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Abstract: The stability properties of the bandwidth allocation algorithm First Fit are
analyzed for some distributions on the sizes of the requests. Fluid limits are used to get
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Sur la stabilité d’un algorithme d’allocation de bande passante

Résumé : Les propriétés stabilité de I’algorithme d’allocation de bande passante First Fit
sont analysées pour certaines distributions sur la taille des requétes. Les limites fluides sont
utilisées pour obtenir les conditions d’ergodicité. Quand il n’y a que deux tailles de requétes
possibles, la description du cas instable fait intervenir une chaine de Markov & espace d’états
fini sur les états de sortie d’une chaine de Markov transiente. L’expression explicite de la
matrice de sortie est donnée.

Mots-clé : Algorithmes de bin packing. Ergodicité. Transience. Limites fluides.
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1. INTRODUCTION

The model we consider here is a simplified description of a bandwidth allocation scheme in
a network: a stream of messages arrive at a service facility working at rate C. The messages
are of different nature, it can be video, voice or data, each of them requires a portion of
the bandwidth C to be transmitted. A video stream will of course require a significant
portion of the capacity of the server, at the opposite data messages do not usually need high
transmission rates. The sum of throughputs required by the messages being transmitted at
a given time must be less than C. If they are not being transmitted, the messages are stored
in an infinite buffer in their order of arrival. When a message has finished its transmission,
if there is enough room, messages in the queue can be transmitted. At this point several
algorithms are available:

1. the FIFO policy. A message is transmitted if it is the oldest in the queue.

2. First Fit (FF) algorithm. A message in the queue is transmitted if it fits and none of
the other messages before it in the queue is transmitted.

3. Best Fit (BF) algorithm. The largest message that fits is transmitted.

The list is of course not exhaustive. The FF and BF algorithms have the advantage of
reducing the wasted bandwidth, none of the messages in the queue can be transmitted
without violating the capacity condition; this is not the case for the FIFO algorithm. In this
paper, we study the problem of stability of the First Fit algorithm: for a given distribution
on the sizes of the items, what is the maximal rate under which the server can accommodate
all the requests without an explosion of the queue ?

For convenience we shall use the bin packing terminology: the server is a box of size C,
messages are items and the bandwidth required by a message is the size of the item. Hence
we have a stream of items which require a service delivered by a bin. As we shall see, the
probabilistic description of this model is not easy to handle; it involves an infinite dimensional
vector space (a space of strings). Some general results for which a simple stability condition
holds are established. The case where items have two possible sizes is analyzed and the
stability condition established. This simple case already exhibits the difficulty of working in
the state space mentioned above; a simple result (Proposition 7) reduces the difficulty.

We also analyze the transient behavior of the system, i.e. when the system is not stable.
This is an important topic, since a generalization to more general distributions requires such
an analysis. The main result concerning the transient behavior is the following: the process
is basically a two dimensional process exploding linearly, except at instants where, during
a short time, the complexity of the process shows up. This short period of time determines
the two dimensional process that will drive the process until the next change of direction.
The paper finishes with the explicit expression of the transition from a direction in the plane
to next one. The interesting behavior of the transient case is the main point of this paper.
Usually in most of the known examples a saturated node has a regular behavior for the other
nodes, hence it is replaced by an equivalent node with different parameters. In the model
considered here when a node of a network is saturated, it may causes oscillations to the rest
of the network; it cannot be reduced to another equivalent node.
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4 Jean-Frangois Dantzer, Mostafa Haddani, and Philippe Robert

Assumptions. The items arrive according to a Poisson process with parameter A\. Their
sizes S;, i € N form an i.i.d. sequence with a common distribution p on [0, C], an item of size
s will also be called an item s. It is assumed that the range of the S;’s is some finite subset
T of ]0,C]. Once in the bin, each item is served for an exponentially distributed amount
of time with parameter 1. The capacity of service of this system is C' and the average
load AE(S1). Throughout this paper, V¢ denotes a Poisson process with parameter ¢ and
N¢(]0,1]) is the number of points of this process between 0 and ¢, all the Poisson processes
considered are independent.

