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Rotations Complétes dans les Graphes de Cayley

Résumé : Certains graphes de Cayley, parmi les plus populaires des modéles pour les réseaux d’interconnex-
ion, admettent des automorphismes particuliers, appelés rotations complétes Bermond, Pérennes, et Kodate
et également étudiés Fragopoulou et Akl. Ces automorphismes sont souvent utilisés pour construire des
algorithmes ou montrer des propriétés du graphe. Ils permettent, par exemple, de construire facilement des
algorithmes optimaux d’échange total et la meilleure construction connue d’arbres couvrants aréte disjoints
dans le tore ou ’hypercube repose sur 'utilisation d’un tel automorphisme. Nous étudions ici ces graphes de
Cayley qui possédent des symétries particuliéres. Pour cela, nous relions certaines symétries d’un graphe & des
propriétés du groupe sur lequel est définie sa structure de graphe de Cayley. Nous donnons en particulier une
caractérisation des graphes de Cayley pour lesquels les générateurs sont des transpositions et qui admettent
une rotation compléte.

Mots-clés : réseaux, graphes de Cayley, rotations, graphes de transposition, groupe



Rotations in Cayley graphs 3

1 Introduction

Cayley graphs are good models for interconnection networks and have been intensively studied for this reason
during the last few years. Articles [1], [20] and [17] give a survey.

Bermond, Kodate and Perennes define in [4] the concept of complete rotation in Cayley graphs in order
to construct a gossip algorithm from a broadcast protocol applied to each vertex simultaneously. Given
particular conditions on the orbits of the vertices under the complete rotation, they provide an optimal
gossip algorithm. They build such an algorithm in the hypercube, the squared toroidal mesh and the star-
graph (see the definitions in Appendix A).

Fragopoulou and Akl consider in [12] and [13] a similar concept of rotation in Cayley graphs to construct a
spanning subgraph used as a basic tool for the design of communication algorithms (gossiping, scattering).
The class of graphs they consider contains most popular Cayley graphs for interconnection networks, such
as cycles, hypercubes, generalized hypercubes, star graphs and the square n-dimensional torus.

Hence Cayley graphs admitting a complete rotation have specific symmetry properties which enable efficient
and simple algorithmic schemes. In this paper, we study this class of Cayley graphs and derive some of
their properties. More precisely, we relate some symmetries of a graph with potential algebraic symmetries
appearing in its definition as a Cayley graph on a group. In the case of Cayley graphs defined on a group
generated by transpositions, we characterize the ones admitting a complete rotation.

This paper is organized as follows. In Section 2, after recalling some basic definitions and properties of Cayley
graphs, we give the definitions and some properties of rotations and complete rotations. In Section 3, we
study several conditions for the existence of a rotation. First, a characterization of graphs having a complete
rotation is given in terms of representation and relators for the group and the set of generators (Section 3.1).
Then, we introduce the rotation-translation group of a Cayley graph and consider some necessary conditions
of the rotational property (Section 3.3). In Section 3.4, we consider complete rotations on Cartesian products
of graphs. The last part, Section 4, is devoted to the Cayley graphs defined by transpositions. Generalized
star graphs are introduced (Section 4.3) and the characterization of rotational Cayley graphs defined on a
group generated by transpositions is given (Section 4.4). Finally, Appendix A contains the definitions and
drawings of some Cayley graphs and Appendix B summarizes the notation.

2 Preliminaries

2.1 Cayley graphs

Appendix B summarizes the notation given below.

All groups considered are finite. By abuse of notation, we use the same letter to denote a group and the set
of its elements and specify the operation of the group only when confusion can arise. We use multiplicative
notation except in the case of Abelian groups. We denote by Z the additive group of integers, and by Z,, the
group of integers modulo n. For G a group and S C G, the group generated by S is denoted by (S). The
automorphism group of G (set of one-to-one mappings from G to G which preserve the composition law) is
denoted by Aut(G).

A permutation o on the set X = {1, --- ,n} is a one-to-one mapping from X to X. As usual, it is denoted
by the images (o(1), --- ,0(n)).

For a permutation o on X, Supp o is the set of elements 7 of X such that o (i) # i.

A product of permutations o7 means that we apply first mapping 7 on the set {1, --- ,n} and then mapping
g,ie., o1 = (o(7(1)), -+ ,0(r(n))).

We denote by &x the group of all permutations on X and, for short, by &,, if X = {1---n}.

A cycle o such that o(i1) = i2,...0(ixg—1) = ik, 0(ix) = 41 is denoted by {i1,42,...,4x). In particular, (3, j)

denotes the transposition of elements ¢ and j.

We will consider mainly simple undirected graphs. A graph T is defined by its vertex set VI and its
edge set ET. The edge between two vertices v and v is denoted by [u,v] or simply by wv if no confusion
is possible. If necessary, we consider the symmetric digraph T'* associated to a graph I' and obtained by
replacing any edge uv by two opposite arcs (u,v) and (v,u). We denote by AT the set of arcs of T'*.

We denote by Aut(T) the automorphism group of a graph T'.
A graph T is said to be arc-transitive (symmetric in [5]) if for any given pair of directed edges (u,v), (u',v")
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4 Heydemann & Marlin & Pérennes

there exists an automorphism f € Aut(T') such that f(u) = v’ and f(v) = v'. In other words I is said to be
arc-transitive if Aut(T) acts transitively on AT

Definition 2.1 (see for example [5]) Let G be a group with unit I and S a subset of G such that I ¢ S and
the inverse of elements of S belong to S. The Cayley graph Cay(G,S) is the graph with vertex set G and
with edge set {[g,9s]: g € G,s € S}.

We will say that the edge [g, gs], s € S, is labeled by s. Notice that the edge [g, gs] can also be labeled by
s~ since it is equal to the edge [gs, gss™!].

Examples of well-known Cayley graphs are given in Section 4.1 and Appendix A. We recall some well known
results on Cayley graphs we will use later.

If G is generated by S, i.e. G = (S}, then Cay(G, S) is connected.

By analogy with geometry, for ¢ € G, the mapping t, : G — G, defined by t,(x) = ax, is called a translation
of Cay(G,S). The mappings t,,a € G, form a subgroup T of Aut(Cay(G,S)) which is isomorphic to the
group G and acts regularly on G. The following characterization of Cayley graphs is well-known.

Theorem 2.2 [23|Let I' be a connected graph. The automorphism group Aut(T') has a subgroup G which
acts regularly on VT if and only if T is a Cayley graph Cay(G,S), for some set S generating G.

2.2 S-stabilizers and rotations

Let G be a group. Note that any internal mapping of G can be considered as an action on the vertices of
the graph Cay(G, S). So some symmetries of the group G give naturally rise to symmetries in the graph
Cay(G, S). For commodity, we introduce:

Definition 2.3 Let G be a finite group and S a set of generators of G. A homomorphism w of the group G
is called a S-stabilizer if w(S) = S.

Notice that since G is finite, a S-stabilizer is bijective and therefore a group automorphism. We denote by
Stab(G, S) the set of S-stabilizers of G which is a subgroup of Aut(G). A S-stabilizer different from the
identity is said to be non-trivial.

In the following, we will study graph automorphisms of Cay(G, S) which are induced by S-stabilizers of
G using the following proposition, a proof of which can be found in [5], Proposition 16.2.

Proposition 2.4 [27] If w is an automorphism of the group G generated by S such that w(S) = S, then w
is a graph automorphism of Cay(G,S) which fizes the vertex I.

By proposition 2.4, a S-stabilizer induces a graph automorphism of Cay(G, S) we simply call a rotation.

When applying Proposition 2.4, we will use the same letter to denote the group automorphism and the
graph automorphism it induces.
If H is a subgroup of Stab(G, S), we will denote by H its corresponding isomorphic subgroup of Aut(Cay(G, S)),
or simply by H when no confusion will arise.

