in this section two small example with non linear codes. Though the support
splitting algorithm is designed for (large) linear codes, they are good illustration of the
basic concept.

A fully discriminant signature. We consider the equivalent codes

C ={1110,0111,1010} and C" = {0011,1011,1101},

RR n~°3637
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and as invariant we will take the weight distribution denoted by W. We obtain for C"

= {0110,0111,0010} — W(Cy) = X + X2 + X3
Cy = {1010,0011} = W(C,) = 2X°

= {1100,0101, 1000} — W(Cs) = X + 2X?

= {1110,0110,1010} — W(C,) = 2X? + X?

and for C'

C', = {0011,0101} — W(Ch) = 2X?
C'y = {0011,1011,1001} — W(C';) = 2X?2 + X3
C'y = {0001,1001,1101} — W(C'3) = X + X2 + X3
C'y = {0010, 1010, 1100} — (C 4) =X +2X?

From this we immediately obtain the permutation o, such that C' = ¢(C):

o(1)=3, 0(2) =1, 0(3) =4, 1lo(4) =2.

Example of a refined signature. We consider the codes

C = {01101,01011, 01110, 10101, 11110},

and
C' = {10101,00111,10011, 11100, 11011}
We get for C,
C, = {01101,01011, 01110, 00101} — X2 43X3
C, = {00101,00011,00110,10101,10110} — 3X2+ 2X3
C3 = {01001,01011,01010,10001,11010} — 3X?+2X?3
C, = {01101,01001,01100,10101,11100} — 2X?%+3X?3
Cs = {01100,01010,01110,10100,11110} — 3X?+ X3 + X*
Positions 2 and 3 cannot be discriminated, but
Cpi,2y = {00101,00011, 00110} — 3X?
Cpi,3y = {01001,01011,01010,00001} — X +2X?* + X3
Now for C’,
C', = {00101,00111,00011,01100,01011} — 3X2+2X?3
C'y = {10101,00111, 10011, 10100} X241 3X3
C's = {10001,00011,10011,11000,11011} — 3X?%+ X3+ X*
C', = {10101,00101, 10001, 11100, 11001} — 2X2 + 3X?3
C's = {10100, 00110, 10010, 11100, 11010} — 3X?2 + 2X?3

INRIA
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at that point positions 1 and 5 cannot be discriminated, but we know that o({2,3}) =
{1,5}, 0(1) = 2, 0(4) = 4 and o(5) = 3. If C and C" are equivalent, then C; and C’y are
also equivalent. We thus compute

{

C’313 = {00101,00111,00011,00100} — X +2X2+ X?

C'{2,53 = {10100, 00110, 10010}

— 3X?

which gives us 0(2) =5 and 0(3) = 1.

4.2.2 Another example with a linear code

We consider the [20, 10] binary linear code of generating matrix
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The weight distributions of every singly punctured codes are:
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,0,0,2,5,20,54,108, 143, 168, 196, 154, 87, 52, 22, 8, 4,0, 0, 0, 0)
,0,0,2,4,21,57,105, 141,170,194, 156, 90, 49, 21,9, 4, 0,0, 0, 0)
0,1,1,5,22,49,103, 151, 180, 187, 143,95, 54, 19,9, 4, 0,0, 0, 0)
0,1,1,3,24,53,97, 153,184,179, 147,97, 48, 23, 11, 2, 0, 0, 0, 0)
,0,1,1,4,24,51,97, 152, 184, 183, 147, 96,48, 21, 11, 3,0, 0, 0, 0)
,0,0,2,8,17,49, 110, 147, 175, 186, 150, 98, 47, 21, 10,2, 1,0, 0, 0)
,0,0,2,4,21,57,99,147,186, 178, 144, 102, 49, 21, 11, 2,0, 0,0, 0)
,0,0,3,5,20,50,102, 157, 173,180, 159, 91, 46, 26,8, 2, 1, 0,0, 0
,0,1,2,4,18,53,110, 144, 172,195, 150, 88, 50, 23, 10, 3, 0, 0, 0, 0)
,0,0,3,5,21, 54,96, 143, 186, 196, 147, 87, 49, 22, 10, 4, 0, 0, 0,
,0,0,2,5,20,54,108, 143, 168, 196, 154, 87, 52, 22,8, 4,0, 0, 0,
,0,1,2,3,20,53,108, 147, 168, 195, 154, 85, 52, 23,8, 4,0, 0, 0,
,0,0,3,6,17,54,107, 140, 175, 196, 153, 90, 47, 22,9, 3, 1,0, 0,
.0,0,2,6,20,54,103,140, 181, 196, 144, 90, 54,22, 7,3,1,0, 0,
,0,0,2,5,23,51,100, 154, 171, 182, 162, 93, 45, 23,8, 3, 1,0, 0,
,0,0,3,3,21,57, 96,150, 186, 178, 147, 99, 49, 21, 10, 3, 0, 0, 0,
,0,1,1,7,21,45,103, 153, 183, 187, 143, 93, 51, 23,9, 2,1, 0, 0,
,0,0,3,4,21,55,96,149, 186, 182, 147, 98,49, 19, 10, 4, 0, 0, 0,
,0,0,2,7,21,52, 99,139, 186, 200, 144, 89,49, 20, 11, 4, 0,0, 0
,0,0,3,4,19,55,104, 147,174,190, 155, 86, 47, 27, 10, 2, 0, 0,

)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

0,0)
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All positions can be discriminated except positions 1 and 11. The corresponding partition
of IQO is

