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Abstract: This paper extends in a simple way the classical absolute stability Popov criterion to multivariable
systems with delays and with time-varying memoryless nonlinearities subject to sector conditions. The
proposed sufficient conditions are expressed in the frequency domain, a form well-suited for robustness issues,
and lead to simple graphical interpretations for scalar systems. Apart from the usual conditions, the results
assume basically a generalized sector condition on the derivative of the nonlinearities with respect to time.
Results for local and global stability are given, the latter concerning in particular the linear time-varying
ones. For rational transfers, the frequency conditions are equivalent to some easy-to-check Linear Matrix
Inequalities: this leads to a tractable method of numerical resolution by approximation. As an illustration,
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Extension du critére de Popov de stabilité absolue aux systemes
non-autonomes a retards.

Résumé : Ce rapport étend de maniere simple le classique critére de stabilité absolue de Popov aux systémes
multivariables comportant des retards et des non-linéarités sans mémoire et dépendant du temps, soumises
a des conditions de secteur. Les conditions suffisantes que nous proposons sont exprimées dans le domaine
fréquentiel, une forme adaptée & 1’étude de la robustesse, et conduisent & des interprétations graphiques
simples pour les systémes scalaires. En plus d’hypotheses habituelles, les résultats supposent essentiellement
la vérification d’une condition de secteur généralisée, portant sur la dérivée par rapport au temps de la
non-linéarité. Des résultats de stabilité locale et globale sont donnés, ces derniers concernant en particulier
les systeémes linéaires instationnaires. Les conditions fréquentielles & vérifier sont équivalentes, pour des
transferts rationnels, & des systémes d’inégalités linéaires matricielles (LMI en anglais) faciles & vérifier: ceci
conduit & une méthode implémentable de résolution numérique par approximation. Un exemple numérique
illustre les résultats.

Mots-clé : Systemes a retards, stabilité absolue, critere de Popov, non-linéarités dépendant du temps,
domaine fréquentiel, systémes non linéaires, systémes multivariables, marge de robustesse.



1 Introduction

This paper deals with an extension of Popov absolute stability criterion to nonstationary delay systems. We
consider the multivariable control system given in Figure 1, where H is a strictly proper transfer function
matrix of size p x p, p € N\ {0}, and ¢ : R x R? — RP a time-dependent nonlinearity.

- H(s)

—(t,.) -

Figure 1: The system under study

Here, the transfer function matrix H is supposed to be represented by the following delay differential
system

L

L
T = ZAlx(t_hl)+Bua u = _w(tay)a Y= chx(t_hl)a x|[—h,0] :¢ ) (1)
=0 =0

where
n€e€N\{0}, LeN, zeR", ye R, 4, eR"™", BeRP, C,eR*", 0< I <h,

in such a way that

L L
H(s)= (D _Cie "*)(sI = Aie™*)'B.
=0 =0

Assume that 1 is not perfectly known, but rather that it belongs to a certain class of nonlinearities,
defined by the following properties: 1 is decentralized [15] (that is: Vi € {1,...p}, ¥i(t,y) = ¥i(t, vi)),
time-invariant, and verifies moreover the following sector condition

Vy e R, ()" (¥(y) — Ky) <0, (2)

for a certain nonnegative diagonal matrix K. The asymptotic stability of all the systems obtained by
coupling (1) with a nonlinearity fulfilling (2) is called absolute stability of the class of systems (1).

In order for the class of systems (1) to be absolutely stable, asymptotic stability should hold for all linear
time-invariant choice of 1 compatible with (2), that is for the maps:

Y(t,y) = diag{ki}y, 0<Fk <K;.

In 1947, Aizerman [1] was the first to formulate (for finite sectors and rational systems) the question of
the sufficiency of this condition. As is well-known, the answer is negative, even if one restricts oneself to
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time-invariant nonlinearities, as proved in 1958 by Pliss [24] (see also a counterexample in [2, p. 86-88]).
Popov gave in 1959 an elegant sufficient condition for absolute stability of the class of systems (1) with
time-invariant nonlinearities [25], known as Popov criterion (see e.g. [37, 15, 17]): absolute stability holds,
provided that the poles of H have negative real part and that there exists a diagonal matrix 5 such that

I+ (I+mns)KH(s) is strictly positive real (SPR) . (3)

The latter result was initially given for rational systems, and it was extended shortly after by Popov et
al. [26] to delay systems (and seemingly independently by Li [18]). For rational systems, the result is proved
using a Lyapunov function with a Lur’e term, of the form

p Yi
Vt,) WaTPr+ 23 mk; [ ilt, zi)dz . (4)
0

i=1

Since the late fifties, a lot of contributions have been published, giving generalizations of Popov criterion
to various classes of time-invariant nonlinearities (see [17, 4] for an overview and references, [19] for chinese
contributions). As an example, the result has been extended by Yakubovich to some hysteresis nonlinea-
rities [38]. Results have been obtained with stronger conditions on the nonlinearity, especially incremental
sector conditions, see references in [22, 17].