2.3 Definitions of complete rotations

The notion of rotation in graph theory was first used in the context of embeddings (see for example [6], [28]).
In this context, a rotation of a graph I' at a vertex ¢ is a cyclic ordering of the neighbors of 4, and a rotation
scheme is a collection {r;,7 € VT'}, where r; is a rotation at the vertex i. It is used to embed the graph I’
into a surface. For a Cayley graph, any cyclic permutation r of the generators allows us to define a rotation

scheme by r;(j) = ir(i~1j) for any edge ij (see [6], page 117).

The notion of complete rotation in Cayley graphs we will use is related, but different. The original
definition of complete rotation is given in [4] as follows:

INRIA



Rotations in Cayley graphs 5

Definition 2.5 [4] Let Cay(G,S) be a Cayley graph with G = (S). A mapping w : G — G is a
complete rotation of Cay(G, S) if it is bijective and satisfies the following two properties for some ordering
of S ={s;,0<i<d—-1}:

wI) = T (1)
w(@si)) = w(T)sit1 (2)

for any x € G and any i € Zg.
It is a particular case of the concept of rotation. As we will see below, a complete rotation of Cay(G, S) is

a rotation of Cay(G, S) such that the permutation induced on S is a cycle of length |S|. More precisely, let
us first consider the S-stabilizers of G which cyclically permutes the generators in S.

Definition 2.6 A S-stabilizer of G, w : G — G, is said to be cyclic if, for some ordering of S = {s;,0 <
i <d-—1}, w(s;) = S8it1, for any i € Zg.

Then, we get:

Property 2.7 A mapping w : G — G is a complete rotation of Cay(G,S) if and only if it is the graph
automorphism induced by a cyclic S-stabilizer of G.

Proof. Clearly, any cyclic S-stabilizer of G induces a complete rotation of Cay(G, S) as defined in Definition
2.5. The converse is a corollary of the following proposition 2.8 listing some properties of complete rotations
(some of them are used in [13] and [4]). O

Proposition 2.8 Let w be a complete rotation of the Cayley graph Cay(G,S), with G = {(S). Then, for
some order of S = {s;,0 <i < d — 1}, the following properties are satisfied.

(i) For any i € Zg, w(8i) = Sit1;

(i) For any i,j € Zq and any z € G, w ™% (zs;) = wi~(x)s;;
(111) w is a group automorphism of order d;
(i) w is a graph automorphism; and

(v) WP is a group automorphism for any p € Z and a complete rotation for p prime with d. In particular,

w~L is a complete rotation.

Proof. (i) By taking + = I in Equation (2) of Definition 2.5.
(ii) By induction on j — i using Equation (2).
(iii) By induction on the number of factors of an element written as a product of generators, we get from
definition 2.5, for any z,y € G,

w(zy) = w(z)w(y)
Thus the bijective mapping w is a group automorphism. Furthermore, for any generator s;, by (ii), w?(s;) = s;
and w’(s;) # s; for 0 < j < d, so that w? =TI and w* # I for 1 < k < d.
(iv) By Proposition 2.4 and (iii), w is a graph automorphism.
(v) By induction on p, for any z,y € G, wP(zy) = wP(z)wP(y). If p and d are co-prime then pZ, = Z4
and the sequence s, $p, 82p, -, 8(4—1)p defines a new ordering of the generators so that w? is a complete
rotation. O

The simplest automorphisms of a group G are inner automorphisms : # — oxo~ !, where ¢ € G.
Therefore it is natural to consider the following property which defines the notion of rotation considered in
[13]:

Property 2.9 Let Cay(G,S) be a Cayley graph where G = (S). If there exist an element ¢ € G and an
ordering of S = {s;,0 <i < d— 1} such that for any i € Zg,

Sit1 = 081'071, (3)

then the mapping w : G — G, such that w(z) = czo !, is a complete rotation of Cay(G, S).
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6 Heydemann & Marlin & Pérennes

Proof. An inner automorphism of G defined by w(z) = ocxo~! and satisfying Equation 3 is a cyclic S-

stabilizer. By Property 2.7, it induces a complete rotation of Cay(G, S). O

In [13], the authors give the generators s;, 0 < i < d — 1, and a permutation o € &,, for cycles, hyper-
cubes, square torus, star graphs, modified bubble-sort graphs, bisectional networks, and two generalizations
of hypercubes, showing by Property 2.9 that all these graphs have a complete rotation (see Appendix A).
Thus most of the popular Cayley graphs for interconnection networks have a complete rotation.

Property 2.9 suggests the following problem.

Problem 2.10 For which Cayley graphs Cay(G, S) is the existence of a complete rotation equivalent to the
existence of an inner automorphism of G which cyclically permutes the generators in S ?

We give a partial answer to this problem in Proposition 4.13.

Notice that it is a classical result of group theory that if G = &,, with n # 2,6, then the only group
automorphisms of G are the inner automorphisms. But this result is not sufficient since, for example, the
hypercube H(d) is a Cayley graph on a proper subgroup of &, (see Appendix A).

2.4 Rotational graphs

We say for short that a graph T is rotational if there exist a group G and a set of generators S such that
' = Cay(G, S) and G has a cyclic S-stabilizer.

Remark 2.11 The existence of a complete rotation in a given Cayley graph depends on the choice of the
group and the set of generators as the following proposition and theorem show.

Proposition 2.12 The additive group Z,, has a cyclic Z,, \ {0}-stabilizer if and only if n is prime.

Proof. The additive group Z, is generated by Z,* = Z, \ {0}. For z € Z, any group homomorphism
w satisfies w(z) = w(l+ 1+ -4+ 1) = aw(l). Thus, if w(1) = a, then w(z) = azx. If w is a complete
rotation, then the generators are 1,a,a?,---a" 2 and thus Z¥ = {1,a,a?,---a" 2} is cyclic. Thus, n is
prime. Conversely, if n is prime, there is an integer a such that Z} = {1,a,a?,---a™ 2} and then w(z) = az
is a complete rotation. O
Thus Cay(Zn,Z,") has a complete rotation if and only if n is prime. On the other hand, we have the
following result.

Theorem 2.13 The complete graph K, is rotational if and only if n is a power of a prime number.

Proof. [21] First note that K,, = Cay(G, S) if and only if the order of G is n and S = G\ I. It means that
every element of G except the identity is a generator.

If n is not a prime power, then there exist two different prime numbers p and g which divide n. Then the
group G has at least an element of order p and an element of order ¢ with p # ¢. By Corollary 3.6, K, is
not rotational.

If n is a prime power, then there exists a field F' with n elements (see for example [2], page 445) and F'\ {0}
is a cyclic multiplicative group. For any generator r of F'\ {0}, the mapping w, defined by w(z) = rz, is a
complete rotation of K, = Cay(F, F \ {0}) (F is considered as an additive group). O
Notice that a similar result has already been proved in the context of maps, in a different way ([6], page
128).

Theorem 2.14 [6] There is a rotation on K, which gives rise to a symmetrical map if and only if n is a
prime power.

The next proposition shows that one can construct new rotational Cayley graphs by taking a quotient
according to a normal subgroup which is invariant by the rotation.
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Proposition 2.15 If Cay(G,S) has a complete rotation which is a K-stabilizer for a normal subgroup K
of G, then the quotient Cayley graph Cay(G/K,S") is also rotational, where S’ is the image of S by the
canonical epimorphism from G onto G/K.

Proof. Let w be a complete rotation of Cay(G, S) such that w(K) = K. Since K is stabilized by w, we can
define the automorphism of G/ K induced by w denoted by w’. Let S’ be the set of the images of S in G/K by
the canonical epimorphism. Then ' is a group-automorphism of G/K which is also a graph-automorphism
of Cay(G/K,S'). Furthermore, w' induces a cyclic permutation of the generators. Thus w' is a complete
rotation of Cay(G/K,S"). O

Example 2.16 Let K be a cyclic binary code (that is a subgroup of Z," invariant by cyclic shift of the
coordinates). Then the graph (also called quotient) obtained from the hypercube H(n) by identifying all
the vertices {z + k : k € K} to one vertex, for every x € Z,", is a rotational Cayley graph.

