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Abstract: We consider the scattering problem for 3-D electromagnetic harmonic
waves. The time-domain Maxwell’s equations are solved and Exact Controllability
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convex obstacles. A least-squares formulation solved by a preconditioned conjugate
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Méthodes de Contrélabilité et d’Eléments finis pour les
équations de Maxwell en régime harmonique.

Résumé : On s’intéresse au probléme tridimensionnel de la diffraction d’ondes élec-
tromagnétiques en régime harmonique. On considére une formulation temporelle
des équations de Maxwell et, dans le cas d’obstacles non convexes, une méthode de
Contrélabilité Exacte permet d’améliorer la convergence vers la solution périodique.
On introduit une formulation moindres-carrés du probléme qui peut ensuite étre ré-
solu par un algorithme de gradient conjugué. Le probléme est discrétisé en temps par
un schéma aux différences finies centré et en espace par éléments finis de Lagrange.
Des résultats numériques pour des obstacles tridimensionnels non convexes montrent
I’efficacité de la méthode sur machines vectorielle ou paralléle.

Mots-clé :  Equations de Maxwell, Diffraction, Contrélabilité, Moindres-Carrés/
Méthode de tir, Gradient Conjugué, Eléments finis, Parallélisation.
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1 Introduction

Exact Controllability Methods have been applied in Bristeau, Glowinski, Périaux [6,
7, 8] to the solution of scalar harmonic waves scattering on complex geometry obs-
tacles. In this paper, we apply this method to the solution of 3-D Maxwell equations
for time harmonic fields. We consider the second-order time derivative formulation of
Maxwell equations; for nonconvex reflectors, if we integrate in time these equations
with periodic data, the convergence to the periodic solution may be very slow and
even the correct solution may be not reached. The method described in the present
article improves the speed of convergence to the periodic solution.

Once the problem is set as an Exact Controllability one, its solution via a least-
squares formulation and a preconditioned conjugate gradient algorithm is discussed.
Some details on the discretizations and the numerical implementation are given and
numerical examples are presented.

2 Maxwell Equations

We consider the scattering problem of an electromagnetic wave by a perfectly conduc-
ting obstacle B surrounded by vacuum. Let © C IR? be a bounded domain with
v = 0B the boundary of the obstacle and I' the artificial boundary (see Figure 2.1).
Let T > 0 be given.

Figure 2.1:

The electric field F of the scattered wave satisfies the equations (Maxwell equa-
tions in which the magnetic field H is eliminated) :

0*FE 4
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4 M. O. Bristeau, R. Glowinsk:, J. Périauz, T. Rosst

(2.2) V.E=0 in Q
(2.3) Exn=-E"xn on o=vx(0,T)
(2.4) (VxE)xn:(a—Exn)xn on L=Ix(0,7)

ot

with £ the incident wave and n the unit outward normal; on the artificial boundary
we prescribe the first-order (Silver-Muller) radiation condition (2.4). We use the non-
dimensionalized equations with ¢ = ¢7, ¢ light speed.

We assume that some initial conditions are given (we use the notation F(t) =

E(.,1)):
(2.5) E(0) = Fo,
oF

2. —(0)=F
(2.6 ()=,
satisfying the conditions:

(2.7) V. Ey=0,
(2.8) V-FE;=0.

3 Variational Formulation
We introduce the following spaces :
H(curl; Q) = {z € (L*(Q))*|V x z € (L*(Q))%}
H(div;Q) = {z € (L*(2)*|V -z € L*(Q)}
Vo=A{z€ H(curl; Q)N H(div;Q)|zxn=gxn on v}

Multiplying (2.1) by a function z € H (curl; ) and integrating by parts over €, we
obtain :

0*F

RV e

-zd;r—}—/(VxE)-(sz)dx—/ (VX E)Xn.zdl' =0.
Q r

Uy

The bilinear form [, (V X ¢) - (V X z)dz is not coercive on H (curl; ), an usual way
to remedy this problem is to add the term [, (V.)(V.z)dz. (see [19],[1],[13]).