Also, attempts have been made to adapt Popov criterion to time-varying rational systems (see [20] for
a review of the period 1968-1977, surveying an important number of contributions, especially from Eastern
Europe). Pyatnitskii has shown [27] that absolute stability for a class of time-varying nonlinearities fulfilling
the sector condition

V(t,y) € RT xR, o(t,y)"(¥(t,y) — Ky) <0,

is equivalent to the asymptotic stability of all the time-varying linear systems of this class, that is for the
maps

Y(t,y) = diag{k:(t)}y, 0<ki(t) <K, .

This result gives rise to a class of sufficient conditions of absolute stability, see e.g. [21]. See also [16, 3]
for some frequential conditions of absolute stability without restrictions on the rate of variation of the
nonlinearity.

On the other hand, it is possible to obtain conditions of absolute stability for smaller classes of time-
varying nonlinearities, especially by making restrictions on %—‘f. This limitation may be acceptable e.g.
when studying the stability of limit cycles. Narendra et al. devoted Chapter VI of their monograph [22]
to this question. They obtained conditions for global stability involving two parts: the Popov condition
plus a differential (in the case of a so-called separate nonlinearity 1(t,y) = k(¢)f(y)) or integrodifferential
inequality, linking % and 9. These conditions may be not so easy to handle, see examples in [22, Chapter
VIII]. In [36], Walker provided conditions for global stability. The assumptions given therein imply that (3)
holds and, e.g. when 5 > 0,

Vi) € B X B, u(t) (0(00) - K) < ik g | [ wie ) az]

instead of (2). As the a priori knowledge on the right-hand side does not usually permit to consider it as
nonnegative, this expresses a restriction of the rate of variation of the nonlinearity, but K does not define
anymore the width of the sector, and it is not clear how to check systematically the conditions, especially for
multivariable systems. Rekasius et al. [32], Hul’chuk et al. [14] and Bertoni et al. [5] published contributions
providing frequency criteria for absolute stability of nonstationary systems. In [32, 14], the authors request
for the terms of the form [ %(t, z) dz appearing in the derivative of the Lyapunov function (4) to be
bounded by a quadratic form in y; and ;(t,y;). This condition, see (6) below, may be interpreted as a
generalized sector condition; it is fulfilled e.g. when a sector condition on %(t,y) holds. In [5], only this
simpler condition is used, and graphical interpretation is given. See also [11] for related approach.
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To the best of our knowledge, very few papers have been published on the topic of absolute stability of
time-varying delay systems. Some non-frequential criteria are cited in [19, Paragraphs 6.1 and 6.5]. A paper
by Résvan [30] provides an extension of Popov criterion to systems with separate nonlinearities. Achieving
an analysis close to the one presented here, it has to assume the monotonicity (wrt time) of the time varying
gains, a quite limiting assumption. Also, Walker [35] provides results generalizing the approach of [36] to
delay systems.

In the present paper, one proposes an extension of Popov criterion to nonautonomous systems with delays,
generalizing the work done in [6] for rational systems, in the spirit of [5, 14, 32]. More precisely, one provides
simple conditions ensuring uniform asymptotic stability of the origin. These conditions are expressed in
terms of a frequency condition in Theorems 1 and 3. The results provide uniform local asymptotic stability,
a generalization of the property of absolute stability with finite domain [15], or global stability. The latter
results may be applied in particular to linear time-varying operators 9. The proposed criteria just add
some supplementary terms to Popov criterion, depending on %(t,y) as in [32, 14]. The results, being
expressed in the frequency domain, are well fitted to robustness issues, especially in presence of unstructured
perturbations. Some graphical interpretations are provided for scalar systems, partly as in [5]. Concerning
checkability of the conditions, an attracting feature is the possibility to approximate the transfer function
matrix H by rational transfers: it is shown in [6] that for these systems, the proposed frequency conditions are
equivalent to some Linear Matrix Inequalities, a now standard class of problems for which sound numerical
methods have been developed [7].

An example of application of the results given here comes from the control of chaos [10]: in order to
stabilize an unstable periodic orbit of a strange attractor, Pyragas [28, 29] proposed to use a feedback
control built on the difference between the actual value and the delayed value of the output, with delay equal
to the period of the cycle.

Finally, we want to emphasize the fact that the results could be applied to more general systems (e.g.
systems with distributed delays, integral systems), as it is indeed the case for Popov criterion, see [12, §4.6.]
and [§].

The paper is organized as follows. The criteria are stated in Section 2. Computation issues are studied
in Section 3. An example is presented in Section 4. Finally, proofs of the results are exposed in Section 5.

Notations In all the paper, ||.|| denotes the euclidian norm or the induced matrix norm, I, denotes the
r X r identity matrix (simply I when the context is clear), the asterisk * denotes complex conjugation. For
any real diagonal matrix n = diag{n;}, one denotes

def . def ..
In| =" diag{[n:|}, sgnn = diag{sgn ni},
where one may take indifferently sgn 0 = —1 or +1. When 7 is a function of ¢ € R*, by definition:

def .
sup n(t) = diag{sup m:(t)} ,

>0
and similarly for the infimum, the essential supremum, ... and so on. For z € R , one denotes
def def
|2|l+ = sup{z,0}, |z|- = sup{—=2,0}.