Proof. The hypercube H(n), considered as a Cayley graph on the additive group Z-", admits the cyclic
shift of the coordinates as a complete rotation (see Appendix A.3 and Example 3.7). By definition a binary
cyclic code K is a subgroup of Z," invariant by the cyclic shift and K is a normal subgroup since Zy" is
Abelian. By Proposition 2.15, Cay(Z2" /K, S’) is a rotational Cayley graph. |

In the following sections, we will give other examples of rotational graphs belonging to particular classes of
Cayley graphs, the ones defined on Abelian groups and on permutation groups generated by transpositions.
To finish this section, we present an example which does not belong to these classes.

Example 2.17 Knddel graph.
The Kno6del graphs are defined in [14] and are based on the Knodel construction of an optimal gossiping
algorithm [19]. They can also be defined as Cayley graphs on the semi-direct product G = Z, x Z for the
multiplicative law:

(x,y)(@',y") = (z+ (=12, y +v'), z,2' € Zp, y,y € ZLo.

and _
S={(2)1),0<i<d—1}.

We consider here the particular case p=2"—1and S = {s;,0 < i < n—1}, with s; = (2¢,1). Let us consider
the mapping w defined by w[(x,y)] = (2z,y). Since (z,y)s; = (z+ (=1)¥2,,y + 1), for 0 < i < n — 1, we get:

w(0,0) = (0,0)

LU[(.Z', y)sz] = W[(x, y)]sH_l.
By Definition 2.5, w is a complete rotation of Cay(Z, % Z-, S).

3 Study of conditions for the existence of a rotation

3.1 A characterization of rotations

An attractive way to define a group generated by a set S is to consider the elements of the group as words
on the alphabet S modulo some well chosen set of equalities satisfied by the set S. For example, the additive
group Zn X Z,, is generated by (1,0) and (0,1). Notice that

(1,0)+(0,1) = (0,1)+(1,0), and n(0,1) = n(1,0) = (0,0). This group can also be defined as a multiplicative
group generated by S = {s1, s2} satisfying the equalities (called relations in group theory): s7 =1, s§ =1
and s182 = $251 or 315251_132_ 1 = I. Equivalently, in order to define the group, one can use a set of relators
R = {s15987"s5",57,5%}. In the above example the mapping (z,y) — (y,z) belongs to Stab(G, S) and this
fact clearly appears in the set of relations which is symmetric in s; and ss.

More precisely any group G generated by a set S can be seen as the quotient of the free group generated
by S by a set of relations between the generators (see for example [7], [18] or [22]) for the definitions on
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8 Heydemann & Marlin & Pérennes

presentations of groups). As in [18], we denote by F(S) the free group generated by S and by R the subset
of F(S) of the elements which are called relators (thus consisting of words on the elements of S). Let N(R)
be the normal closure of R in F(S), that is the smallest normal subgroup of F(S) containing R. It is also
the subgroup of F(S) generated by the elements grg=1, g € F(S),r € R (see for example [22], page 16).
Then G is the quotient group F(S)/N(R). We denote by « the canonical epimorphism from F(S) onto G
and by e the empty word of F(S). Thus a(e) = I and, for any z € F(S), a(z) =I if and only if z € N(R).
As usual, we do not distinguish s from «(s) for s € S.

Recall also that any free group automorphism of F(S) can be defined by the images of the elements of
S.

Definition 3.1 For any S-stabilizer f of a group G with presentation G = (S|R), we denote by f the
automorphism of F(S) defined by f(s) = f(s), for any s € S.

The following proposition shows the relation between a non-trivial group Stab(G, S) and a presentation of
G with a set of relators admitting symmetries.

Proposition 3.2 Let G be a group generated by a subset S. Then the following properties are equivalent:
(1) the group G admits a non trivial S-stabilizer, i.e. the subgroup Stab(G,S) is non trivial;

(i) for any subset R of F(S) such that G = (S|R) is a presentation of G, the free group F(S) has a non
trivial N (R)-stabilizer, where N(R) is the normal closure of R, which is also a S-stabilizer; and

(iii) there exists a presentation of G, G = (S|R), such that F(S) has a non trivial R-stabilizer which is also
a S-stabilizer.

Remark 3.3 In other words the existence of a S-stabilizer is equivalent to the existence of a permutation
on the set of generators S letting the set of relators R invariant.

Proof. (i)= (ii) Assume f is an S-stabilizer of the group G generated by S. Then for any presentation
G = (S|R), let us define a group automorphism f of F(S), as explained above, by f(s) = f(s), for any
s € S. This implies af = fa. Furthermore, if z € N(R), then a(z) = I and f(a(z)) =1 = a(f(z)), and
thus f(z) € N(R). This proves that f is a N(R)-stabilizer. It is also a non-trivial S-stabilizer.

(ii)= (iii) Evident by taking the canonical presentation G = (S|N(R)).

(iii)= (i) Let G = (S|R) be a presentation of G and f a R-stabilizer. Since every element z of N(R) is
a product of elements of the form grg ! withr € R, g € F(S5) and f is a R-stabilizer, using flgrg™t) =
F()f(r)f(g) L =g'r'g' ! with v’ € R, ¢’ € F(S), we get that f is also a N(R)-stabilizer. Therefore it is
possible to define a group automorphism f of the quotient F(S)/N(R) such that a f = fa. Furthermore S
is invariant by f. m|

Corollary 3.4 Let G be a group generated by a subset S. Then the following properties are equivalent:
(i) the Cayley graph Cay(G,S) has a complete rotation;

(i) for any presentation G = (S|R), the free group F(S) has a N(R)-stabilizer, where N(R) is the normal
closure of R, which induces a cyclic permutation of S; and

(iii) there ezists a presentation of G, G = (S|R), such that F(S) has a R-stabilizer which induces a cyclic
permutation of S.

Proof. The proof is similar to the proof of Proposition 3.2 using the definition of a complete rotation and
the fact that the action of f on S is the same as the action of f. O

Remark 3.5 Once again the existence of a complete rotation of Cay(G,S) is equivalent to the existence
of a presentation of G = (S|R) such that the set of relators R is invariant by a cyclic permutation of the
generators.
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Rotations in Cayley graphs 9

Corollary 3.6 If Cay(G,S) has a complete rotation, then all the generators in S have the same order.

Proof. This result is a consequence of Corollary 3.4 since, if the generator s; is of order p, the relation
(s:)? = I has to be fixed by a cyclic permutation on the generators. O

The following table gives presentations (S|R) for some well known Cayley graphs Cay(G, S) with G =
(S|R). These presentations are already known (see for example [7] and [9]). By applying Corollary 3.4, this
proves that the considered graphs are rotational (see [13] and Appendix A for another proof using Property
2.9).

Example 3.7

Graph S R
Hypercube H(n) {51,82,---,8n} {sf,sisjsi_lsj_l}
Squared toroidal mesh T M {51,52,...,54 {7, sis58; 17}
sitsyt sty
Modified bubble-sort graph {s1,82,...,8.} | {82, (31.31+1)3,Si8j5;15;1 (G#i+1,5#i-1)
MBS(n) $7,518283 - .. Sn—28n—18n—2 - .. 8281}
Star graph ST(n) {81,582, -,8n_1} {82, (5:8;)%,(si8j518)*}

Let us notice that despite we only work here on graphs the same notion of complete rotation can be consid-
ered for digraphs. In that case, the generating set S do not need to be symmetric (S = S~!). With this defini-
tion similar result can be derived. In particular Corollary 3.4 can be applied to digraphs. For example, the di-
graphs defined as arrowheads in [10] have a complete rotation since they can be defined as the Cayley digraphs
on the groups G,, = (S|R,,) with S = {s1, s2, 83} and R,, = {1253, 3152sf13;1, 52535515g1, 53515§15f17 s s
for any n > 0.