INRIA
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So we introduce the following variational formulation to be satisfied by F(t) :

[ 28 ot (75 B) (V) (9 BT -l

) E
(32) _/(a_xn)xn-zdF:O, Vz eV,
r ot

E(t) € Vy,

with ¢ = —Fi"e,

We use the relation [ (VX E) xn-2dy = — [ (VX E)-(zxn)dy, so this integral
is zero for z € V.

We do not examine here the problem of the equivalence between (2.1)-(2.4) and
(3.2).

4 Time Harmonic Problem. Exact Controllability

We consider now that the incident wave is a time harmonic one, then, the scattered
field is also periodic and satisfies particularly:

(4.1) E(0) = E(T),
(42 20 ="2m)

where T denotes now the period (7" = ¢/f, f being the frequency of the incident
wave).

Then, the problem (3.2) associated with the conditions (4.1)-(4.2) can be formu-
lated as an Exact Controllability problem (see [18],[11],[12]):

Find e = {eg, e1} such that :

82
Qa—ﬁ'zder/Q[(Vxy)-(VXZ)Jr(V-y)(V-z)]d:c
(4.3) —/(%Xn)Xn-zdFZO, Vz €V,
r
y eV,
0
(44) y(O) = €q, a_:i(()) = €1,
0
(4 5) y(T) = €0, a_:i(T) = €].

RR n- 3607



6 M. O. Bristeau, R. Glowinsk:, J. Périauz, T. Rosst

We shall not address here the existence and uniqueness of solutions to problem
(4.3)-(4.5); instead we shall focus on the calculations of such solutions, assuming
they do exist.

In order to solve practically this problem, we introduce a least-squares approach,
leading to the following minimization problem :

(4.6) moin J(v)

with
J@) = 5[ 1oT) = wol*ds + [ (% (1) = v

(4.7)
HY (1) = )Py + [ 192(T) — wnda]

where y is a function of v through the equations (4.3) and

(4.8) y(0) = vy, %(0) = .

We denote W, = V) X (L*(Q))3. The space W, is equipped with the scalar
product (.,.) defined by
(u, 0)w, = /Quo vodz + /Q[(v % ug) - (V % v0) + (V - ) (V - vo)]dz

(4.9
—|_/ Uy - vldac, \V/U,U € WOa
Q

we denote |.|w, the associate norm.

The choice of the space Wy and of the associated scalar product is very important,
it determines the expression of J and then the scalar products and norms used in
the conjugate gradient algorithm introduced to solve (4.6).

Remark 4.1 The well-posedness of problem (4.6) is not discussed here; we refer to
Bardos and Rauch [2] for a study of the functional analogous to (4.7) but associated to
the 2D scalar problem, the same authors have proposed also an alternative functional
with better coercivity properties.

5 Gradient calculation

Assuming that e is the solution of the least-squares problem (4.6), it will satisfy:

(5.1) <J'(e),z>=0, Vze W,

INRIA
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where < .,. > denotes the duality pairing between W/ and W, (W] dual space of
Who).

To compute the derivative .J’, as in [6],[8], we use the classical perturbation
analysis. Let dv be a perturbation of v € Wy, from (4.7), we have :

< J'(v), 60 >= /Q(y(T) ~ ) - 6y(T)da
/ [(V X (5(T) = v0) - (V x dy(T))
(y(T) - ))(Z(; oy(T))]dx
(5.2) +/ ) - o) ! 90y )d;p-}-/(vo—y(T))-évod.r
/[( (Uo —y(T))) - (V x dvg) + (V- (vo = y(T)))(V - dvo)]dz
—}—/ v1 — =—(T)) - dvrdz.

In (5.2), the perturbation dy of y is solution of the following system

2
aatiy czdr + /Q[(V x 0y) - (V x 2) 4+ (V- 6y)(V - z)]dz
5.3
( ) —/(@XR)XTL‘ZdF:07 VZGVO,
r ot
y € V07
(5.4) dy(0) = dwo, %(0) = ovr.