L= |J {i}|ufr,11}

ig{1,11}

It is thus necessary to refine this signature. We will start with L = {W(C13)} (the largest
for lexicographic order). We obtain

{ W(Cpis) = (1,0,0,4,9,30,79,126,160, 196, 182, 120, 69, 30,

,6,1,0,0,0,0)
W(Cai1sy) = (1,0,0,5,8,26,84,131,150,196,192, 115, 64, 34,12, 5,1

11

12,5,1,0,0,0,0)
We put W = W(C43) and for any code B of length n, we denote J(B) = {i € I, | W(B;) =
W}. The signature S defined for any binary code B by

S(B,i) = (W(B;), W(BiBuiit))

is fully discriminant for C.
At last, remark that because of Lemma 5.8 (§5.4.2) and of the MacWilliams transform
the signature i — W(C;) is self-dual, and thus no improvement is obtained by considering

5 Finding good signatures

A signature can be easily built from an invariant. This signature must be discriminant,
which excludes all the easy invariants such as the length or the dimension. Other inva-
riants, as the minimum weight, or even better, the weight distribution may be discriminant
[Sen94], but when the size of the code increases their computation becomes intractable.

5.1 Hull of a linear code

The hull was introduced in 1990 by Assmus and Key [AK90].

Definition 5.1 The hull of a linear code C s defined to be its intersection with its dual.
We will denote H(C) = C N C*t.

If the hull of a vector space over a field of characteristic zero is always reduced to {0},
it is, by far, not always the case for finite characteristic. For instance self-dual or weakly
self-dual codes are equal to their hull.

The hull of a permuted code is obtained by applying the same permutation to the hull.
This is of great importance, because it means that any invariant applied to the hull is still
an invariant.

INRIA
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Proposition 5.2 Let C be a linear code of length n and o be a permutation on I,. We
have H(o(C)) = o(H(C)).

Proof: We simply have to remark that o(C+) = ¢(C)* and 0(AN B) = o(A)No(B). ©
Corollary 5.3 For any invariant V, the mapping C — V(H(C)) is an invariant.

NoOTE — No such property exists in general for equivalent codes, the two codes H(C) and
H((a;o,7)(C)) are not always equivalent. The exceptions are ¢ = 2 and ¢ = 3. In
fact, we have (a;o0,7)(C)t = (a Y0 1,7 1) (Ct) where a ! is the component-wise
inverse of a. In the binary case equivalence and permutation-equivalence coincide,
and in the ternary case, there is no non-trivial field automorphism (thus = = 1, as
for any prime field) and all the non-zero field elements are their own inverse.

Thus we have at our disposal any invariant applied to the hull. The practical interest of
Corollary 5.3 is due to the fact that the dimension of the hull is on average a small positive
constant.

Proposition 5.4 [Sen97b] The average dimension of the hull of a q-ary [n, k] code tends
to a constant when the size of the code goes to infinity, this constant is equal to

7 1
B=2 i1

1>0

The proportion of q-ary [n, k] code with a hull of dimension I > 0 is asymptotically equal
to

1
1+q¢ %

Ri_
Ry= = and Ry =[]
T - i>1

This result is proved by counting the number codes with a given hull dimension from the
number of weakly self-dual codes and by use of the generating series:

R(z)=> R =Ro[[(1+2¢7"). (2)

1>0 i>1

We give in Table 1 a part of the dimension spectrum of the hull of ¢g-ary linear codes for
some values of q.

The hull of a random g-ary code is of small dimension with a very high probability, and
it is not always reduced to {0}. The signature associated to an invariant of the hull will
thus be easy to compute, with a great probability, and may provide a non trivial partition
of the support.

RR n°3637
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q R() R1 R2 R3 R4 R
2 0.4194 | 0.4194 | 0.1398 0.0200 1.31073 0.7645
3 0.6390 | 0.3195 | 0.0399 | 1.5107% | 1.9107° 0.4041
4 0.7375 | 0.2458 | 0.0164 | 2.610~* | 1.0107¢ 0.2794
16 || 0.9373 | 0.0628 | 2.5107* | 6.0107% | 9.1107* || 0.0630
256 || 0.9961 | 3.910°2 | 6.010°® | 3.610° 1% | 8.210 % || 3.910°3

Table 1: Hull of g-ary linear codes: proportion with a given dimension and average dimen-
sion

5.2 Building a signature from the hull

Let W(C) denote the weight enumerator of C, we consider the signature

Compared with the weight enumerator, this signature is much easier to compute. On the

other hand, since the hull has a small dimension the signature is much less discriminant.

5.2.1 Example: a linear code of length 20

Let C be the (20, 10) binary linear code used in section 4.2.2 of generating matrix
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This code has a hull equal to {0}. The weight enumerators of the hulls of all singly

punctured codes are given in Table 2 and provide the first partition

Lo = {7} U{5,17} U {9,12,13} U {3,4,16,18} U {1,2,11,20} U {6,8, 15} U {10, 14, 19}.

=)
o
o
=)
o
)

At that point, we consider the codes C7 and C; and repeat the process. For the code
C" = o(C) the position corresponding to 7 can be identified; it is the only position iy such
that W(’H(C’i)) = 1+ X™. If no or if several such positions exist then C' cannot be
permutation-equivalent to C. The result of the first refinement is given in Table 3. The
partition becomes

U

i#{1,4,9,12,18,20}

120 =

{i} u{9,12} U {4,18} U {1,20}.
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Three other refinements will be necessary before we obtain a fully discriminant signa-
ture. As for position 7 for the first refinement, the position used each time can be identified
by an invariant property. By construction, for any code permutation-equivalent to C, one
and only one position will have this property. For instance the position 17 used in the
third refinement is the only one such that W(H(C7)) = 1 + X° and W(H(C{LLN})) = 1.