The same notation is used for diagonal matrices:

In|+ = sup{£n,0} = diag{sup{£n;,0}} = diag{|ni|+} -

2 Main results

In all the sequel, we assume that there exist global solutions of (1), that is, by definition: for all ¢ €
C([—h,0];R™) , there exists a continuous function z defined on [—h,+00), absolutely continuous [34] on
[0, +00), such that z[[_s 0] = ¢ and (1) is fulfilled almost everywhere on [0, +00). The stability results given
below concern the asymptotic behavior of these global solutions.
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Theorem 1 (A frequency criterion). Assume that there exists a convex open neighborhood O of 0 in R?
for which the following assumptions hold.

(HO) The function 1 is measurable and, for any y € O, t — (t,y) is locally Lipschitz (and hence t-a.e.
differentiable), with a Lipschitz constant locally integrable wrt y € O.

(H1) The nonlinearity v is decentralized and there exists a diagonal matriz K = diag{K;} > 0 such that,
V(t,y) €RT x O, ¥(t,y)" (¥(t,y) — Ky) <0. (5)

(H2) There exists o > 0 such that the roots of the equation det(sI — ZZL:() Aje~h8) = 0 have real part
smaller than —a.

Assume that there exists a diagonal matriz n = diag{n;} such that the following Hypothesis is fulfilled
(H3) There exist v : RY — R with lin%) v(2) =0 and D; = diag{D;;}, j € {1,2,3}, such that

for almost any t e RT | Yy € O, Vi€ {1,...,p},

Yi (9 i A
ni (/0 gi (t,z) dz — Dy ;y; — Daiysti(t, yi) — D3,i¢i(t,yi)2> < Ilyll? v(lyl) - (6)

and such that the transfer function matrix

I —nKDs+ (I +1(sI + Ds))KH(s) — H*(s)sup {nDl; |”|2_ "K(Dy + KD3)} KH(s) is SPR. (7)

Then, the origin of system (1) is uniformly locally asymptotically stable.
Moreover, if vy =0 and O = RP, then the origin of system (1) is uniformly globally asymptotically stable.

A proof of Theorem 1 is presented in Section 5. It essentially follows the approach of [26, 12], with
adequate improvements.

Circle criterion is found as a particular case for » = 0, and Popov criterion when % = 0 (taking
D; =0, (7) reduces to (3)).

Remark that if Hypothesis (H3) holds for a certain 7, then it holds (with the same D; and +) for any
1’ such that nn' > 0: only the sign of the 7;’s intervenes. In practice, one first determinates the sign of the
7;’s which lead to an estimate like (6). Under these sign constraints on the 7;’s, one then verifies (7). The
matrices D, j =1, 2,3, may depend upon sgn 7.

An important case where Hypothesis (H3) is fulfilled leads to the following result.

Corollary 2. Assume that there exists a convex open neighborhood O of 0 in RP for which (HO), (H1), (H2)
hold. Assume that there exists a diagonal matriz n such that the following Hypothesis is fulfilled

(H3’) There exist v : Rt — R with lim v(2) =0 and A = diag{A;}, A; : Rt — R, such that,
z—

0
for aimost any 1 € B, ¥y € O, 0 (Go(e,0) = A0 ) < Il Aol ®
and such that the transfer function matriz
]. 1 1
I+ (I+ns)KH(s)— §H*(3)K§ sup ess{nA(t)} K2 H(s) is SPR . (9)
>0

Then, the origin of system (1) is uniformly locally asymptotically stable.
Moreover, if vy =0 and O = RP, then the origin of system (1) is uniformly globally asymptotically stable.
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One checks easily that (H3’) implies (H3) with Ds = D3 = 0 and

1 1
D;; = -sup ess{A;(t)}if ; > 0, D1 ; = -inf ess{A;(¢t)} if 5; <0, Dy =D3=0.
’ 2 t>0 ’ 2 t>0

Indeed, when (8) holds,

inf ess A(t) < 0 < sup ess A(t) ,
t>0 t>0

otherwise sector condition (5) would be violated, so

nD1 = sup ess {nA(t)} = |n|+ sup ess{A(¢)} + |n|- inf ess {A(t)} > 0.
t>0 t>0 t>0

The additional, quadratic, term in (9) is then nonpositive, indicating clearly that the criterion is more
restrictive than Popov conditions (compare with (3)) for the systems with nonautonomous nonlinearities.

Condition (H3’) is in general a “local” sector condition. It is fulfilled in two important cases. When
~ =0 (1st case), (8) writes:

for almost any t € RT, Yy € O, y”n (%—qf(t, y) — A(t)y) <0,

that is:

5 (4

Ai(t) t—ae ifn >0

Vi€ {1,...,p}, for almost any t € R*, Vy € O, ¥ '
ie{ p}, for almost any Y { Ai(t) t—ae ifn <0

131/)(

IV I/\

Yi

Yi)

Yi)
This hence defines a (“global”) sector condition on the map y — %(t,y). When the inequality in (8) is
replaced by an equality (2nd case), then,

s

Vi € {1,...,p}, for almost any t € R, Vy € O, 5t ——(t,y:) — Ai()yi| = |lvilv(wil)

which means that g;;f;t (t,0) exists almost everywhere and is equal to A;(t). Condition (8) is a generalization

of (6), whose idea is borrowed from [32, 14].