In (5.3), we choose z = p, we integrate on (0,7") and integrate by parts, we obtain :

0%p dp T ddy
N - Sydzx dt—/ﬁaﬂydﬂo —I—/p T —dz|F

(5.5) +/ (V% p) - (V x 8y) + (V- p)(V - 6y)]dedt

-I-/ —Xn Xn-5dedt—|—/(p><n) xn-5de|g:0.
r
Suppose that function p satisfies

[ L2 o [[(5%0)- (9% 2) 4 (F )T -2l

(5.6) 9y
+/(_xn)xn-zdr:0, ¥z € Vo,
r ot

RR n- 3607



8 M. O. Bristeau, R. Glowinsk:, J. Périauz, T. Rosst

(5.7) pxn=0 on o,
then, using (5.4), equation (5.5) reduces to

/Q()'(%yd_/a 0y(T)dz

(5.8) + / (p(T) x 1) % n - y(T / ) - Soyda
r
8p( 0) - 5v0d:c—}—/ n) x n - dvpdl.
o Ot
dp
Let us define p(T) and 8t( ) by
-9 (1) = 1) -
. p - at 'Ul,

0 )
Qa_]t)(T)zdx—/((a:Z( ) —v1) X n) X n-zdl

= [ T) = o) 2da — [ [(9 % (0(T) = 00)) - (V2
+(V - (y(T) = vo))(V - 2)]dz, Vze V.

(5.10)

We then have from (5.2) and (5.6)-(5.10) (in this last equation, we choose z =
dy(T)),

< J'(v),w>= /Q(vo —y(T))) - wodz
+ 109 % (10— p () (V% o) + (V- (20— y()(V - o)

J
—I—/ vl—— )-wldx—l—/p(O)-wld:U— p() wo
Q ot

/ )X n) X n-wedl, Yw={wy,w} € Wp.

(5.11)

Remark 5.1 Relations (5.10), (5.11) are largely formal ; however, it is worth men-
tioning that the discrete variants of the above two relations make sense and lead
to algorithms with fast convergence properties (in order to make (5.10) rigorous we
should replace the integral in the left-hand side of the above equation by a duality
pairing; similarly, we should replace the boundary integral in the right-hand side of
(5.10) by a well-chosen duality pairing).

INRIA
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6 Conjugate gradient algorithm

We propose to solve the problem (5.1) by a conjugate gradient algorithm written as
follows:
Step 0 : Initialization

(6.1) " = {ed,el} € Wy is given (see Sec. 8 for the practical choice of €°).

Solve the generalized forward wave equation

82y0
[ S+ (7% 5°) (V% 2) 4 (V- 4)(V - 2))da
0
(62) —/(%Xn) Xn'ZdF:07 VZG‘/O7
r
yO € ‘/:m
0
(6.3) y’(0) = €5, %(0) =

Solve the generalized backward wave equation

9290
or .de/[(v %) - (V % 2) 4+ (V- pO)(V - 2)]da
o Ot . Q
6.4
(6-4) —}—/(%xn)xn-zdfzo, Vz € Vo,
r ot
p° € Vo,
with the final conditions
0 83/0 0
(6.5) p (1) = (1) — e,

/Qaait(T) . 2ds = /F((%(T) — ) xn) xn-zdl
- 0@ = ) zda— [ [V (6°(T) = ) (V% 2)
+(V - (T) = eV -2)]dz, Yz e V.

RR n- 3607



10 M. O. Bristeau, R. Glowinsk:, J. Périauz, T. Rosst

Define next ¢° = {g9, g9} € Wy by

[ a8 zda+ (V% g8) - (V x 2)+ (V- g)(V - )ldo =
Q Q
[ (6= 1°r)) - 2da

(6.7)
+/ [(V X (eg = y(T))) - (V x 2) + (V- (eg = y°(T))(V - 2)]da
—/ zdr—l—/ ) xn-zdl'y, Yz €V,
0 0 359
(6.8) g7 =p°(0) +€f - 2 (D)
and then
(6.9) w’ = ¢°.

k

For k > 0, suppose that €, g* w* are known; we then compute their updates e*+1,

gkt Wbt as follows:
Step 1 : Descent
Solve
82 —k
nE zdm—l—/ (VX §%) - (V x 2) + (V- ) (V - 2)]da
6.10 oy*
( ) _/(%Xn)XnZdF:O7 VZGVO,
T
Yk € ‘/07
_ dy*
(6.11) g"(0) = wg,  —-(0) = wi.
Solve
2pk
[ et 17 1) (¥ x 2) + (9 -5)(F - )}
6.12 op*
( ) _|_F(8—pt><n)><n 2dl' =0, Vze Vg,
eV,
_ ay*
(6.13) pHT) = —-(T) = i,

INRIA
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—k —k
/Qaait(T) 2o = /F((aait(T) —wk) x n) x n - zdl
= @) = by zda— [I(V x @HT) - b)) (T x2)
HV - (g*(T) — wb))(V - 2)]dz, Yz € V.