In Proposition 3.2 and Corollary 3.4 a symmetric presentation of G is provided when the associated Cayley
graph admits a rotation. One can think about asking the following question : if Cay(G, S) is rotational, is it
possible to find a symmetric presentation which is also minimal with respect to the inclusion? For example,
in the case of arrowheads the presentation of G,, given in [10] is minimal but not symmetric: (S|R},), with

/o —1.,-1 2™ 2" 2"
R = {s15283,818287 S5 .57 ,S3 ,53

3.2 Abelian groups

One can give more details in the case of Cayley graphs on Abelian groups.

Let us recall that a circulant graph (also called multi-loop graph) is a Cayley graph Cay(Z,, S) on the additive
group Z, with symmetric generating set S = {%s1,£sa,..., £}, for some integers n, s1, 82, ..., sk. These
graphs have been intensively studied as models of interconnection networks (see the survey given in [3]).

Lemma 3.8 A circulant graph Cay(Z.,S) has a complete rotation if and only if there exists integers a and
p prime with n such that S = {ap® : a € N}.

Proof. The if part is evident by taking w(x) = pz.
The only if part follows from the fact that every automorphism of the additive group Z, is of the kind
x — px for some integer p (see the proof of Proposition 2.12). O

Lemma 3.9 Let w : Z™ — Z™ be defined by w(zx1, -, Zn) = (T2, -+, Tn,x1). A Cayley graph on a (finite)
Abelian group G has a complete rotation if there exists an integer n and a subgroup Q of Z™ such that
w(Q) = Q and G is isomorphic to the quotient Z™/Q.

Proof. By Corollary 3.4, we get the result. |
Example 2.16 is also an illustration of this lemma.
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10 Heydemann & Marlin & Pérennes

3.3 Rotation-translation group

We will consider some properties of Cayley graphs and compare them to the rotational property.

Proposition 3.10 Given I’ = Cay(G, S), let H be a subgroup of Stab(G, S) and H be the induced subgroup
of Aut(T"). Let T be the subgroup of translations of T'. Then the subgroup of Aut(T") generated by T and H,
< H,T >, is a semi-direct product T x H and therefore has cardinal |G||H|. Moreover, the set Ap = {th |
t € T} for h € H, acts regularly on the vertices of T' and maps any arc labeled s on any arc labeled h(s).

Proof. Let us recall conditions which are sufficient to have a (inner) semi-direct product H x T' =T x H
([22], page 27) : (i) T is a normal subgroup of < H,T >, (ii) < H,T >=TH , (ili) TN H = 1.
We prove that all these conditions are fulfilled.
(i) Let h be a S-stabilizer and ¢, a translation. For any x € G, we get ht,(x) = h(ax) = h(a)h(z) =
th(a)h(x) = tha)h(z). Thus ht, = tj,)h and T is a normal subgroup of < H,T >.
(ii) Every element of < H,T > is a product of elements of H and T and using equality of (i) can be written
as a product of TH or HT.
(iii) If t, € T belongs to H, then ¢t,(I) =al = I, thus a = I and ¢, = I.
We now prove that, for any given h € H, A, = {th | t € T} acts regularly on the vertices. Let z and 2’
be two given vertices of I'. 2’ = t,h(x) implies a = z'h(2)™" and &’ = t,p(,)-1(x). Thus there exists a
unique automorphism t,h € A, such that ' = t,h(x). Furthermore, if y = xs, then t,h(y) = to(h(z)h(s)) =
ah(z)h(s) = to(h(z))h(s) = toh(z)h(s).

Thus, if (z,y) is an arc labeled s, then (t,h(x),t,h(y)) is an arc labeled h(s). This achieves the proof. O
By taking H = Stab(G, S) in Proposition 3.10, we can introduce the following definition :

Definition 3.11 Let I' = Cay(G, S). The subgroup of automorphisms of I" defined by the (inner) semi-
direct product T' x Stab(G, S) is called the rotation-translation group of T.

In the case of complete rotation we obtain the following result.

Corollary 3.12 For any rotational Cayley graph T, there exists a subgroup of Aut(T') which acts reqularly
on AT and is isomorphic to the semi-direct product T X Z4, where d is the degree and T is the translation
group of T.

Proof. Let w be a complete rotation of Cay(G, S). We apply Proposition 3.10 when H is the cyclic group
< w > which is isomorphic to Z .

Let z,y,2',vy" be vertices of T such that y = zs and 3y’ = z’s’, with 5,5’ € S. Since w is a complete rotation
there exists an integer i € Z, such that wi(s) = s'.

By applying Proposition 3.10 with A = w?, we obtain an automorphism f = t,w’ € A such that f(z) = 2’
and f(y) = f(xs) = 2'wi(s) = 2's’ = y'. Furthermore f is unique, for if y' = t,wi(y) and 2’ = t,w(z),
then t,wi(z)s’ =y = t,w'(z)w(s), thus s’ = w(s). Since w is a complete rotation, 4 is unique in Z4 By
Proposition 3.10, a is also unique. O

For the hypercube H(d), the subgroup of Corollary 3.12 is (Z2)? x Zg4. Let us notice that the butterfly
graph and the cube-connected cycles graph (see for example their definitions in [17]) are two Cayley graphs
defined on this group. Notice also we will see later (see Proposition 4.14) that the rotation-translation group
of H(d) is equal to Z% x Gg.

Corollary 3.13 Any rotational Cayley graph is arc-transitive.

Notice that, in particular, the pancake graph, the cube-connected cycles graph and the butterfly graph
are not rotational since they are not arc-transitive (see [20]). Let us recall that the edge-connectivity of
a vertex-transitive graph (in particular a Cayley graph) is maximal and that the vertex-connectivity of an
edge-transitive Cayley graph is equal to its degree and therefore maximal [26]. By Corollary 3.13, we get
the next result.

Corollary 3.14 The vertez-connectivity of a rotational Cayley graph is mazimal.
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Rotations in Cayley graphs 11

Remark 3.15 Since K, is arc-transitive, Proposition 2.12 shows that not every arc-transitive Cayley graph
is rotational. We will also deduce from Section 4 that the complete transposition graph which is arc-transitive
(J20]) is not rotational.

By Corollary 3.6, if Cay(G, S) has a complete rotation, then all generators of S have the same order in
the finite group G. This condition is not sufficient to insure the existence of a complete rotation.

Remark 3.16 [21] There exist non-rotational Cayley graphs Cay(G, S) such that all generators of S have
the same order in the group G. The Mdbius graph (depicted on Figure 1) is an example of such a graph.

4 3
Figure 1: Md&bius graph

The Mdbius graph can be defined as the circulant Cayley graph Cay(G,S) with G = Zg and S =
{-1, +1, 44} (-4 = +4 mod 8). The generators are of orders 8, 8 and 2, respectively. By Corollary 3.6,
we cannot find a complete rotation for this structure.
Furthermore, this graph is not arc-transitive. In fact, consider its vertices as labeled by Zg. It is easy
to verify that the edge 01 belongs to only one 4-cycle (0,1,5,4), but the edge 04 belongs to two 4-cycles
(0,1,5,4) and (0,4,3,7). Thus by Corollary 3.13, this graph is not rotational.
Since the Mobius graph is isomorphic to Cay(G’, S") with G’ = (S'|R’), S’ = {z,y,2} and R’ = {zyzyz~ ', 22,92, 2%},
this graph is an example of non rotational Cayley graph with all the generators of S’ having the same order
in G'.

3.4 Complete rotations on Cartesian products

The Cartesian product of two graphs I' and T, denoted by I'OT", is the graph with vertex set VT' x VI” and

edge set {[(i, ), (k, )], [i,k] € ET} U{[(i,4), (5, 0)], [i,1] € ET"}.
We recall the following well known result.

Proposition 3.17 If T = Cay(G,S) and TV = Cay(G',S"), then TOL is the Cayley graph on the group
G x G' with set of generators (S x I)U (I x S").

In [13] the following question is settled. If I" and I are two graphs having a (complete) rotation, how about
the Cartesian product I'OI" ?