Remark that ¢ does not have to be continuous wrt y, except in 0, and the same is true for %. In
the conditions of application of Theorem 1, there exist functions k;(t,y;) such that ¥;(t,y:) = ki(t, vi)vs,
i=1,...,p, and it may be fruitful to express the results in terms of the k;. As an example, (H1) requires
that 0 < k;(¢,y;) < K;. Also, (8) expresses that

Ok;

Vi € {1,...,p}, for almost any t € R*, Vy € O, n; ( En

(b y2) — Ai<t)) <A(luill) -

and gy%‘t (t,0) = ‘98';; (t,0) when the 2nd derivative exists.

When the solutions of (1) are continuous wrt the initial conditions, one may consider the essential su-
prema [34] of nA(t) on [tg,+00) for any t9 > 0, instead of [0, +00). Indeed, due to the strict inequality
involved, one may even use the upper limit [34] of these expressions when ¢ty — +o00.

For a scalar system, p = 1, and condition (7) is equivalent to

1
IneR, VweR, 7 +Re H(jw) — (D3 — D2 Re H(jw) + wIm H (jw))
+ sup {nDl, Il = nK(D +KD3)} |H(jw)> >0. (10)

This may be interpreted graphically, as in [5]:
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If, apart from the regularity, sector and stability conditions (HO), (H1), (H2), (H3), there
exists o line of slope 1/n passing through the point (—+,0) and lying to the left of the locus
(Re H(jw), D3 — DaRe H(jw) + wIm H(jw) + sgn n - sup{ sgn n - Dq; 1_S%K(Dg + KD3)}
|H(jw)|?) without intersecting it, then the uniform local stability property holds. If v = 0 and
O = P, then the uniform global stability property holds.

An interesting problem is, given K, to determinate the largest incertitude on % allowed by Theorem 1,
for example under condition (H3’). In this case, the previous graphical criterion can hardly be used, as
the ordinate changes with the D;. To overcome this drawback, condition (7) should rather be seen as a
geometrical condition in the 3-dimensional space (Re H(jw),Im H(jw),wIm H(jw)) obtained as the product
of Nyquist and Popov planes, a condition not easy to interpret. We present in the sequel a weaker but

simpler condition, located in the Popov plane.
€

Denoting the Hoo-norm of H by ||H(s)||co def sup{||H(s)|| : Res > 0} (when H is stable and proper,
this is equal to sup{||H(jw)| : w € R}), one deduces easily the following result.

Theorem 3 (A weaker frequency criterion). Assume that there exists a conver open neighborhood O
of 0 in R? for which Hypotheses (HO), (H1), (H2) hold. If there exists a diagonal matriz n such that (H3) is
fulfilled and such that the transfer function matriz

I —nD3+ (I +n(sI+Dy)KH(s)— Ksup{nD1; |77|2— 77K(Dz +KD3);0} |H(s)||%, is SPR, (11)

then the conclusions of Theorem 1 hold.

As an example let us examine the case of a scalar system fulfilling (H3’), the general case (H3) is similar.
Formula (11) is equivalent to (12a) (resp. (12b)) for > 0 (resp. n < 0), where

1 1
dn >0, Vw e R, 7 +ReH(jw) —n (wImH(jw) + §||H(s)||§o sup ess {A(t)}) >0, (12a)
>0
In <0, Vw eR, 11{ + Re H(jw) — (w Im H(jw) + %HH(S)H?XJ inf>%ss {A(t)}) >0, (12b)

and this has a clear interpretation:

If, apart from the regularity, sector and stability conditions (HO), (H1), (H2), (H3’) withn > 0
(resp. n < 0), a line of slope 1/n passing through the point (—%,0) lies above (resp. below) the
Popov locus and may be translated vertically towards the locus by a distance

SIHIE, sup ess{A®) (resp. = I inf ess {AD))

without intersecting it, then the uniform local stability property holds. If v =0 and O = RP, then
the uniform global stability property holds.

This is illustrated in Figure 2: in the left (resp. right) Popov diagram, (12a) (resp. (12b)) holds if

2d 2d
sup ess A(t resp. inf ess A(t . 13
S T ER e R V71 (13)
As an example, (13) holds if (1st case)
199 2d 109 2d
Vye O, ——(t,y t—a.e. (resp. ——(t,y) > — t—a.e.),
vor Y S THER R A (O]
or if (2nd case)

824 2d 824 2d
t,0 t—a.e. (resp. t,0 t—a.e.).

ayoi "0 < THGE (resp- Boae (0> ey, £~ )
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wlm H(jw) 4 wlm H(jw)

Figure 2: Graphical stability criterion in the Popov plane

Both cases are fulfilled when

0
for almost any ¢t € RT, 6—15(75, y) is linear wrt y € O .