(6.14)

Define g* = {g5, gt} € Wy by

[t zdo+ [ [(V 5 45) - (V% 2)+ (V- g6)(V - 2)}do =
Q Q

[ (k= (1) 2
Q

6.15
(019 +/Q[(V X (w — 5" (1)) - (V % 2) + (V- (wg = g*(T))(V - 2)]da
08" ) . 2d 5 (0 .zdl, Yz e Vi
_/QW()Z:C—I—/F(])()X”)X”Z . z € Vo,
(6.16) =) +ut - )
Compute py, by
19" i,

6.17 __9lw
( ) Pk (g%, wF)w,

(- )w, and |.|w, being defined by (4.9).

We then update e* and g* by
(6.18) = ek — pru®,
(6.19) 9" =" — pig".

Step 2: Test for convergence and construction of the new descent direction. If

k
(6.20) |90|W0 <
19° e
take e = eFt1 ; else, compute
sk
(6.21) Vi = S
lg |W0

RR n- 3607
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and update w® by
(6.22) wht = gF gk

Set k=4k+1 and go to (6.10).

Remark 6.1 Fach iteration of the above conjugate gradient algorithm requires basi-
cally the solution of two generalized wave equations such as (6.10),(6.11) and (6.12)-
(6.14) and of an elliptic problem such as (6.15) (see Sec. 8 for details concerning
the numerical implementation).

7 Time and Space Discretization

For the practical implementation of the above algorithm, we give the space and time
discretization of the equations (4.3), (4.8) which can be considered as model for the
generalized wave equations to be solved in algorithm (6.1)-(6.22).

Concerning the time discretization, we use a second-order finite difference cen-
tered scheme. Let At = T/N (N : a positive integer) be the time step, we obtain
after time discretization of (4.3), (4.8)

/ yn+1 _ 2yn _I_ yn—l de
Q At?
[0V % 5"+ (V% 2) + (V") (T - 2)]ds
Q yn+1 _ yn—l
(7.1) —/F(TXn)Xn-zdF:o, Vz € Vo,
y”+1€Vgn+1, n=20,...,N,
yo = Vo,
v -y
2AL !

with g7+l = g(im+1).

The backward adjoint equation is discretized by the same scheme. It is impor-
tant to have an explicit scheme to avoid the solution of a linear system at each
time-step. As we simulate a time harmonic phenomenon, we have to use in any case
enough time steps per period and the time step prescribed by the CFL condition
related to the explicit scheme is not very smaller than the one prescribed by the ac-
curacy of the solution; so it would not be interesting to introduce an implicit scheme.

INRIA
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For the space discretization, we introduce a tetrahedrisation 7 of €, and we
consider the following discrete set:

(7.2) Vgh ={zp € CO(Q)P’, zulr € PEVT € Ty, 21, X nj, = gn X np, on )}

with Py the space of polynomials in three variables of degrees < k; nj will be defined
in the following.

For simplicity, we have chosen an approximation by continuous linear finite ele-
ments; we will not discuss here the advantages and the drawbacks of this approxima-
tion compared to edge elements, we refer for instance to P. Monk ([19]). To apply this
approximation, we assume that the boundary + is smooth enough not to generate
singularities.

So we approximate (4.3),(4.8) by :

1 1
n+1 n+1 -
@/th 'Zhdﬂé‘—@/r(yh th)th-zhdF_
At? /Q(Qy}? — Y - zpda

- /QW X yp) - (V% 2) + (V- yp) (V- 20)]da

7.3 1
(7.3) /F(y}?_l X np) X np - zpdly, Yz € Voh,

T 2At
y}?+16‘/g}ib+17 ’IZ:O,...,N,
y2:U0h7
1 -1
Yn — Yy
—_— =7
IAL 1h)

where vgp, and wvyj are approximations of vg and v; belonging to Voh.