Proposition 3.18 (also found independently by D. Barth) Let T' = Cay(G,S) be a Cayley graph with a
complete rotation. Then the Cartesian product T™ = T'OTO---OT also has a complete rotation with the
induced Cayley structure.

Proof. Assume w is a complete rotation of I'. We denote the vertices of T'™ by (29,1, -, 2n_1). The nd
generators of I'™ can be ordered as
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12 Heydemann & Marlin & Pérennes

(where ¢ symbols I precede s;), for 0<i<n—-land0<j<d-1.
A complete rotation p on I'” is given by

p(x()axla T 7$n—1) = (w(xn—l)ax(% e 7$n—2)-

Now p is a group homomorphism since

pl(@o,T1, - Tn-1)(Y0, Y1, -+, Yn—1)] = p(ToYo, T1Y1, **, Tn—1Yn—1) = (W(Tn—-1Yn—1), ToYo, - s Tn—2Yn—2)
= (W(Tn—1)w(Yn-1),ToYo, " * *, Tn—2Yn—2) = p(T0, T1,"**, Tn=1)P(Y0, Y1, "+ Yn—1)-
Furthermore, p(t;) = ti31 for 0 <i < dn — 1 (tnqa = to). O
Notice that one can derive the same result by using Corollary 3.4 and considering a presentation G =
(S|R) such that R is invariant by a cyclic permutation of S. Then one obtains a presentation (S’|R’) of
the Cartesian product by taking n disjoint copies of this presentation (Si|R1),(S2|Rz2),. .., (Sn|Rx), with

S; ={s},1<i<d}and1 < j<n. The mapping w defined by w(s?) = s’*" for 1 < j < n and w(s?) = Sty
is a cyclic permutation of S = US; which is a R’-stabilizer.

Definition 3.19 A graph I is said to be prime if there exist no non-trivial graphs v and 4’ such that T is
isomorphic to yO4'. Two graphs I" and T"” are said to be relatively prime if there exist no non-trivial graph
H, and graphs v and «', such that T is isomorphic to HOv and I is isomorphic to HOv'.

Lemma 3.20 If v and v are two relatively prime graphs, then vOv' is not arc-transitive, and thus not
rotational.

Proof. Applying the result of Sabidussi ([24]) to relatively prime v and 7' , we get
Aut(vOy") = Aut(y) x Aut(y). (4)

Consider an arc [(z,y), (2',y)] of yOv' (where x # z' and [z,2'] is an arc of 7). Its image by any graph
automorphism of vOv' is [(h(z), g(v)), (h(z'), g(y))] where h € Aut(y) and g € Aut(v'). This image will
never be an arc [(z,t),(z,t')] (with t # ¢’ and [¢,t'] an arc in v').

This proves that yO+' is not arc-transitive and by Corollary 3.13 not rotational. O
Thus we get,

Corollary 3.21 IfT is a rotational Cayley graph, then there exists a prime graph v and an integer n > 1
such that T' = ™.

Corollary 3.21 shows that if a Cayley graph is rotational and is a Cartesian product, then all its prime
factors are isomorphic. But we do not know at the present time if these factors are rotational and even
Cayley graphs. Thus we can formulate the following problem.

Problem 3.22 If the graph T = ~™ is rotational, is v also
(i) a Cayley graph ?
(i) a rotational graph ?

Notice that, as far as we know, it is even not evident that if 4™ is a Cayley graph, then ~ is also a Cayley
graph.
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4 Cayley graphs defined by transpositions

In this part we consider only Cayley graphs Cay(G, S) where G = (S) and S is a set of transpositions on
{1, 2,..., n}. For short we say that such a Cayley graph is defined by transpositions.

It involves many well studied interconnection Cayley graphs such as hypercubes, star graphs, complete
transposition graphs, and modified bubble-sort graphs.

Notice that if s is a transposition, then s = s~1.

4.1 Transposition graph

The transposition graph associated to a set of transpositions S is defined in [1] and [20] as follows.

Definition 4.1 Let S be a set of transpositions of {1,2, ---, n}. The transposition graph of S, denoted by
TS, is the graph with vertex set {1,2, ---, n} and edges ij for all {7, j) € S.

The following table give some examples considered in [20] except the generalized star graph which is defined
in Section 4.3.

Graph S TS
Hypercube H(n) <2p—1,2p>, p=1...n n vertex disjoint Ko
Star graph ST'(n) <li>i=2...n a star Ky n—1
Generalized star graph GST' (n, k) <t,j> i=1...k, j=k+1...n Kin—k
Bubble-sort graph BS(n) <gi+1> i=1...n—-1 a Hamiltonian path
Modified bubble-sort graph MBS(n) | <n,1>, <i,i+1>, i=1...n—1 | a Hamiltonian cycle
Complete transposition graph CT, <@, j> t,j=1l...n,i#] complete graph K,

We recall without proof some results we will use in Section 4.4. The following proposition shows that a
Cayley graph Cay({S), S) generated by transpositions is characterized by the transposition graph T'S.

Proposition 4.2 [20] Let S and S’ be two sets of transpositions of {1,2, ---, n}. If the two graphs T'S
and TS’ are isomorphic, then the Cayley graphs Cay({S),S) and Cay(({S’),S’) are also isomorphic.

The converse of Proposition 4.2 has been proved recently by C. Delorme and J. Fournier.
Proposition 4.3 [9, 11] Let S and S’ be two sets of transpositions of {1,2, ---, n}. If the Cayley graphs
Cay({S),S) and Cay((S"),S") are isomorphic, then the two graphs T'S and T'S" are also isomorphic.
Proposition 4.4 [20] If the transposition graph T'S is edge-transitive, then the Cayley graph Cay({S),S) is

arc-transitive.

The converse of Proposition 4.4 has been proved recently by C. Delorme.

Proposition 4.5 [9] If the Cayley graph Cay({S),S) is arc-transitive, then the transposition graph TS is
edge-transitive.

Proposition 4.6 If T'S has v, r > 1, connected components corresponding to the subsets S;,1 <1 <r, of
S, then Cay((S),S) is the Cartesian product of the r Cayley graphs Cay({S;), S1), for 1 <1 <r.

Proof. The group (S) is isomorphic to the direct product of the subgroups (S;), 1 <1 < r, since two

permutations with disjoint supports commute. Use Proposition 3.17 to finish the proof. O

Corollary 4.7 If T'S has r, r > 1, connected components and the graph Cay({S),S) has a complete rota-
tion, then the v connected components of T'S are isomorphic and Cay({S),S) is the Cartesian product of r
isomorphic Cayley graphs.
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Proof. Let us assume that 7'S has r, r > 1, connected components corresponding to the subsets 5;,1 <[ < r.
By Proposition 4.6, Cay({S),S) is the Cartesian product of the r Cayley graphs Cay({S1),Si), 1 <1 < r,
generated by transpositions. Since Cay({S), S) has a complete rotation, it is arc-transitive and, by Propo-
sition 4.5, the transposition graph 7'S is edge-transitive. This implies that its connected components 7'Sj,
1 <1 < r, are isomorphic. Thus the r Cayley graphs Cay({S:),S1), 1 < 1 < r, are also isomorphic by
Proposition 4.2. O

4.2 Rotations of Cayley graphs generated by transpositions

In this section we study the S-stabilizers of a permutation group generated by a set S of transpositions
on {1,2,...,n}. We will assume that T'S has no isolated vertices (otherwise we can consider permutations
defined on a smaller set). We will show that complete rotations in Cayley graphs defined by transpositions
are exactly those of Property 2.9.

Let I" be a graph. We first recall some definitions from [16].

A star of T is any set of edges incident to a vertex of a graph. An automorphism f of I is said to be
star-preserving if the image by f of any star of T is a star.

Lemma 4.8 If h is o S-stabilizer of (S), then h induces a permutation ¢ of the edges of T'S which is a
star-preserving graph automorphism of the line-graph L(T'S).