In the configurations shown in Figure 2, the quantity d involved is indeed the least z > 0 such that one
of the points (—1/K,+z) belongs to the convex hull of the Popov locus P. To show this, remark that, e.g.
for the right diagram,

1
d = — inf sup (77 (ReH(jw) + —) —wImH(jw)) i
n€R R K

Now, sup,,cg 7(Re H(jw) + 1/K) — wIm H(jw) may be seen as the value of the support function of the set
P+1/K applied to the vector (n,—1) [33]. One may hence replace the set P by its convex hull conv P,
and then reverse the order of inf and sup. One gets:

d:—sup{irelfen(z1+1/K)—z2 : (21, 22) € conv ﬂ)} =inf{z : (-1/K,2z) € conv P} .
n

3 Computation issues

It turns out that for rational systems, frequency condition (7) may be checked easily:

Proposition 4 (LMI condition for rational systems). Let H be a rational strictly proper Hurwitz trans-
fer function matriz, (A, B,C) a minimal realization. The following LMI is feasible:

P>0, n % diag{n)},

ATP + PA —(P-W)B+CTK + ATCTKn' + CTKn'D, <0
-BT(P-W)+ KC+n' KCA+ Dan' KC —2I —n' KCB - BTCTKy' + 29'KDs ’
(14)
where W = W' is defined by
"ot
ATW + WA = 207K sup {n’Dl; i |2 T k(D> + KDg)} c (15)

if and only if there exists a diagonal matrix  such that condition (7) holds and nn' > 0.
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Sketch of the proof. The idea is to apply Kalman-Yakubovich-Popov (KYP) Lemma. The verification of the
observability condition (needed to apply KYP Lemma) necessitates special care, see [6] for a complete proof.

[ )

In order to apply Theorem 1, it then suffices to achieve approximation by rational transfers, see e.g. [23, 13]
for the techniques of approximation. The following result states this properly.

Proposition 5 (Transfer approximation). Let H, H,, be strictly proper Hurwitz transfer function ma-
trices. Let n be a diagonal matriz.
Suppose that there exists € € (0,1) such that

(1 —&)I =K Ds + (I +n(sI + Dy))KHy(s)

— H*(s)K sup {nDl; |"|2_ TR (Dy + KD3)} H,(s) is SPR, (16a)

el + (I +n(sI + Dy) — 2H*(s) sup {nDl; |77|2_ " K (Ds + KD3)}) K(H — H,)(s)

+ (H — H,)*(s) sup {npl; |’7|2_ "K(D, + KD3)} K(H — H,)(s) is SPR. (16b)

Then condition (7) holds.
Conversely, suppose that there exists € > 0 such that

(14 ¢&)I —nKDs3 + (I +n(sI + Dy))KH,(s)

— H(s)K sup {npl; '"'2‘ "K(Ds + Kpg)} H,(s) isNoT SPR, (17a)

el — (I +n(sI + Dy) — 2H*(s) sup {nDl; WT_UK(DQ + KD3)}) K(H — H,)(s)

— (H — Hy,)*(s) sup {npl; |’7|2_ "R (Dy + KD3)} K(H — Hy,)(s) is SPR. (17b)
Then condition (7) does not hold.

The proof is left to the reader. Assumption (16a) (resp. assumption (17a)) is slightly stronger than the
assumption needed to apply Theorem 1 to H,, (resp. slightly weaker than the negation of this assumption).
Assumptions (16b) or (17b) are fulfilled e.g. when ||H — H, ||« is small enough.

4 An example: computation of stability margin for a 4th order
system with delay

One shall consider the following system:

d'y d*y Py | dy
1627 +32° 7 1 og% Y 4 g% 4 _
677 +32 8 + 242 + 870 4y = —y(ty(t - 1), (18)

corresponding to the previously studied framework with the transfer function

e—s

H(S):m,

which may easily be realized as in (1).
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One supposes that ¥(t,0) = 0 and that there exists a constant K such that
t
y#0=0< @ <K.

One verifies either graphically (see Figure 3) or by computations, that asymptotic stability of system (18)
cannot be guaranteed if

K > ~ 2. .
— 0.3613 768

This corresponds to the smallest positive value of K for which the equation 1+ K H(s) = 0 has some purely
imaginary roots.

0.100

wIm H(jw)

0.025 f
Re H(jw)
w=20 :

—0.050

—0.125 4

—0.200 +—— L e e A

- ‘
-0.50  -=0.25 0.00 0.25 0.50 0.75 1.00 1.25

Figure 3: Popov locus of system (18)

Application of circle criterion provides stability if

K< 2.320 .

1 ~
0.4310 —
On the other hand, Popov criterion guarantees stability if ¥(¢,y) = ¥(y) and
K < 2.768 .

In the remaining of the section, one studies the stability of (18) for time-varying nonlinearities fulfilling
the sector condition with

K =1/0.4=2.5 € [2.320,2.768] .