The first terms of the two sides of the equation are calculated with mass lumping
to obtain a diagonal matrix. Using the same idea for the boundary terms, leads to
a 3 x 3 block diagonal matrix (at each node the 3 components of y;, are coupled)
each block is inverted analytically. The derivatives of y, and z, being constant by
tetrahedron, the integral [o[(V X y7') - (V X 2) + (V- y7)(V - zp)]dz is computed
exactly (see the following section for the implementation).

Concerning the approximate normale ny, it is defined at each node M; of the
boundary by the following usual formula; we compute

ni =Y V(T)Vegilr,
TeV;

RR n- 3607
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or which is equivalent

1
ni =3 Z A(S)ns,
SEB;
with

; a scalar basis function,
V; the set of the tetrahedra T such as M; € T,
B; the set of the boundary faces S such as M; € S,
V(T') the volume of the tetrahedron 7,
A(S) the area of the face S,

n, the unit normal of the face S,

then nj, is obtained at each node by normalization of n;.
As the scheme is explicit, the tangential condition yp X np = g5 X ny is satisfied
by projection ; we can use the relation

yn = (yn - nn)nn — (Yn X np) X np,

8 Numerical Implementation

In the algorithm (6.1)-(6.22), the more time consuming steps are the integration of
the generalized wave equations (6.10),(6.11) and (6.12)-(6.14) which after discreti-
zation are of the form (7.3) , and the solution of problem (6.15). In (7.3), the more
expensive part is the computation of the matrix-vector product corresponding to

the evaluation of the term /[(V Xyp) - (Vxzp) 4+ (V-yn) (V- zp)]dz; the matrix
Q

is the same as the one of the discretized problem corresponding to (6.15). As an
iterative process is used for the solution of this last problem, the main cost is also
related to the matrix-vector product. So, for the efficiency of the global algorithm,
the matrix-vector product has to be as optimized as possible.

First the following identity is used :

LT 50)+ (7% 2) + (7 ) (¥ 2))ds =

dyi — Oyi
Z ~/FLJW (8.?2”] - a;rj nl)Z]dF

7,j=1

(8.1)

/ Vy : Vzdr +
Q

INRIA
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or with an other notation

/[(VXy) (Vx2)+ (V- y)(V-2)ldz =

/ Vy : Vzdz —}—Z/ (Vy; x n) - (e; x z)dl’

Tuy

(8.2)

with {e;};=1,.. 3 the canonical basis of R3.

This identity is verified as soon as each term is defined, which is true in the
discrete problem (7.3).

So, using the right-hand side formulation the same laplacian matrix is applied to
the three components of y which are coupled only by the boundary integral.

In view of efficiency on the vector computer C90, the nonzero terms of the lapla-
cian sparse matrix and of the boundary matrix are stored diagonal by diagonal (see
[9],[10]). For the parallel computations, the row storage is used because in this case
it is better to handle short vectors.

Concerning the €} and e} initial control values in algorithm (6.1)-(6.22), we need
smooth initial solutions satisfying the boundary conditions on the obstacle, this
can be obtained by prescribing the time harmonic sources progressively during a
transient time interval [0,#;.] as suggested by G. Mur [20]. On this time interval,
we just integrate in time the Maxwell equation, the right-hand side g(z,?) in (4.3)
is multiplied by a smooth transient function 6. () increasing from 0 to 1. Different
functions can be considered, we have used the one proposed by G. Mur [20]:

(8.3) {Hfr(t) (2—Slﬂ((t/ttr)2))Sin((t/ttr)%), i 0<t <ty
O (t) = 1, if 2>ty

The discrete elliptic problems associated with the preconditioning steps (6.15),
have been solved by a diagonal preconditioned conjugate gradient. In the case of pa-
rallel computations, the linear problem (6.15) could also be solved by an algorithm
based on the domain decomposition (see[17]).