Note that the second refinement does not produce any improvement of the partition.
After the last refinement, we are able to produce a fully discriminant signature. Let S
denote the signature (B,4) — (W(H(B;)), W(H(B}))). For any linear code B of length
20, we define the sets:

Ji(B)={i €Iy | S(B,i) = (1+X",1)}
Jo(B) = {i € In\ Ji(B) | S(B,i) = (1+ X°%1),5(Byp),0) = (1,1+ X°)}
Js(B) = {i € I\ J1(B) | S(B,4) = (1,1+ X®) ,S(Bj, ), %) = (1,1 + X*) }

andforl =1,2,3,1et S; : (B,i) — (S(BJZ(B),i), S(Bi(B), z)) The signature S xSy xSy x S3
is fully discriminant for C. For instance J;(C) = {7}, Jo(C) = {17} and J5(C) = {15}.

In practice, using the weight enumerator of the hull instead of the weight enumerator
of the code will increase the number of refinement needed but will dramatically reduce the
cost of each iteration.

In the case of the hull, the average cost is polynomial, we have to compute at most
n hulls, each of them is obtained in polynomial time, and their weight enumerators, each
obtained in constant average time. Though we were not able to prove anything on the
number of refinement needed, it is in practice logarithmic in ». Thus by using the hull, we
obtain a complexity which is practically polynomial in n.

With the weight enumerators alone (section 4.2.2), we have to compute weight enume-
rators of (n, k) codes, thus in practice the complexity is exponential in k.

In section 6 the implementation aspects are discussed. We will see that computing the
hull of a code can be achieved by a Gaussian elimination and that computing the hull of a

i W(H(Cy)) | WH(C}))
7 14+ XH 1
5,17 1+ X6 1
6,8,15 1 1+ X8
10,14, 19 1 14+ X10
9,12,13 1+ X8 1
3,4,16,18 | 1+ X0 1
1,2,11,20 | 14+ X% 1

Table 2: Initial step

RR n~°3637
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i W(H(Cpr,)) WH((CD)D) | WH(CE) | wHCH;))
5 1 1 1
17 |1+ X6+ X124 x4 1+ X1 1+ X6
15 1 1 1+ X8
6 1 1 1+ X%
8 1 + X14 1 + XS + XlO + X14 1
14 1 1 1+ X1
19 1 1 1+ X1
10 1+ X" 14+ X84+ X104 x4 1
13 1 1 1
9,12 1 1 1
16 1 1 1
3 1 +X8 +X10 +X14 1 +X14 1 +X10
4,18 1 1 1
2 1 1 1
11 |14+ X604+ X124 x4 1+ XM 1+ X2
1,20 1 1 1+ X6 1
Table 3: First refinement
i | WH(Csa) [WHIC)D) | WH(CEY) [ WHCH)
9,12 1 1+ X8 1+2X%+ X8 1+ X°
4,18 1 1+ X190 1+ X6+ X84 X10 1+ X6
1,20 1+ X10 1 1 1
Table 4: Second refinement
i | WH(Carg)) | WH(C)D) | WH(CE,) | WHICH))
12 1 1+ X8 1+2X°%4+ X8 1+ X°
9 1 1+ X8 14+ X6+ X84 X10 1+ X6
4,18 1+ X8 1 1 1
1,20 1 1+ X" 1+ X84+ X2+ X1 1+ X°

Table 5: Third refinement

punctured code whose hull is known can be achieved at an extremely low cost. For random

codes, the whole support splitting algorithm will not be much more expensive than a single
Gaussian elimination.

INRIA
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i | WH(Cpsg) | WH((C15),)) | WH(CE, ) | WH((CE),)
18 1 1+ X8 1 1
4 1+ X110 1 1+ X8 1+ X84+2x10
20 1 1+ X° 1 1
1 1 1+ X110 1 1

Table 6: Fourth refinement

5.2.2 Another linear example

We present here the construction of a fully discriminant signature for a code with a hull of
dimension one. The generating matrix is the following:

(10000000001100010110\
0601 00000O0OO0OO0O1TO0OO0OI1TT1O0T1IO0T10
06001000O0OO0OO0OO0O1TII1T1O01O011T10
060o0010000OO0OO0O1TT1O0O0O0OO0OTI1IT1TO00®0
G = 0c0o0o001000O0OO0O1T1101O01O0O00
0o0o0o000100O0OO0OO0O1O0O01O0T1TQO0O0OOQO0
0oo0000O0O1O0O0O0OO0OO0OO0OO0OO0OO0O0O0O0T1T1T1
0o0o0000O0O1O0O0OO0OO0O1O0O0O1O0O0T1T1
0o0000O0O0O0O1O0O1O0O0OO0OO0OO0O0OTI1II1T1T1
\00000000011101011010/

All the computations for this example are presented in Table 7. At each refinement,
the choice of the discriminated subset is made, as for the previous example, according to
predetermined sorting rules; the cosets of the partition are sorted in increasing size, then
in increasing order in the previous partition, then in increasing lexicographic order for each
enumerator. This defines a total ordering at each step. There is an additional heuristic
rule when the hull has a strictly positive dimension, this rule explains the choice of position
6 for the last refinement and is explained in section 5.3.1.