Proof. By definition, h is a group automorphism of (S). If we associate the edge [i, j] of T'S with the trans-
position (i, j) € S, then h induces a natural permutation ¢ of the edges of T'S. First we prove that ¢ is a graph
automorphism of L(T'S). Note that two transpositions commute in (S) if and only if their supports are dis-
joint. If Supp o NSupp ¢’ = @, then o6’ = o'c and ¢(a)P(a’') = ¢(o’)@(0), thus Supp ¢(a) N Supp ¢(c’) = 0.
Conversely, by applying ¢~1.

This implies that ¢ maps adjacent vertices of L(T'S) onto adjacent vertices of L(T'S).

Now we prove that ¢ maps stars onto stars (and therefore triangles onto triangles). Assume that T'S
contains the three edges [i, ], [¢, k], [, ] and that ¢([i,5]) = [/, 5] , ¢([i, k]) = [/, k']. I &([i,1]) # [¢,1],
then ¢ being an automorphism of L(T'S), ¢([¢,!]) = [j',k']- Since h is a group homomorphism of (S),
h((z, )&, kYE, D) (5, kY) = (&, 3"V KDY B kY = 1. But (i, k)i, 1){i, k) = {k, 1), so that h({z, 7){3, k) (3, 1) (i, k)) =
(¢,7"Yh({k,1)). This implies I = {i’, 7'Yh({k, 1)), thus h({k,1)) = (i',5') = h({3, 5}). This is impossible, since
h is bijective on (S). O

Notice that if h is a S-stabilizer of (S), then h~! is also a S-stabilizer and the induced permutation is
¢~ which is also star-preserving automorphism of L(TS).
Let us recall a well-known result of Whitney on line-graphs.

Proposition 4.9 [16]
IfT and T are connected graphs and f : ET — ET’ is a bijection, then f is induced by an isomorphism of
T onto I' if and only if f and f~! are star-preserving.

In fact the proof of Proposition 4.9 given in [16], uses only the hypothesis that I' and I have no isolated
vertices and that each vertex of degree 1 is adjacent to a vertex of degree at least 2 (in other words the line
graphs L(T') and L(T”) have also no isolated vertices). Thus, we get :

Lemma 4.10 Let S be a set of transpositions on {1, 2,..., n} such that the graphs T'S and L(TS) have no
isolated vertices. Let ¢ and its reverse ' be star-preserving graph automorphisms of L(TS). Then there
exists o graph automorphism oy of T'S such that ¢([i, j]) = [04(3), 04(5)]

Remark 4.11 The automorphism o4 of T'S induces a permutation of the vertices {1,...,n} of T'S also
denoted by o4.

We are now able to prove the next result.
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Lemma 4.12 Let S be a set of transpositions on {1, 2,..., n} such that the graphs TS and L(T'S) have no
isolated vertices. Then the S-stabilizers of (S) are ezactly the mappings * — oxo 1, where the permutation
o € 8, is a graph automorphism of T'S.

Proof. Let h be a given S-stabilizer of < S >. It induces a permutation ¢ of the edges of T'S. By Lemma
4.8, ¢ is a star-preserving automorphism of L(T'S). Lemma 4.10 then shows that there exists an automor-
phism o4 of the vertices of T'S which induces ¢ on the edges of T'S (vertices of L(T'S)). So h maps the
transposition (7, 5) onto (54 (7),04(j)). As (04(i),04(j))) = a¢(i,j)o—;1, the group automorphism of < § >
T — a¢x0;1 gives the same images to the generators as the S-stabilizer h does. It follows that this
automorphism is indeed exactly h. O

By lemma 4.8 we get that, if the Cayley graph T has a complete rotation w, then L(T'S) is vertex-
transitive. Indeed, the subgroup of automorphisms < w > induces a subgroup of automorphisms of the
line-graph which acts transitively on the vertices. Thus if there is one isolated vertex in L(T'S) then T'S is
a union of isolated edges and T is a hypercube. We know in that case that there exists o € &,, such that
w(r) = oxo! (where w is the complete rotation). Thus, we get

Proposition 4.13 Let S be a set of transpositions on {1, 2,..., n}. The complete rotations of Cay(({S), S)
are exactly those of Property 2.9.

Notice that this proposition is a partial answer to Problem 2.10.

During the writing of this article, we were advised that J. Fournier proved the following generalization
of Lemma 4.12.

Proposition 4.14 [11] Let S be a set of transpositions on {1, 2,..., n}. If the graph T'S is connected and
is neither the cycle Cy nor a complete graph, then any automorphism of Cay({S),S) which stabilizes the
vertex I is induced by a group automorphism of &, x — oxo~!, where the permutation o € &, is a graph
automorphism of T'S.

Since any automorphism of Cay({S}),S) can be seen as the product of a translation by an automorphism
which stabilizes I, Proposition 4.14 implies that the rotation-translation group of Cayley graphs defined by
transpositions turns out to be the whole automorphism group except for M BS(4) = GST(4,2) and the
complete transposition graph CT,,.

4.3 Generalized star graphs

We now introduce a family of graphs which generalize star graphs. We consider Cayley graphs defined by
transpositions of X = {1,---,n} involving elements of two complementary subsets of X.

Definition 4.15 Let k and n be two integers such that 1 < k < n. The generalized star graph GST (n, k)
is defined as the Cayley graph Cay((S),S) where S is the set of all the transpositions (i, ) of X, with
ie{l,---,k}and je{k+1,---,n}.

Property 4.16 The transposition graph T'S is the complete bipartite graph K n— k.

In the case k = 1, GST(n,1) is isomorphic to the star graph ST'(n) and GST(2,1) to the graph K».

Notice that GST'(4,2) (see Figure 6) is isomorphic to the modified bubble-sort graph M BS(4) since these
two graphs have the same associated transposition graph C, (see Proposition 4.2).
As defined in [8] the arrangement graph A(n, k) is defined as the graph with vertex set the arrangements of
k elements chosen out of n elements ; its edges connect vertices which correspond to arrangements differing
in exactly one position. It is a quotient of GST(n, k) obtained by contracting in one vertex all vertices of
GST(n,k) which are permutations of X giving the same image for all the elements 7 with 1 < ¢ < k (and
deleting loops and multiple edges).
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Proposition 4.17 For n — k and k relatively prime the generalized star graph GST (n, k) has a rotation.

Proof. By hypothesis, S is the set of the transpositions (7, j), for 1 <i < k and k+ 1 < j < n. Consider
the permutation ¢ defined on X by

o=(2,,k1,k+2,k+3,--,nk+1).

Then o' = (k,1,2,---,k—1,nk+1,k+2,---,n—1). For 1 <i<kandk+1<j<m,oli,jlo! =
(14 (i mod k), k+1+(j—k mod (n—k))). Since n—k and k are relatively prime, the permutation (1, k+1)’s
orbit under conjugation by o is S. Using Property 2.9 we know that the graph has a complete rotation. O

Notice that the diameter of GST'(n, k) is studied in [25].

4.4 Characterization of rotational Cayley graphs defined by transpositions

We will now characterize the rotational Cayley graphs defined by transpositions by proving the following
theorem.

Theorem 4.18 The only Cayley graphs Cay({S),S) with S a set of transpositions, which have a complete
rotation are

(i) the modified bubble-sort graphs and the Cartesian products of isomorphic modified bubble-sort graphs,

(i) the generalized star graphs GST (t + q,q) with t and q relatively prime and the Cartesian products of
isomorphic generalized star graphs GST(t + q,q) with t and q relatively prime.

Notice that hypercubes are particular cases of Cartesian products of isomorphic generalized star graphs
GST(2,1).
In order to prove this theorem we need several lemmas which we present now.

Let w be a cyclic S-stabilizer of (S} and @ the automorphism of T'S given by Lemma 4.10. If (i, j) € S,
then w({z, 7)) = (w(i),w(j)). Furthermore, the cyclic subgroup, (@), of automorphisms of T'S generated by
@ acts transitively on the edges of T'S, and thus T'S is edge-transitive. We now consider the orbits defined
by the action of the group (@) on the vertices of T'S. The following lemma of Elayne Dauber is well-known
(see [15], page 172).