The meshes have been generated by a new 3-D mesh generator developed at
INRIA by E. Seveno ([22],[23]) and based on an advancing front method. This
method gives good quality meshes implying that we can choose a reasonable time
step satisfying nevertheless the CFL condition.

RR n° 3607



16 M. O. Bristeau, R. Glowinsk:, J. Périauz, T. Rosst

9 Parallelization

Basing on the introduced algorithm, we have constructed a parallel solver for the
considered Maxwell equations. In the parallel implementation we use message pas-
sing conforming to the MPI standard [24]. This makes our code portable to various
parallel computers. The numerical experiments were carried out in a Cray T3E com-
puter using up to 64 processors. Similar parallelization techniques were considered
for two—dimensional standard wave equation in [14].

The parallelization is based on nonoverlapping domain decomposition and it re-
serves the explicit nature of the algorithm. The computational domain €2} is de-
composed into a given number of subdomains using the mesh partitioning software
decomp of the Modulef finite element library [3]. The software decomp is based on K
means techniques which were earlier developed in automatic data classification. This
method, also called dynamic clusters, is initialized by a first partition which then is
iteratively improved in order to get connected regular mesh clusters and well balan-
ced number of vertices. The obtained decomposition is then used as an input for the
K means algorithm. This approach has been compared with other mesh partitioning
methods in [16] .

In our approach, each processor handles one subdomain, and the required vectors
and matrices are distributed to the different processors conforming the decomposi-
tion of the domain. The nodes at the subdomain interface boundaries are shared.
That is, all the processors whose subdomains meet at a given interface node have a
private copy of the vector components related to this node. This strategy increases
the computational overhead a bit, but it simplifies the implementation. Using this
strategy, we are able to solve larger problems, or to solve a given problem faster by
increasing the number of subdomains (and processors).

Our parallel implementation is algebraically equivalent to the sequential algo-
rithm, unlike the usual domain decomposition methods, where, typically, a parallel
preconditioner is constructed for the iterative solution of the linear system arising
from discretization. Due to the explicit time-integration scheme and mass lumping
for the generalized wave equations (6.10),(6.11) and (6.12)-(6.14), and the iterative
solution of the linear problems (6.7), (6.15), almost all the communication occurs in
the multiplication of a distributed vector by a distributed matrix A corresponding
to the integral (8.2). To describe this in more detail, we consider the case when we
have only two subdomains. The global matrix, denoted by A, and the vectors z and
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y then have compatible block representations

A Al’v T n
(9.1) A= An Ay Ap |, z=|2zy], y=1y |,
AQ'y Agg T2 Y2

where the subscript ¢+ = 1,2 denotes the components of the matrix and the vectors
related to the nodes of subdomain 7 which are not at the interface boundary, and the
subscript v denotes the shared interface components. The local subdomain matrices
A" and distributed vectors z* and y' then are as follows

A1:<A11 Al’y) x1:<iﬂ1) y1:<y1)
Awl A'ly'y ) x'y ) y'y )

A2 A x Y
(B () e (3)
AQ,Y A22 T Y Y2

where A, = A,lw + A,QW. Let us now consider the parallel computation of y = Az,
assuming that the vector z is already constructed and both processors have their
own copy of the block .. This can be done by the following obvious algorithm:

(9.2)

1. The processor i posts the nonblocking receive request for getting the block y%
from the neighbor processor j.

2. Both processors compute in parallel:
(93) gZ = Ale, 1= 17 27 gl = (y17y$)7 gQ = (y'37 y?)

3. The processor ¢ uses the nonblocking send to submit the block y; to the neigh-
bor processor j.

4. After processor i has received the block yﬁy from the neighbor processor j, it
can compute its final block y, by y, = y% + y%

In the above algorithm we used nonblocking point—to—point communication. It might
not be very beneficial in the case of only two subdomains, due to the extra buffer
space which is needed. However, it gives more flexibility and is easier to implement
in the case when we have several subdomains, and each subdomain can have quite
an arbitrary number of neighbor subdomains. This is the case when using a “black
box” mesh partitioning tool, instead of constructing the partitioning by hand.