5.3 Hull of punctured codes — Application to the binary case

The signatures constructed from the hull are discriminant in practice. This empirical fact
was not obvious a priori. From Proposition 5.4 we know that the weight enumerator of the
hull is, on average, easy to compute. However, we have no guaranty on how discriminant
this signature is. For two different positions 7 and j, the weight enumerators of H(C;) and
H(C;) are (often) easy to compute, but how often are they inequivalent?

We will denote by e® the vector of F}' of support {i} such that e =1, and & = (e®)
the vector space spanned by e(®.

Proposition 5.5 Let C' be a linear code of length n. For all v in I, we have

RR n°3637
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i W(H(C:)) W(H(CH))
12 1+ X100 1+ X84+ 2Xx10
10 1+ X10 14+2X10 4 x12
16 1+ X10 14+2X10 4 X16
7 1+ X8+2X10 1+ X1
1 1 —|—X6 —|—X10 —|—X12 1 —|—X10
8 1 +X10 +X12 +X14 1 +X10
4 142X 4 X116 1+ X100
3,17,19 1+2X10 4 x12 1+ X1
2,5,6,9,11,13,14, 15,18, 20 1 1
i W(H(Cpaiy) | WH((C12)))) | WH(CE,)) | WH((CH),))
17 1+ X1 1+ X1 1+ X1 1+ X% +2X10
8
19 1+ X8 4 2X10 i;ff XJ{z 14+2X10 4 x12| 14 x10
6 8
3 1+ x84oxwo |} +3§10++)§ XTQ 14+2X0 4 X2 | 14X
2,6,9,13 1+ X710 1+ X710 1 1
5,11,14,15, 18,20 1+ X8 1+ X8 1 1
i | WH(Cpog) | WH((C1o)) | WH(CE,)) | WH((C); )
6 14+ X2 14+ X1 1 1
2,9,13 1+ X110 1+ X10 1 1
11,15,18 1+ X1 1+ X1 1 1
5,14, 20 1+ X12 1+ X12 1 1
i | WH(Cey) | WH((Co);) | WH(C; 1)) WH((CH);))
2 1 14+ X8 1 1+ Xx10
13 1+ X8 1 1+ X8 1
9 14+ X112 1 1+ X8 1
15 1 1+ X10 1 1+ X8
11 1+ X8 1 1+ X8 1
18 1+ X1 1 1+ X2 1
20 1+ X° 1 1+ X6 1
5 1+ X8 1 1+ X8 1
14 1+ X10 1 1+ X6 1

Table 7: Second example with a hull of dimension one
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(i) & C C & i ¢ supp(CH)
(ii) & c C+ Ct & i ¢ supp(H(O))
Proof: Let C be a linear code and let 7 be an element of I,. We have
DeCtaeWrel - =0 (YeeC, z;,=0) < idsupp(C)
Since H(C)* = C + C+, (ii) is obtained by applying (i) to H(C). &

5.3.1 Binary case

We assume in this section that ¢ = 2. Each time i & supp(H(C)), from Proposition 5.5,
we have e € C+C™*. Thus there exists z(”) in C and y® in C* such that 29 = y@ 4 ®.
These elements are not unique, but any other pair (z/,y') € C x C* verifying 2’ = ¢/ 4 e®
will be such that ' — 2% =4y —y® ¢ H(C) and thus, since i ¢ supp(H(C)), we have
(Whh) = (1”,2), H(C) @ (z0) = H(C) & (2') and H(C) & (yV) = H(C) & (y'). In the

non degenerated case, i.e. supp(C) = supp(C*) = I,,, there are three different cases:

A - if i € supp(H(C)) then H(C;) = H(C}") = H(O)\,-

7

B - if i & supp(H(C)) and (yz(z), EZ)) (0,1) then H(C;) = H(C) ® (y@) and H(C}) =
H(O).

C - if i ¢ supp(H(C)) and (yfz), EZ)) = (1,0) then H(C;) = H(C) and H(C;") = H(C) &
(z).
Details and proofs can be found in section 5.4.
From what is stated above, we can compute H(C;) and H(C;t) from H(C), and, much
more important, we have some informations on how the hull of the different punctured
codes vary.

If the hull has dimension zero. We have supp(H(C)) = 0 and thus for all ¢ in I,
there exists a unique pair (¥, y®) in C x C* such that () — 3@ = €@,

o 1f 2" = 0 then H(C}*) = {0,2®} and thus W(H(C}H)) = 1 + Xvu?),

o If z{) = 1 then H(C;) = {0,y®} and thus W(H(C;)) = 1 + Xwa@™),

If the code has no particular structure, then the Hamming weights wg(z®) (or wg(y®))
is likely to vary when ¢ varies. Thus the first step will provide us with a relatively thin
partition of I,.

If the hull has dimension one. The hull H(C) contains one non-zero codeword, thus
the average cardinality of supp(H(C)) is n/2. For all i in supp(H(C)), we have H(C;) =
H(C;+) = {0}, and these positions cannot be discriminated at all in the first step. However
this discrimination will be possible for the other positions, that is for about half of I,.
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If the hull has dimension 4 > 1. In that case supp(H(C)) will be larger (its average
cardinality will be n — n/2")), and thus the small number of positions in I, \ supp(H(C))
(possibly none) may not provide a thin enough partition. However in this case H(C;) =
H(C;") is obtained by shortening H(C) in one position. The number of distinct shortened
subcodes of H(C) is upper-bounded by min(n,2" — 1). If the code has no particular
structure the actual number of distinct shortened codes is likely to be close to this bound.
We will thus also obtain in this case a partition thin enough to be successfully refined.