More precisely, let us assume that condition (H3’) holds; one is looking for restrictions on A(t) permitting
to ensure stability. The results previously exposed permit to compute measures of the stability robustness.
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In the sequel, we provide lower estimates of the largest number § such that system (18) is absolute stable
whenever

sup essA(t) <6 .
>0

All computations to be presented have been achieved using the Scilab package LMITOOL!.
Using the ideas of Section 3, one approximates the delay following [23], and considers the sequence of
approximants:

1-2\" 1
Hy(s) = ( 2") .
" 1+ /) (1+2s)
For each value of n, using Proposition 4 and proceeding by dichotomy, one may solve the LMI (14), (15).
This process provides a lower estimate of §, denoted §;. The results are presented in Table 1. The exact

Order of approximation || Successive estimates of d;
n=1 0.3444
n =2 0.3365
n=3 0.3350
n=4 0.3345
n=>5 0.3342
n = +0o 0.3338

Table 1: Computation of the robustness measure ;

value of §; may be computed numerically for scalar systems, as (9) is fulfilled for a positive value of 7 if and
only if

2 1/1
sup essA(t) <sup inf ———=(=-(—=+ReH 'w)—wImH 'w) .
pess ) <sup inf gy (5 (2 +Re ) )

The optimal value of 9 is nopy ~ 1.473. In conclusion, condition (9) is fulfilled if

sup ess A(t) < 6; def 3338 .
>0

The corresponding graphical interpretation may be read on Figure 4.

One now shows how to compute a bound on § with the help of Theorem 3. First the quantity d is
evaluated, either graphically, or using a solver of algebraic equations. One gets:

d ~0.03325 .

One then computes ||H||o. This step may also be achieved by use of rational approximations. One obtains
here:

[Hljoo =1 .
Condition (11) is hence fulfilled if

def 2d
sup ess A(t) < 6y =
p ess AL I

1Scilab is a free software developed by INRIA, which is distributed with all its source code. For the distribution and details,
see Scilab’s homepage on the web at the address http://www-rocq.inria.fr/scilab/

~ 0.06650 .
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Figure 4: Graphical interpretation of Theorem 1 for system (18)

One verifies that the ordering
61 > b

is consistent with the increasing conservativeness of the criteria.

Let us give a sample of the results that may be obtained. Let O be a convex open neighborhood of 0 in
R, such that

e There exists L € L}, _(O) such that, for all ¢,#' € R, for all y € O, [¢(t,y) — ¥(t',y)| < L(y)|t — t|
(condition (HO)).

e Forallt e RT, forally € O\ {0},0< w(;’ y) < 2.5, and 9(¢,0) = 0 (condition (H1)).

Assume that there exist global solutions to system (18). The origin of system (18) is uniformly locally stable
if

10 . )
Ve OO}, T o0(ty) <&+l t—ae, with lm () =0,
y Ot ly|—0
for example if %(t, 0) exists t-a.e. and verifies:
6%y
— < — a.e.
8y8t(t’0) <é t—ae
The origin of system (18) is uniformly globally stable if O = R and
1
Wy eR\{0}, %) <6 t-ae
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5 Proof of Theorem 1

One assumes, without loss of generality, that v is nonnegative, nondecreasing.
o Let us first suppose that 7 > 0. The demonstration begins as in [26, 12].
Let T > 0. Let us define ¥r, z7,yr as follows

W(t,y(t) HO<t<T
t) = , 19
Yr(t) {0 if —h<t<Oort>T (19)
L L
TT = ZA[ZCT(t —h) — ByYr, yr= Z Cizr(t — hy), -'17T|[—h,0] =0. (20)
1=0 =0
By linearity, we have
T—dr = ZAZ (t—h)—ar(t—"n)) fortel0,T], (z—2z71)l[ ho=¢, (21)
We shall denote in the sequel by ¢;, j = 1,2,..., various positive constants, independent of ¢ and T.
From Hypothesis (H2), we deduce that there exists o € (0, ), independent of ¢ and T', such that
Vi€ [T, lla(®) = er (@)l < re= Iglleqnap o
Vt>T, |lzr@®)| < ce D ar(T +-)le-na)

This implies, using triangular inequality:

vt € [0,7), lly(@®)ll < c2e™ " NBlleqn.op + lyr @]l - (23)
From (H1) and the fact that n, K > 0, one gets that, if y(¢t) € O, t € [0,T], then

T yi(T)
vie{l,...,p}, / (Koyi(t) — vat, y:(1)i(t, yi(2)) dt + niKi/ ¥i(T,z) dz > 0. (24)
0 0
On the other hand, the map
yi(t)
t— / ¥i(t,2z) dz
0

is absolutely continuous, due to (HO) and (H1), and the assumed absolute continuity of the solution wrt
time. Indeed, y(t),y(t") € O implies that, Vi € {1,...,p},

i (1) yi(t')
/ ¢(tz)dz—/ it 2) dz
0 0

where L; is the Lispchitz constant of 9, defined by Hypothesis (H1). One may hence write

y:i (T) T 4 yi(t)