In case of several subdomains the above algorithm is then modified appropriately.
In step 1, a receive is posted for each neighbor of subdomain 7, and in step 3, the
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18 M. O. Bristeau, R. Glowinsk:, J. Périauz, T. Rosst

processor ¢ sends a required part of the interface block to each of its neighbors.
Obviously, in step 2, all the processors can compute their local vectors in parallel.
In step 4, each processor waits until all the receives posted in step 1 have arrived in
an auxiliary buffer. After that it computes the update of its interface components.
This has to be done in fixed order in all the processors for a given shared interface
component in order to avoid the incoherence of the values of the shared components
due to roundoff errors.

It would be tempting to perform the update as soon as a message arrives from
a neighbor, because it would probably improve the performance. Since the matrix—
vector multiply is repeated quite a many times in the course of the algorithm, the
roundoff errors might accumulate and disturb the accuracy of the solution. This is a
topic which should be further studied numerically. In our implementation, we have
used the described safe strategy.

Some communication is also required in the parallel evaluation of the global in-
ner products in (6.17), (6.20) and (6.21). This can be done efficiently by using the
linearity. Hence, processors compute in parallel a given inner product with their
local vectors. After that, the global value is obtained by summing up the local in-
ner products, provided that the contributions of the shared interface components are
properly taken care of. We have used an approach, where each processor neglects the
interface components which are shared with subdomains whose number is less than
the number of the subdomain related to the processor itself. Hence, each interface
component is evaluated only once in the inner products. In terms of communication,
the cost of computing the inner products is quite small, even though collective com-
munication (in practice, the all reduce operation in MPI) is used since only scalar
values need to be summed.

10 Numerical Results

The developed code based on this algorithm has been first tested and validated on
spheres where comparisons with analytical solutions can be done (see [21]). We show
here the results for a sphere with radius A, the artificial boundary is located at a
distance A from dB. With the angles defined as in Figure 10.1, the incident wave is
defined by ¢ = 270° and E™¢ = (Ei"¢ 0, 0).

The mesh consists of about 88,000 nodes and 500,000 tetrahedra. The mean
length of the tetrahedron edges is about A/12. In Fig.10.2, we show the mesh split
up into 16 subdomains. The time step is T//40.
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Figure 10.1: Definition of
the angles.

We show in Fig.10.3 (resp., Fig.10.4) the contours of the F, component of the
exact (resp., computed) solution in a cross-section by the plane (z = 0). For the
plotting, the sphere is considered as transparent so we see also the F, component on
the surface of the sphere.

We compare the computation times obtained with one processor of a Cray C90
computer (vectorized code) or with a given number of processors of a Cray T3E.
For the sphere, the computation times correspond to 5 transition iterations and 10
control iterations, they include the initialization time (sub-domains meshes reading,
matrices computation) but not the solution writing time since until now we use a
global visualization code, so the global solution is written by only one processor.
With one processor of Cray C90, the run time is 230 s and the run times of the
parallel solver are displayed in Table 10.1. We give also in Table 10.1 the relative
speed up (sp) (compared to the time required when using 4 processsors) and the
optimal speed up (osp) possible for the given number of processors.

Table 10.1: Sphere: parallel solver results.

n 4 8 16 32 64
time(s) | 228 | 118 | 66 37 22

sp 1 193] 3.45]| 6.16 | 10.36

osp 1 2 4 8 16
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Figure 10.3: Sphere: contours of the F, component of the scattered field.
Exact solution.

Figure 10.4: Sphere: contours of the F, component of the scattered field.

Com(})uted solution.
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hm =~ A/40 inside the cavity and h,, ~ A/15 outside. Figure 10.5 shows the trace
of the mesh on the cavity and Fig.10.6 shows the mesh split up into 32 subdomains.
We use time step At = T//160. With the angles defined as in Fig.10.1, the incident
wave is defined by 6 = 150°, ¢ = 0° and F"¢ = (0,0, E'"°).

= <)
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SISEESSKK ‘>i1§: N ‘V‘
RS SIRS IR SE RSISIS RSN RIS
T Ve v NN NN T Q
A ROSKRERESRRR] KN
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XA 172

Iz
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Figure 10.5: Trace of the mesh on the boundary of the cylindrical
semi-open cavity.