Heuristic. The most favorable case seems to be H(C) = {0}, this was confirmed experi-
mentally. A good strategy when h > 0 will then consist in searching a set J of discriminated
positions, such that H(C;) = {0}. This strategy proved to be efficient in practice, for ran-
dom codes of length 1000 and dimension 500, the number of refinement needed before we
obtain a fully discriminant signature varies roughly from 3 to 12, with an average of 7.

5.4 The g-ary case

In the binary case, the positions can be divided into the three subsets described by items
A, B and C of §5.3.1. More generally, in the g-ary case, the positions can be naturally
divided into ¢ + 1 subsets which have a natural correspondence with the projective line
P!(F,).

5.4.1 Multiplying one coordinate by a constant

The projective line P'(F,) is the set of all one-dimensional subspaces of the F,-vector space
F.. A point of P'(F,) is a vector space ((3,7)) with (8,7) # (0,0). The ¢ + 1 elements
of P!(F,) can be represented by F, U {cc} with ((3,1)) = 3 and ((1,0)) = co. We denote
((8,7))"" = ((v, B)), this notation coincide with usual inverse, and we have co™' = 0. For
all § in P'(F,), we define the linear code

Cﬂ_i:{yer |dx e C, x —y €&, (yi,z;) € B}

We have C..; = C\; ® &; and for all 3 # oo, the code Cp,; is obtained by multiplying the
i-th coordinate of all elements of C' by 3. In particular, we have C1,; = C and Cy.; = C;.
Note that for all 3 we have C\; C Cg; and dim(Cp.;) — dim(Cy;) < 1.

We will denote by Hg.;(C) the intersection of Cj.; with C*, that is:

Hﬂz(C) = Cﬂ.i N CJ_ = {y - CJ_ | dz € C, T—1YE gi, (y,,xz) € 5}

We have H(C),; = C\; N C+ C Hp.i(C) and the difference of dimension is at most one.
If i € supp(H(C)) then from Proposition 5.5 there exists = in C' and y in C* such that
z—y = e, These elements are unique modulo H(C) and thus the pair (y;, z;) constituted

by their i-th coordinates is unique. For all § in P!(F,) we consider the following subsets
of I,

Ag(C)={iel, | Iz,y) €CxC*, z—ye&, ((y,:)) =B}
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As we will see below, the sets Ag(C) form a partition of I,,. Furthermore, for all 7, one
and only one of the Hg.;(C) is strictly greater than H(C),;, and it is precisely the one such
that 7 € Aﬂ(C)

Proposition 5.6 Let C be a linear code of length n such that supp(C*) = supp(C) = I,,.
For all i in I, and all B and vy in P'(F,) we have

(i) (i € 45(C)) & (H(C)\; & Ha(C))
(ii) If B #~ then Ag(C)N A, (C) = 0.

Proof: (i) If 1 € Ag(C) then there exists y in C* and z in C such that z —y € & and

{(y;,x;)) = B. Since i € supp(Ct), we have & ¢ C and y ¢ C (Proposition 5.5).
Thus in particular y ¢ H(C),,. Moreover, by definition, we have y € Hg.;(C) and
thus H(C)\Z # ng(C)
Reciprocally, let’s assume H(C),; # Hg.i(C). Let y € Hp,i(C) \ H(C),;, by definition,
there exists z in C' such that z—y € &; and (y;, x;) € 3. We cannot have (y;, z;) = (0,0)
because else we would have y € C\;, thus ((y;,2;)) = 8. This exactly means that
1€ Ag(C)

(ii) We will show that if the intersection of Ag(C) and A,(C) is not empty then 5 = ~.
Let i € Ag(C) N A,(C). Let (z,y) and (2/,y") in C x C* such that {(y;, z;)) = 8 and
((yi,x})) = . In particular we have (y;,z;) # (0,0) and (y}, z) # (0,0).

o Ifi € supp(H(C)). If we had y; # x; or y; # =}, we would have z—y € & \{0} and
thus e € C + C+ which is incompatible with i € supp(H(C)) (Proposition 5.5).
We necessarily have y; = z; and y, = z; and thus =y = 1.

o If i & supp(H(C)). We have z # y or else z = y € H(C) and (y;, x;) # (0,0)
or else i € supp(H(C)). For the same reason z’ # 3’ and by a proper constant
multiplication, we can assume that z —y = e® and 2’ — v/ = e(®. This implies
r—a' =y—y € H(C), thus (y;, r;) = (3, 7;) and 8 = .

\i

<&

Corollary 5.7 Let C be a linear code of length n over ¥, such that supp(C*) = supp(C) =
I,.

o A1(C) = supp(H(C)).
e Forall 3#1 in PY(F,) and all i in Ag(C) we have

Hs4(C) = C+N (& +C).

Proof: e We have i € 4,(C) if and only if H(C),; & H1.4(C) = H(C). And for any
code U we have Uy; # U if and only if ¢ € supp(U). Thus A,(C) = supp(H(C)).

RR n°3637



24 Nicolas Sendrier

e For all # and all 7, we can obtain from the definitions that:
H(C)\; C H(C) CHpi(C) c CHN (& +C). (3)

If 8 # 1 and ¢ € Ag(C) then, from the first item of the statement, we have ¢ ¢
supp(H(C)) and H(C),; = H(C). Furthermore, the difference of dimension between

H(C) = CNC* and the rightmost term of (3) is at most one and thus, at most one of
the three inclusions is not an equality. From Proposition 5.6 we have H(C) # Hg..,(C)
and thus Hg.,(C) = C+n (& + O).

