3D Harmonic Maxwell Solutions on Vector and Parallel Computers using Controllability and Finite Element Methods

Abstract : We consider the scattering problem for 3-D electromagnetic harmonic waves. The time-domain Maxwell's equations are solved and Exact Controllability methods improve the convergence of the solutions to the time-periodic ones for nonconvex obstacles. A least-squares formulation solved by a preconditioned conjugate gradient is introduced. The discretization is achieved in time by a centered finite difference scheme and in space by Lagrange finite elements. Numerical results for 3-D nonconvex scatterers illustrate the efficiency of the method on vector and parallel computers.
Type de document :
Rapport
[Research Report] RR-3607, INRIA. 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00073072
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:46:52
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:39:11

Fichiers

Identifiants

  • HAL Id : inria-00073072, version 1

Collections

Citation

Marie-Odile Bristeau, Roland Glowinski, Jacques Périaux, Tuomo Rossi. 3D Harmonic Maxwell Solutions on Vector and Parallel Computers using Controllability and Finite Element Methods. [Research Report] RR-3607, INRIA. 1999. 〈inria-00073072〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

124