We present on Figure 10.7 (resp. Fig. 10.8) the contours of the real part (resp.
imaginary part) of the E, component of the total field in the plane (z = 0). We
use the terms of real and imaginary part by analogy with the frequency domain
approach. These results are in good agreement with other Workshop participants’
results (see e.g.[4]).

We compare the convergence history obtained with the control algorithm (Fig.
10.9) and the one obtained by just integrating in time the Maxwell equations in view
to getting asymptotically the periodic solution (Fig.10.10). For this comparison, we
define the Lq residual :

Uo leg™" — ef]2da]z

[feo |€§]2da]?

Res =
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with ej denoting either the solution after n periods (asymptotic

Figure 10.6: Cavity: Split up mesh.

method) or the

solution after n iterations of the conjugate gradient algorithm (control method); we
denote €3 the initial solution obtained after the transient process. We notice that,
for this nonconvex obstacle, the asymptotic method does not converge (Fig.10.10)
and the solution inside the cavity is not correct.

With the control approach and t;, = 27T, the convergence is reached after 20
iterations and a run time of 44 min on one processor of a Cray C90. The run times
of the parallel solver are displayed in Table 10.2. In Figure 10.11 we show the relative
speed-up. In some cases the speed-up is lightly better than the optimal one, this
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Figure 10.7: Cylindrical cavity: contours of the real part of the F,
component of the total field in a cross-section

Figure 10.8: Cylindrical cavity: contours of the imaginary part of
the F, component of the total field in a cross-section
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Figure 10.11: Cavity: Relative speed-up
versus the number of processors.
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Figure 10.12: Trace of the mesh on the boundary of the air-intake.

is due to some balancing default (10% or 15%) which is worse when there are less

subdomains.

Table 10.2: Cavity: parallel solver results.
n 4 8 16 | 32 | 64

time(s) | 4081 | 1897 | 960 | 509 | 295
sp 1 215 | 425 8 | 13.8

osp 1 2 4 8 16

The last test case concerns an idealized air-intake as shown in Figure 10.12. The
artificial boundary is a circular cylinder located, at least, at one wavelength of the
obstacle. The characteristic length of the air-intake is 4 wavelengths. The Figure
10.12 presents the trace of the mesh on the obstacle. The mesh has about 327,000
nodes and 1,830,000 tetrahedra with h,, ~ A/25 inside the air-intake and h,, ~ A/15
outside. With the angles defined as in Fig. 10.1, the incident wave is defined by
f = 90°, ¢ = 45° and E" = (E"¢,0,0). We use as time step At = T/80.

With t;,. = 5T, the convergence is reached after 20 control iterations and a CPU
time of 37 min on a Cray C90, the parallel results are shown in Table 10.3. Asin the
previous case, we find some unexpected results due to balancing default, but globally
on these different examples we see a good efficiency of the parallelisation.
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Figure 10.13: Air-intake: contours of the F, component of the scattered

field.
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Figure 10.14: Air-intake : R.C.S. in 0. 10. 20. 30.

the incidence plane. I'terations

Figure 10.15: Cost function .J conver-
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In Figure 10.13 we have visualized the F, component of the scattered field in the
cross section by the plane (z = 0). The RCS in the same plane is shown in Figure
10.14.

Figure 10.15 shows the convergence history of the cost function .J defined by
(4.7).

Table 10.3: Air intake: parallel solver results.

n 4 8 16 | 32 | 64
time(s) | 3572 | 1695 | 992 | 397 | 211
sp 1 2.1 | 3.6 | 89 |16.9
osp 1 2 4 8 16

11 Concluding Remarks

For the scattering problems considered, we obtain satisfying results with the propo-
sed treatment of the divergence constraint (of penalization type with penalization
parameter equal to one), associated wih the least-squares formulation.

Due to the field approach, the extension of the method to coated obstacles is
possible, as it has been done for 2-D cases in [5, 15].

The algorithm being based on a completely explicit scheme, the parallelization of
the code is easy and, due to the good convergence properties of the method, higher
frequencies computations could be considered.

We have presented here an application of the Exact Controllability to the solution
of a scattering problem on nonconvex reflectors, but, of course, the state equation
solver can also be used for transient computations.
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