T i (t) o, i (0)
= /0 (?/i(t)¢T,i(t) +/0 5 —; (t,2) dz) dt+/0 ¥:(0,2) dz

Now, if y(t) € O for any t € [0,T], one has, using (H3),

T pryi(t) 6¢z
m/o /0 ot (t,z) dz dt

<[ : (m (Dl,izﬁ(t) + Do sy (B)ora(t) + D3,in,z-(t>2) + v<|yi(t)|>y?(t>) dt |

< It—tl/yl (2) dz + Kimax{|y;(£)], |y (#)[} lyi(t) — wi(t)] ,

v:(0)
dt +/ 1¥;(0, 2) dz
0
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because 7 is nonnegative and nondecreasing, and O is convex. One hence deduces from (24)
T ) i(0)
/ (Ki(yi(t) = y1,i(t)¥r,i(t) + Kiv(|yi(t)])y; (t)) dt + ;K / ¥i(0,2) dz
0 0

> (( zyTz sz( )) ¢T,i(t)
e (G500 + D10+ Do s(0) + Dasbrs(0?) )

= [ ((Rama® 1) a0
e (y'T,i(th,i(t) # D1 (0) + Do O0na(t) + Dasins(07) )

T
‘Hh'Ki/O ((ﬂT,i(t) — §i(0))¢r,i(t) + Di(y7,:(t) — y; (1)) + D2i(yr,i(t) — yi(t))¢T,i(t)) dt

\Y

+00
[ (Kamat® = wrat®) a0 + Dl Kanato)
+n: K; (?JT,i(tWT,i(t) + Dy syr,i () YT, (t) + Ds,i¢T,i(t)2)) dt

T
+ni K / ((EJT,i(t) — 5i())¥r,i(t) + D1i(y7,4(t) — y; (1)) + D2i(yri(t) — yi(t))¢T,i(t)) dt
0
as K > 0, ¥r(t) =0 for t > T, and because y%l is summable over Rt, due to (22). Denoting §r, 7 the

Fourier transform of yr, 17, the previous indefinite integral is proved to be equal to

+oo s/ ~ .
% i (¢},i(w) (KiﬂT,i(w) —Yri(w) + miK; (jwﬂT,i(w) + Dy ifr,i(w) + D3,i¢T,i(w)>)

s Dl,i|+Ki|gT,i<w>>|2) do |

Now, using Hypothesis (H3), there exist positive numbers € and p,, both independent from T and ¢, such
that the open ball in R? with centre 0 and radius py is contained in O and such that, if

vt € [0,T], [ly@ll <py (25)
then the following holds:

+oo s/ B ~
% . (w;(w) (KgT(w) — r(w) + nK <jw?7T(w) + Dagr(w) + D3¢T(w))) + §7(w)|nDy |+ K ng(w))> dw

1 [t

= 5 [0 (= T+ KDy~ (T4 i+ DK (o) + H ) D1 K (i) ) () s

(usmg the identity §7(w) = —H (jw)ir(w))
T @) P o= —e [ @ dt
o | W do=— [ o) de

It follows that

€ oo 2 oo 2
T / lyr (I d < e / lr(0)|? dt
T y(O)
< / (w;(oK(y(t)—yT(t»ﬂ(ny(t)n) “OKy(t ) dt+;7hK / (0,2) dz

T
- /0 (wé‘r(t)nK(?)T(t) —9(8)) + (yr(t) —y*(£))nK D1 (yzr(t) — y(t)) + Y7 (t)nK D2 (yr(t) — y(t))) dt .
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Due to (5) and (21)-(23), one may bound from above the previous expression by

te[0,T]

T
esll@lle(i—n,on) (||¢||c<[h,o1>+ts[1(1)pT]IlyT(t)ll> + ¢4 sup v(lly(t)ll)/0 lyr@®)* .
€10,

To summarize, if (25) holds, then y(¢) € O for any t € [0,T], and

te[0,T7]

+o0 T
6/0 lyr(@)|” dt < cs (II¢IIC([_h,o]> <|I¢I|c<[_h,o]) +ts[1(1)pT] IIyT(t)H) + sup y(|ly(¢ )II)/0 lyr(@®)I? dt) :
€10,

Let us suppose that (25) holds, together with

€
vt € [0,T], esy(lly(t)]]) < o (26)
Then,
T 9 265
lyr @I dt - < —ldlleq-nop | I@lleq-nop + sup llyr@)ll
0 t€[0,T7]
= csll9lle(—n,o <||<75||c _h,0)) + sup ||yT()||> . (27)
te[o,T]
We then deduces an estimate on g7 as follows:
T L L T
[ i@l e < (Y Cre )T = 3 die ) BB [ (o)
0 1=0 1=0 0
L L T
< I e ) 6T = 3 e B IKIE [ o)l o
1=0 1=0 0
< erlllle—n,on (||¢||C([—h,o])+ sup ||yT(t)||> : (28)
te[o,T]

using (23) and (27). One infers that (25), (26) imply, for any ¢ € [0,7]:

t€[0,T]

1 T . 1
§||yT(t)||2 S/U yr )y (t) dt+§|lyT(0)|l2S\/Cﬁc7“¢”6([fh o)) <||¢||C([ o)) + sup |lyr(t )||> ,

as y7(0) = 0 and by use of Cauchy-Schwarz inequality. The following inequality is hence true:

2
(t sup, IIyT(t)H) = 2v/escrl|plle(—n 0 ( sup [l (t )II) = 2/eeCr||plig(—n,op <O
€10,

from which one concludes that:

T is such that (25), (26) hold = sup |[lyr(®)ll, sup [yt < eslldllc(—n,0) -
t€[0,T] t€[0,T]

Now, let p, > 0 be such that (recall that v(z) — 0 when z — 0)

p3§2p—y and VzeR', 2<cg pr = c57(2) <

Cg

o
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Choose ¢ € C([—h,0];R") with ||@ll¢(j=n,0}) < pz- Performing the previous computations shows that the
following inequalities are verified for T' = 0 and as long as (25), (26) hold:

<

=] ™
N ™

sup [ly(t)|| < csll@lleq—n,o) < cs pzy socs sup y(ly(@)]]) <
te[0,T] te[0,T)

p
sup [ly(t)ll < es pe < 5 <py -
t€[0,T]

From the continuity of y, one deduces that (25), (26) hold for any T > 0, so

dllc—rop <pz = YT >0, sup |yt)|| < csps -
tc[0,T]

This in turn implies, by (27), (28), that y,9 € L?(0,4+00). One concludes that y(t) — 0 when t — +oo,
which expresses the uniform local asymptotic stability of the origin.

When v =0 and O = R?, one may take py, = p, = +00.
o We now remove the assumption that > 0. This part of the proof is similar to the analog enlargement of
Popov criterion to nonpositive slopes 7, see [2]. By hypothesis, one has:

I —nKDs+ (I +n(sI + Dy))KH(s) — H*(s) sup {nDl; |"|2_ "K(Dy + KD3)} KH(s) isSPR. (29)

Consider [31]

o(t,y) et gy — o(t,y) ,

Let us choose the input ; instead of 1; when n; < 0, and write that (1) is equivalent to

L L
#=3" At —h) + Bu, u=—d(t,y(0) & — [l y(®) + (T - et y®), y= Calt i),

1=0 1=0
where f, j, AI,O <I< L,B are defined by:
fdef sgn 17, jdzef (I — sgnn)/2, Ay =A —BJKC,, B=BI.
The following properties will be used repeatedly:
JPojeif 2jsi==1,.

If 9 verifies Hypothesis (H1), then the same holds for 1, as

~

b(t,y) T (WD(t,y) — Ky) = v(t, )T (¥(t,y) — Ky) .
As
Yi 6 i
M ( a—qi(t,z) dz — Dy jy? — Do yitpi(t, yi) — D3,i¢i(tayi)2>
0
Yi 8 .
= - ( %(t, z) dz + (D1; + D2 ;K; + D3 ;K?)y? — (Da; + 2D3 :K;)yipi(t, yi) + D3,z'§0i(t;yi)2) )
0

(H3) leads to a similar property on 1), with the values:
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Now, in order to achieve the proof, it is sufficient to show that if formula (29) holds, then the modified
system verifies a condition analog to (7) with the new value 7 > 0, that is

I — 4K Ds + (I +7(sI + D2))KH(s) — H*(s)|7D1|4 KH(s) is SPR, (31)
where

L L
A(s) (S Cre i) (sT = Y Aemn) 1B

1=0 =0

As a matter of fact, the first part of the proof may then be applied to the transformed system, and this
concludes the proof of Theorem 1. It hence remains to prove (31). This is done with the help of the following
Lemma.

Lemma 6. The following identity holds:
H(s)= I+ H(s)JK) ‘*H(s)I = H(s)(I+ JKH(s)) I .

Proof. Lemma 6 is a consequence of the feedback structure involved when changing the input of the linear
plant. Indeed, the new input ¢ being defined as above, one has:

y= =t =—H (Jo+ (1= D) =~ (J(Ky =)+ (1 - )
=-H (jKy —Jp+ - j)u?) =-H (m + ny) ,
and finally:
(I+HJK)y=—HIY ,

which gives the 1st equality. Deduction of the 2nd equality is straightforward. [

Applying Lemma 6 one gets

2(I 7K Ds) + (I +ii(s] + Do) KH(s) + H*(s)K (I +i)(s*I + D2)) — 2H*(s)|7D1|+ K H(s)

H
=I(I+H*(s)KJ)'G(s)(I + JKH(s))"'I ,
where

G(s) = 20 +H*(s)KJ)I —iKDs)I + JKH(s)) + (I + H*(s)KJ)I(I + 7(sI + D2))KH(s)
+H*()K(I +7(s*T + D2))I(I + JKH(s)) — 2H*(s)K|3D1|+ H(s)

= 2(I-4KD3) + <2j + I+ H(—2JKDs + I(sI + Dz))) KH(s)
+H*(s)K (I + f(=2JK D3 + I(s*I + bg)))
+H*(s) (QKZf(f +J) + 5K JI(s + s*) + 2K (—=|iD1 |4 + AKIJDy — ﬁj2K2D3)) H(s),
using the fact that the (diagonal) matrices K,#, I, J, f)j commute. From (30), one gets

G(s) = 2(I = nKD3) + (I +n(sI + Dy))KH(s) + H*(s)K (I +n(s*I + D))

—28°(5) (D1 + JK (D + KDa))s ~nJK(Da + KDy) ) KH(s)

s0 (29) and (31) are equivalent. This achieves the proof of Theorem 1.
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