<&

This result produces a means to compute Hg.;(C) from H(C).

o If 1 € A(C) = supp(H(C)) then we have H(C),; & H1.4(C) = H(C) and for all
v # 1, we have H,.;(C) = H(C),;.

o If i € Ag(C) with 8 # 1, then ¢ ¢ supp(H(C)) and Hp.,(C) = H(C) & (y), where y is
an element of (C+N (& + C)) \ H(C). We will see in §6 that such a word y is easy
to compute.

Final remark. In most results of this section, we have assumed that both the supports
of C and C*+ were both equal to I,,. Of course, this is not always true, but positions that
are not in the support of C or C* can be easily identified and removed (or ignored). Thus
our assumption does not imply any loss of generality.

5.4.2 A new discriminant signature

For any code C, we denote by W(C) = Y, X*“#@ its weight enumerator where wpy () is
the Hamming weight.

Lemma 5.8 For any linear code C and any i € supp(Ct), we have
XW(C;) =W(C) + (X = 1)W(Cy;)

Proof: The set L = C'\ C\; contains the codewords of C' whose i-th coordinate is not
zero and thus the weight enumerator of L punctured in ¢ is W(L;) = W(L)/X. We have
C =C\;UL and C; = C\; U L;, and, because i € supp(C*), both these unions are disjoint.
Thus

W(L)

W(C) = W(C\i) + W(L) and W(C;) = W(C\;) + W(L;) = W(C\;) + D

We obtain the result by elimination of W(L). O
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Proposition 5.9 The mapping B : (C,i) — [ where i € Ag(C) is a signature, and the
mapping
[ (B W(H(O)) i B = B(Ci) £1
CHCEER RN i e i “

2

is a self-dual signature for all C such that supp(C*) = supp(C) = I,,.
Proof: First note that, since Ag(C) = Ag-1(C*), we have B(C*,i) = B(C,4) .
Let ¢ and j be two elements of I,, such that § = B(C,:) = B(C, j).

o If 3 =1 then Sy (C,i) = Sy(Ct,4) = (1,W(H(C)\i> and the result is straightfor-
ward.

e If 3 # 1 then we want to prove that for all 7 and j in I,, such that B(C,:) = B(C,j) =
(B, we have

W(Hz.4(C)) = W(Hz5(C)) = W(Hp-1:(CT)) = W(H-1,,(CT)) ()
We have Hp.;(C) = H(C) @ (y) where y € C*+ N (€ + C). By definition of Hz.;(C)
there exists  in C such that z — y € &. We have z € C N (& + C*), and z & H(C)
because i € supp(C). Thus Hs-1;(C*) = H(C) & (z).

— If 8 ¢ {0,00} then H(C) & (y) is obtained by multiplying the i-th coordinate of
H(C) @ (z) by . Thus W(Hg.i(C)) = W(Hg-1,(C+)). The same equality also
holds for j and we get (5).

— If 3 =0, we have y; = 0 and z; # 0. Thus H(C) & (y) is obtained by punctu-
ring H(C) & (x) in i. Shortening H(C) & (z) in ¢ will produce H(C) and from
Lemma 5.8 we get

XW(Hgi(C)) = W(Hg-14(C)) + (X = HW(H(C)),
and similarly for j
XW(H;s.4(C)) = W(Hg-1;(CT)) + (X = HW(H(C))
which is enough to prove (5).
— For 3 = oo, we just interchange C' and C*.

In a practical point of view, the signature that will be computed is the following
(&

SW : (C, l) — Zi
(Lwe),) else

The second case corresponds to i € supp(H(C)) and the first to i ¢ supp(H(C)), in that
case x and y can be efficiently computed (see section 6). This signature can be made
more discriminant if instead of the weight enumerator we consider the complete weight
enumerator W(C) = > .o [Licr. Xo;- We did not investigate this possibility in detail
since our main concern was the binary case.

IWH(C) & (y))) if 3(z,y) € C x C* such that z — y = @
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6 Implementation

Our algorithm requires the computation of hulls, and the computation of weight distribu-
tions. It is an important fact that we have to make these computations on codes that are
close to each other : we only consider codes that are obtained by puncturing or shortening
one of the two codes given as input. The fact is of no help for the weight distributions,
but, as we will see, it is very helpful for computing the hulls.

6.1 Computing hulls

Since H(C) = (C + C*)*, the hull of a code C of length n and dimension k is equal to
the nullspace of the n x n matrix whose first k£ rows are of a basis of C' and whose last
n — k rows are a basis of C. This matrix is obtained by stacking a generating matrix and
a parity check matrix of C. Let G = (Id, R) be a generating matrix of C' in echelon form,
then H = ("R, —Id) is a parity check matrix of C. The gaussian elimination of the matrix

MZ(%—Z) (6)

will provide a generating matrix of H(C).

6.1.1 Diagonal gaussian elimination

For any n x n square matrix M over F,, a diagonal standard form M is an n x n square
matrix D such that the non-zero columns of Id — D form a basis of the nullspace of M.
For instance, D is a diagonal standard form of D’

Vo

HoMow
"o

S|
Il

\ ), \ 1

The matrix D' above is an echelon matrix, this form is obtained after a gaussian elimination.
We will call diagonal gaussian elimination the procedure to obtain a diagonal standard
matrix. Informally, the diagonal standard form is obtained by a gaussian elimination and
by keeping the '1’s on the diagonal, leaving zero lines if necessary.

The procedure we need in practice does a little more, it takes as input two n x n square
matrices M and U, with U non-singular and returns two n X n square matrices D and
S, where D is a diagonal standard form of M and S is a non-singular matrix such that
U='M = S7'D. We denote (D, S) = DG(M,U). Note that if U = Id, then SM = D.