Lemma 4.19 If o graph T is edge-transitive without isolated vertices, then either T' is verter-transitive or
T is bipartite and T has two vertex orbits which form the bipartition of T'.

By Lemma 4.19, there exist two cases : either (@) is transitive on VT'S and T'S is vertex- and edge-
transitive, or the action of (@) on VTS defines two orbits and T'S is edge-transitive but not necessarily
vertex-transitive. We now consider these two cases separately.

Lemma 4.20 Let T'S be connected of mazimum degree at least 2. If () acts transitively on the vertices of
TS, then TS is a vertex-disjoint union of isomorphic cycles.

Proof. Since T'S is vertex-transitive every vertex of T'S has the same degree and this degree is at least 2.

Let ij be any edge of T'S. Since VT'S is the orbit of i under (@), there exists an integer a > 0 such that
j = @*(4). For any other edge kI of T'S, there exists 3 € Z such that ki= w?(ij). But wP(ij) = @” (i) @°(j)
and @”(j) = @?(@%(i)) = @’*t*(4i) = @*@"(4)). Thus any edge of T'S is of the form u @*(u), u € VTS.
This implies that any vertex of T'S is of degree at most two. Therefore T'S is regular of degree 2. Thus T'S
is an union of cycles and these cycles are isomorphic since T'S is vertex-transitive. O

Lemma 4.21 Let TS be connected of mazimum degree at least 2. If the action of (W) on the vertices of T'S
defines two orbits, then T'S is a vertex disjoint union of m > 1 complete bipartite graphs isomorphic to Ky 4
(mtq = d) with t and q relatively prime.
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Proof. By Lemma 4.19, T'S is bipartite with two independent sets Y, Z, YUZ = X. Let [Y| = p, | Z| = n—p.
For any vertex ¢ in Y (resp. Z), the set of its image by the automorphisms of (w) is Y (resp. Z). Thus any
vertex of Y (resp. Z) has the same degree t (resp. ¢q) and d = tp = q(n — p).

Let i € Y. The stabilizer of i for (w) is by definition the subgroup of automorphisms h of (@) such
that h(i) = i. As a subgroup of a cyclic group, it is also cyclic and generated by an element w®. Since
{@*(i),k € Z} =Y, a = p. Furthermore all vertices of Y have isomorphic stabilizers.

Similarly, for any vertex j of Z, the stabilizer is generated by the element @™ 7.

Let 45 be any edge of TS, i € Y, j € Z. We will show that the connected component of ¢ is isomorphic
to K; 4. By w*P(ij) = @ (i) @*?(j) = i @*?(j) any vertex @*?(j) is adjacent to i. On the other hand, for
any edge il,l € Z, the automorphism which sends the edge ¢7 onto the edge ¢/ must belong to the stabilizer
of 4, so that [ = @*?(j) for some integer k. This shows that the neighborhood of i is {w*?(j),k € Z}. By
symmetry, the neighborhood of j is {&*("~P)(i), k € Z}. It remains to prove that any neighbor of i and any
neighbor of j are adjacent. But, for any integers I, k, @ ("~?) (i) = G""=P)(@*? (1)) = @*?(@*~P)(i)), so that
T=P)(3) T*P(j) = WP (@ (P (4)5), and TH*~P)(3) T*P(§) is an edge of T'S.

Thus T'S is a disjoint vertex union of say m > 1 complete bipartite graph isomorphic to K; 4, with d = mtq.
It remains to prove that ¢ and ¢ are co-prime.

But the least common multiple of p and n — p must be d, otherwise all the edges of T'S could not be obtained
from a given edge ij by the powers of w as w*(ij) = W*(i)w*(j). But since d = tp = g(n — p), this implies
that ¢t and ¢ are relatively prime. |

We can summarize the results obtained so far as follows.

Corollary 4.22 Let S be a set of transpositions such that T'S has no isolated vertices. Then Cay(G, S) has
a complete rotation if and only if its transposition graph TS is

(i) the union of vertex disjoint isomorphic cycles, or

(1) the union of vertex disjoint complete bipartite graphs isomorphic to K, for some t and g relatively
prime.

Proof. The if part is proved by Proposition 4.6, Example 3.7 and Proposition 3.18.

Assume Cay(G, S) has a complete rotation. We first consider the case where T'S is not connected and of
maximum degree 1. By Corollary 4.7, this implies that all the connected components of T'S are isomorphic
to K. Thus T'S satisfies the condition (ii) in the particular case of vertex disjoint complete bipartite graphs
Kl,]_.

Now assume that the maximum degree of T'S is at least 2. Either the hypothesis of Lemma 4.20 or the
hypothesis of Lemma 4.21 is satisfied. In the first case, T'S satisfies the condition (i) and in the second one,
the condition (ii). O

We are now able to prove the theorem.

Proof of Theorem 4.18. By Proposition 3.18, Example 3.7 and Proposition 4.17, Cartesian products
of isomorphic modified bubble-sort graphs and Cartesian products of isomorphic generalized star graphs
GST(n,k), with n—k and k relatively prime, have a complete rotation. Conversely, assume that Cay((S), S)
has a complete rotation and S is a set of transpositions. We can assume that 7'S is a graph on n vertices
without isolated vertex (otherwise, we replace n by n — 1). By Corollary 4.22, Proposition 4.6 and Example
3.7, Cay((S), S) is the Cartesian product of isomorphic modified bubble-sort graphs or the Cartesian product
of isomorphic generalized star graphs. O

5 Conclusion

In this article we have studied some Cayley graphs Cay(G, S) which are interesting as models of interconnec-
tion networks, since they behave well for communication algorithms. They have particular automorphisms
called rotations which are induced by automorphisms of the group G defining the structure of Cayley graph.
Such a group automorphism leaves invariant the set of generators S and in the particular case of a complete
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rotation cyclically permutes the generators. Not all Cayley graphs have such complete rotations and we have
studied some characterizations. We have characterized the complete graphs which have a complete rotation.
Our more general characterization is given in terms of representation and relators for the group and the set
of generators, but this result is not easy to handle for a general graph. Nevertheless we have completely
characterized Cayley graphs generated by transpositions which have a complete rotation.

We have also studied conditions for the existence of a rotation and proved that some necessary conditions are
not sufficient. Conversely, we do not know if some sufficient conditions we give, like for Cartesian products,
are also necessary. Thus, we have pointed some problems, the most exciting being probably the equivalence
of the existence of a complete rotation w on Cay(G,S) and the existence of an inner group automorphism
of G, x — oxo~!, which cyclically permutes the generators.
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A Definitions of some Cayley graphs

In this section we recall the definition of some classical Cayley graphs defined on permutation groups which
are rotational (see also [13]).

A.1 Cycle

The cycle C), is the Cayley graph on &,, and the subset of the two cycles (1,2,...,n) and (n,n —1,...,1).
In this case a complete rotation w is defined by w(r) = oxo~!, where the permutation o is given by
(n,m—1,...,2,1).

A.2 Multidimensional torus

The multidimensional torus TM;} is the Cartesian product of d cycles of length p and therefore TM;f is
rotational by Proposition 3.18.