INRIA



The Support Splitting Algorithm 27

This procedure is almost identical to the classical gaussian elimination and requires a
number of operations in F, proportional to n3. Furthermore, the matrix we have to deal
with has the particular form of equation (6). The diagonal gaussian elimination of this
matrix can be achieved with a much lower complexity than in the general case.

Proposition 6.1 The diagonal standard form of the matrix M defined by

Id| R
M_<tR —1d>

18 equal to

_(Id|R-RE
o= (THF)

where E is the diagonal standard form of X = I+'RR. Furthermore, if U is a non singular
matrix such that UX = E then

¢_ (Id—RUR|RU
- UR | -U

s a non singular matriz which verifies SM = D.

To obtain the matrices S and D defined in the above statement, we thus have to compute
a diagonal gaussian elimination on an (n — k) X (n — k) matrix X and to perform 4 matrix
multiplications on matrices of about half the size. We assume that the average cost of the
multiplication of a a X b matrix by a b x ¢ matrix is (1 — 1/q)abc field operations, and that
the average cost of the diagonal gaussian elimination procedure on X is 2(1 —1/q)(n — k)3
field operations.

If £ > n/2 and if we are given a generating matrix of the code in systematic form, the
cost for computing S and D is then always less than one half of the cost for computing the
elimination of an n X n matrix in the general case. If k¥ < n/2 then we can consider the
dual of C instead of C' at no cost. If we have to compute a systematic generating matrix
first, we have an additional cost of (1 — 1/¢)k?n and the total cost ratio is still less than
one half.

These figures can be improved by using a faster algorithm for matrix multiplication.

6.1.2 Computing hulls of codes modified in one position

The algorithm is basically iterative, however the first step is, by far, the most expensive.
First because once a position has been discriminated, that is appeared as a singleton in
one of the partition, no other computation with it is necessary. Second, because computing
the hull of a punctured code C} is easier if the hull of C' has already been computed.
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First step. We are given a code C' and we denote G = (Id | R) and H = ('R | —Id),
respectively a generating and a parity check matrix of C. Let M be the matrix defined as
in (6) by stacking G and H. Note that, due to particular form of G and H, the matrix M
is symmetric. We have assumed here, without loss of generality, that the first £ positions
of C allow the echelon form of its generating matrix G. Let D be a diagonal standard form
of M and let S be the non-singular matrix such that SM = D. We will denote respectively
by S; and D; the i-th row of S and D. From D we derive a generating matrix of H(C)
denoted by B, this matrix has n columns and A rows, where h denotes the dimension of

H(C).

e If i € supp(H(C)) = A:(C) then we need to compute a generating matrix of H(C),;,
which can be obtained from B.

o If i ¢ supp(H(C)), then we have to find z in C and y in C* such that z — y = e®.
We will then obtain 8 = ((y;,z;)) and Hz.(C) = H(C) @ (y). For all i we have
SZM = (SZ@, SZtH) = G(i), and:

— if 4 < k then S;'H = 0 and (S; — e®)/G = 0, thus S; € C and S; — e € C*+.
We put z = S; and y = S; — e®.

— if i > k then S;G =0 and (S; +e®)*H =0, thus S; € C*+ and S; +¢e® € C. We
put z = S; + e and y = ;.

Example. We consider a binary linear (12, 6,3) code. The matrix M is obtain by stacking
a generating matrix of the form (Id|R) and the parity check matrix (‘R|Id)

10000011101 1)
010000101101
001000110101
000100111111
000010110110
000001011111
111110100000
101111010000
110101001000
011111000100
100111000010
\1 11101000001

We applied to M a diagonal gaussian elimination to obtain S and D, with D in
diagonal standard form, such that SM = D. We easily deduce a generating matrix
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B of the hull by taking the non-zero columns of Id — D.

o

g
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5_(100001100100
“\to0110011000°1

The support of the hull is given by the non-zero columns of B. Note that these
positions are exactly the indexes of the rows of weight 1 of D. This was expected,
since the rows of D generates the space C + C*+ and e is in this space if and only
if 4 is not in the support of the hull.

We index the positions with the set I1s = {1,...,12} with the lowest indexes on the
left.
e We have supp(H(C)) ={1,3,4,6,7,8,10,12}, and

— if i € {3,4, 8,12} then ’H(C’)\i ={((1,0,0,0,0,1,1,0,0,1,0,0)). It produces
a weight distribution of 1 + X*.
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— if 1 € {6,10} then H(C’)\i = ((1,0,1,1,0,0,1,1,0,0,0,1)). It produces a
weight distribution of 1 + X5,

— if i € {1,7} then H(C),; = ((0,0,1,1,0,1,0,1,0,1,0,1)). It also produces
a weight distribution of 1 + X°.

e We have I5 \ supp(H(C)) ={2,5,9,11}, and the vector y we are looking for is
equal to the i-th row of S where the i-th coordinate is replaced by a ’1’.

— if 4 = 2 then @y = Sy5 = 0 thus yo = 1 and 8 = ((ys, 22)) = ((1,0)) = 0.

The code Hy.2(C) has a generating matrix equal to
1000O0T1T1O0O0T1TO00O0

101100110001
110110110010

It produces a weight distribution of 1 + X* 4+ X° +2X6 +2X7 + X?,
— if i = 5 then 25 = S55 = 0 thus y5 = 1 and 8 = ((y5,25)) = ((1,0)) = oo .
The code Hy.5(C) has a generating matrix equal to
10000110O01O00O0

1011001100¢O01
01101001T1T0¢O0®O0

It produces a weight distribution of 1+ X* + X5+ 2X6 4+ 2X7 + X9,
— if i = 9 then yg = Sgo = 0 thus zg = 1 and B = ((y, x9)) = ((0,1)) =0 .
The code Ho.9(C) has a generating matrix equal to

1000011O0O01O0O0
1011001100¢O01
101111011000

It produces a weight distribution of 1 + X* + 2X° 4+ 2X°® +2X7.
— if 4 = 11 then Y11 = 511’11 = 0 thus T11 = 1 and /6 = <(y11,$11)> = <(0, 1)> =
0 . The code Hy.11(C) has a generating matrix equal to
100001 10O01O00O0

1011001100071
01 000111O0O010

It produces a weight distribution of 1 + X* + 2X° 4+ 2X°® +2X7.
At that point, the partition can be build from the weight distributions and is equal
to:
I, ={3,4,8,12} U {1,6,7,10} U {2,5} U {9, 11}.
Note that the code of this example has a non trivial permutation group, in addition
to the identity, it contains the permutation (1 6)(7 10), product of two transpositions.
The support splitting algorithm produces the orbits of the automorphism group, that

is 8 singletons in addition to {1,6,7,10} in 11 refinements among which only 4 are
effective.
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Refinements. Let J be a subset of I,,. Let G; denote the matrix obtained by replacing
in G the columns indexed by J by zeroes, this produces a generating matrix of C';. Let’s
consider the matrix

, G
w= () = (6 )

The rows of M’ generate the space C; + C+ and, if D’ denotes its diagonal standard form,
the space generated by the columns of Id— D' is thus equal to V = (C;+C+)* = (C,)tNC,
and from we have V; = H(Cj).

The matrices M and M’ differ on a small number of columns, this will greatly simplify
the computation of a diagonal standard form of M’ if a diagonal standard form of M is
known.

Let (D,S) =DG(M,Id), X = M — M' and (D', S") = DG(D + SX, S). By definition
of the diagonal gaussian elimination, we have D = SM and S~'(D+SX) = §'~' D', which
implies that S’M' = D' and thus D’ is a diagonal standard form of M'. Note that this
does not implies that (D', S") = DG(M’, Id), but for our purpose, any diagonal standard
form of M’ is good enough.

An important computational advantage is obtained if we compute DG(D + SX, S)
instead of DG(M',Id). The matrix SX only has |J| non-zero columns, and thus the
matrix D + SX differs from the identity on at most |J| + h columns. In practice this
reduces the cost of the elimination to (|J| + h)O(n?) (including the product SX) instead
of O(n?*) where h is the dimension of the hull.

As above, we will denote respectively by S; and D; the i-th row of S’ and D'. We
denote by B’ the matrix whose rows are equal to to the non-zero columns of Id — D', it
is a generating matrix of the space C; + C*. Note that B’ is not a generating matrix of
H(Cy), but such a matrix is easily obtained by putting to zero in B’ the columns indexed

by J.
e If i € supp(H(Cy)) then we have to compute H(Cy),; which can be obtained from
B'.

o If i & supp(H(Cy)) then, as for the “normal” case, we will obtain z in C; and y in
C+ such that x —y = D} = ¢®. It can be easily proved that y € C’\LJ C (Cy)*. Thus

we get B = ((yi,y: + 1)) and Hp.:(C) = H(Cy) & (y).

For C7, we just have to exchange the roles of G and H; the computation will be exactly
the same with the matrix
G
MII —
( H,; )

where H; is obtained from H by replacing by zeroes the columns indexed by J. The cost
analysis is identical to the one for the first step.
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6.2 Computing weight distribution

The cost in for computing the weight distribution of ¢g-ary a linear code of length n and
dimension A is proportional to ng" operations in F,. For random instances, the average
number of operations is proportional to n>;5, Big" = nR(q) = 2nR(1) = 2n (see (2) in
§5.1). In practice, for random instances, the cost of the weight distribution computation
is negligible.

6.3 Computation time

The whole procedure has been implemented in language C for the binary case. We ran
the program on 100 000 random instance of binary codes of length 1000 and dimension 500
and the average running time for recovering one permutation was a little less than half
a second on a DEC Alpha PW500. The average number of refinements was 6.5, ranging
from 3 to 15.

7 Conclusion

It is possible to recover in “practical” polynomial time the permutation between two
permutation-equivalent codes when the considered codes have a trivial permutation group
and a hull of small size. Any random instance will verify such assumptions.

For codes that have a non trivial permutation group, the support splitting algorithm will
provide the orbits of the positions under action of the permutation group. By puncturing
the codes in one or more positions, depending on the transitivity, this may provide a tool
to compute the permutation group by using the techniques introduced by Leon [Leo82].
Research are in progress in this direction.

In both cases, recovering the permutation or the orbits, we did not manage to prove
anything precise on the complexity, mainly because the number of refinement needed before
we obtain the most discriminant signature is difficult to bound. In fact, we have no way,
apart from heuristic rules, to determine a priori if a given refinement will be efficient, that
is if it will produce a thinner partition of the support, and there is an exponential number
of possible refinements . ..

Implementation proved to be very efficient in the binary case, each time the hull’s
dimension was small enough. The algorithm is still unefficient if the hull dimension is
large, but from the reduction given in [PR97| of the CODE EQUIVALENCE PROBLEM to the
GRAPH ISOMORPHISM PROBLEM, the existence of difficult instances had to be expected.
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