A.3 Hypercube

The hypercube H(d) is the graph with vertex set {z1z2...24 : ©; € {0,1}}, two vertices x125 ... 24 and
Y1Y2 - - - yq being adjacent if and only z; = y; for all but one 1.
H(d) is the Cartesian product of d complete graphs K, and the Cayley graph of the additive product group
Z.¢ generated by the d generators 0...010...0,0<i<d-1.

i d—i—1
H(d) is also the Cayley graph of the permutation group G generated by the d transpositions (2i — 1, 21},
1 < i < d, defined on the set of 2d elements X = {1...2d} (H(4) is shown in Figure 2 and the associated
transposition graph in Figure 3). Indeed, each vertex z1zs...xz4, x; € {0,1}, can be renamed as the
permutation (a1, az,...,a2q4) where (a2;_1,a2;) = (20 —1,24) if ; = 0 and (a2;_1,a9:) = (24,2i —1) if z; = 1.
H(d) is rotational. A complete rotation w is defined on H(d) by w(z) = oxo~!, where o is the permutation
given by o = (3,4,...,2d — 1, 2d,1,2) = (1,3,...,2d — 1)(2,4, . .., 2d).
Thus, 0= = (2d — 1,2d,1,2,...,2d — 3,2d — 2) and ¢%(1,2)0 =" = (2i + 1,2i + 2).
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1234657 12436578
<56
1234567 <3,4>123(658 2436587
.
poa 2435678
1234568 243568
. 134658 21436587
2134568,
1435687
21346578 21436578
21345678 21435678

Figure 2: H(4)

1 2 3 4
——o ——o
5 6 7 8
— o — o

Figure 3: Transposition graph for H(4)

A.4 Star graph

The star graph ST (n) is defined as the Cayley graph of the group &,, generated by the n — 1 transpositions
S ={(1,4),1 <i < n}. The associated transposition graph is the star K; ,_1 (see ST(4) depicted on Figure
4 and the associated transposition graph depicted on Figure 5). A complete rotation w is defined on ST'(n)
by w(z) = oxo~!, where the permutation ¢ is given by o = (1,3,4,...,7n,2) = (2,3,...,n).

A.5 Generalized star graph

The generalized star graph GST (n, k) is defined as the Cayley graph of the group &,, generated by the set
of all the transpositions (i,j) of X, with s € {1,---,k} and j € {k+1,---,n}. It is proved in Section 4.3
that this graph is rotational if and only if & and n — k are co-prime.

A.6 Modified bubble sort graph

The modified bubble sort graph of dimension n, M BS(n), is defined as the Cayley graph of the group &,
generated by the n transpositions {{i,4 +1),1 <i < n}U{(n,1)}. The associated transposition graph is the
cycle on n vertices C,,. M BS(n) has a complete rotation w defined by w(z) = oxo~! where o is the cyclic
permutation given by (1,2,...,n).
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1234 4231
<1,4>

3214 2431

<1,4> , , <1,4>

<1,4>

Figure 4: Star graph ST'(4).

Figure 5: Transposition graph for ST'(4).
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1234 <35 1324

<1,4 <1,4>

4231 <2,3> 4321

Figure 6: GST(4,2) = M BS(4)

2 4

Figure 7: Transposition graph for GST'(4,2) and M BS(4).
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B Notation

r a graph
VT its vertex set
ET its edge set
[z, v] an edge
AT the arc set = {(z,y) s.t. [z,y] is an edge} C VI x VT
L(T) the line-graph of T’
Aut(T) the graph-automorphism group of T
Ty, the group of integers modulo n
G a group
I unit
Aut(Q) the automorphism group of the group G
ScaG a subset
(S) the group generated by S
Stab(G, S) subgroup of Aut(G) = {h €Aut(G), h(S) = S}
Cay(G, S) the Cayley graph of the group G and the subset S
H a subgroup of Stab(G, S)
H the induced subgroup of Aut(Cay(G,S))
(o(1), --- ,0(n)) apermutationoc on X ={1, --- ,n}
oT (o(r(1)), -+ ,o(7(n)))
Gx the group of permutations on X
S, the group of permutations on {1---n}
o = {i1,02,...,0k) the cycle (or cyclic permutation) defined by o(i1) = 42, ...0(ik—1) = ig,0(ix) = i1
(t,7) transposition
Supp o {ie X, o(i) #1i}
References

[1] AKERS, S., AND KRISHNAMURTHY, B. A group theoretic model for symmetric interconnection networks.
IEEE Trans. Comput. 38 (1989), 555-566.

[2] ARNAUDIES, J.-M., AND BERTIN, J. Groupes, algébres et géométrie, vol. 1. Ellipses, Paris, 1993.

[3] BERMOND, J.-C., CoMELLAS, F., AND Hsu, D. F. Distributed loop computer networks: a survey. J.
Parallel Distrib. Comput. 24 (1995), 2-10.

[4] BERMOND, J.-C., KODATE, T., AND PERENNES, S. Gossiping in Cayley graphs by packets. In Conf.
CCS95 (8 th Franco-Japanese and 4 th Franco-Chinese Conf. Combin. Comput. Sci. (Brest July 1995))
(1996), vol. 1120 of Lecture Notes in Comput. Sci., Springer Verlag, pp. 301-305.

[5] Bicas, N. Algebraic Graph Theory. Cambridge University Press, 1974.

[6] Bicas, N., AND WHITE, A. Permutation groups and combinatorial structures, vol. 33. London Math-
ematical Society, Lecture Note Series, Cambridge University Press, 1979.

[7] COXETER, H., AND MOSER, W. Generators and relations for discrete groups. Springer, New-York,
1972.

INRIA



Rotations in Cayley graphs 23

[8] DAy, K., AND TRIPATHI, A. Arrangements graphs : a class of generalized star graphs. Inform. Process.
Lett. 42 (1992), 235-241.

[9] DELORME, C. Isomorphisms of transposition graphs, 1997.

[10] DESERABLE, D. A family of Cayley graphs on the hexavalent grid. Special issue on network communi-
cations, Discrete Appl. Math. (1997).

[11] FOURNIER, J. Le groupe d’automorphismes des graphes de Cayley engendrés par des transpositions.
Mémoire de maitrise, Univ. de Montréal, Canada (1997).

[12] FracoPoULOU, P. Communication and fault tolerance algorithms on a class of interconnection net-
works. PhD thesis, Queen’University, Kingston, Canada, 1995.

[13] FraGoPOULOU, P.; AND AKL, S. G. Spanning graphs with applications to communication on a
subclass of the Cayley graph based networks. Discrete Appl. Math. (to appear).

[14] FraioNiauD, P., AND PETERS, J. Minimal linear gossip graphs and maximal linear (8, k)-gossip
graphs. Technical report CMPT TR 94-06, Simon Fraser University, 1994. submitted to Networks.

[15] HARARY, F. Graph Theory. Addison-Wesley, Reading, MA, 1969.

[16] HEMMINGER, R., AND BEINEKE, L. Line graphs and line digraphs. In Selected topics in graph theory
(1978), Academic Press, pp. 271-305.

[17] HEYDEMANN, M.-C., AND DUCOURTHIAL, B. Cayley graphs and interconnection networks, vol. NATO
ASI of C. Kluwer Academic Publishers, 1997.

[18] JoHNSON, D. L. Presentation of groups, vol. 22. London Mathematical Society, Lecture Note Series,
Cambridge University Press, 1976.

[19] KNODEL, W. New gossips and telephones. Dicrete Mathematics 18 (1975), 95.

[20] LAKSHMIVARAHAN, S., JwO, J., AND DHALL, S. K. Symmetry in interconnection networks based on
Cayley graphs of permutation groups: a survey. Parallel Comput. 19 (1993), 361-407.

[21] MARLIN, N. Rotations complétes dans les graphes de Cayley. DEA, Université de Nice Sophia-Antipolis,
France (1996).

[22] ROBINSON, D. J. S. A course in theory of groups, second edition. Springer, 1996.

[23] SaBIDUSSI, G. On a class of fixed-point-free graphs. Proc. Amer. Math. Soc. 9 (1958), 800-804.

[24] SaBIDUSSI, G. Graph multiplication. Math. Zeitschr. 72 (1960), 446-457.

[25] SAcLE, J.-F. Diameter of some Cayley graphs, 1997.

[26] WaATKINS, M. E. Connectivity of transitive graphs. J. Combin. Theory 8 (1970), 23—29.

[27] WATKINS, M. E. On the action of non-abelian groups on graphs. J. Combin. Theory 11 (1971), 95-104.

[28] WHITE, A. Graphs, groups and surfaces, vol. 8. North Holland Mathematical Studies, Netherlands,
1984.

RR n° 3624



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