The markovian representation. The description of this system as a Markov process
involves two components, L = (I;) and B = (b;) elements of the set 7™ of finite vectors
with components in the set of T of the possible sizes of the items. The vector L describes
the queue and B the state of the bin, they satisfy the following conditions: the components
of B fit in the bin,

M Sh<c,

and none of the items in the queue fit in the bin, i.e. for any index j
(2) i+Y bi>C,

l1(t) is the size of the older item still waiting at time ¢; I;(¢) is the size of the j-th oldest. The
state space S of the Markov process is the set of the 2 = (L, B) € T™ x T™) satisfying (1)
and (2. The norm |z| is the sum of the components of the vector z, if (L, B) € S, |(L, B)| =
> bi +>_1;. When the component B of (L, B) in S is 0 (the empty vector), the queue is
empty and (0,0) corresponds to an empty system. Since there are only a finite number of
possible sizes, the dimension of the B-component is upper bounded. This is not the case
for the L-component. Its dimension (the number of items in the queue) can be arbitrarily
large. Our state space is a countable but embedded in an infinite dimensional vector space.
Since the First Fit algorithm scans all the queue at each event, the infinite dimension really
plays a role (this is not the case for example for the FIFO algorithm). This complicates
significantly the analysis of the stability since the number of ways to go to infinity is an
order of magnitude greater compared to the finite dimensional case.

The Markov process (X(t)) = ((L(t), B(t)) describing the first fit algorithm has the
following transitions :

1. Arrivel. At rate A an item of size S arrives at the bin. If it does not fit in the bin, the
element S is concatenated at the end of the vector L.

2. Departure. At rate 1, each item in the bin leaves the system. In the case of a departure,
the first element of the queue that fits is added, and then the second, and so on.

It is not difficult to show that (X (%)) is an irreducible Markov process on S. We shall say
that the model is stable when (X (t)) is an ergodic Markov process.

INRIA



On the stability of a bandwidth packing algorithm 5

Definition 1. Fori € T the variable L;(t) [resp. B;(t)] denotes the number of items of size
i in the queue [resp. in the bin]. An additional index x € S, Ly ;(t) Bg,(t) indicates the
initial state x.

Related models. A similar problem has been analyzed by Kipnis and Robert [14] with
the FIFO algorithm. An item in the queue cannot access the bin if it is not the first item in
the queue. The stability problem is simpler in this case: the vector of the sizes of the items
in the bin and the size of the first item in the queue is a Markov process. The lengths of
the items in the queue, the first one excepted, are i.i.d. random variables with distribution
p. To study the maximal throughput of this model, it is sufficient to calculate the output
of the bin when the queue is saturated, i.e. when it contains an infinite number of items.
For the First Fit algorithm the situation is quite different. Since the queue is scanned to
accommodate items in the bin, the size of the items in the queue are unlikely to be remain
independent and with the same initial distribution p. For example there should be less small
items at the beginning of the queue than at the end. Furthermore, if we saturate the queue,
the output will not give the maximal throughput of the queue: if the size of the items are
uniformly distributed on [0, 1], an infinite number of small items will be in the bin generating
an infinite output.

Coffman and Stolyar [4] analyzed the stability of the algorithms First Fit and Best Fit
when the services are constant equal to 1. They prove that the natural condition AE(S) < C
is sufficient for the stability in the case of a symmetrical distribution of the sizes; in Coffman
et al. [3] the sufficiency for stability of the condition AE(S) < C is considered in a more
complex communication network.

Markov processes on strings occur also naturally in the multi-class queueing networks.
Rybko and Stolyar [18], Bramson [2, 1] analyzed such Markov processes. In their work, due
to clever arguments, the string structure is not really taken into account in their analysis.
Dumas [9] presented an analysis of the fluid equations for the string structure of Bramson’s
networks.

In the same vein, Malyshev et al. [13, 16] investigated quite general models with strings
but with a dynamic depending only on a finite number of components at the end (or the
beginning) of the string.

Further properties of the systems considered here are presented in [8].

Before analyzing in detail the ergodicity of (X (t)), we recall the main results and ideas
concerning fluid limits.

2. FLUID LIMITS

In this section (X(t)) is an irreducible Markov process on some countable space S and
f a positive function on S. The following classical criterion is a generalization of Foster’s
result due to Filonov (see Filonov [12] or [11]).

Proposition 2. If there exists an integrable stopping time 7, a finite set F C S, v > 0 and
a positive function f such

a) E,(f(X(1))) <+4oo forallz €S ;
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6 Jean-Frangois Dantzer, Mostafa Haddani, and Philippe Robert

b) E.(f(X(7)) — f(#)) < —7E(7) if s ¢ F ;
and if {z/f(x) < K} is finite for all K > 0, then (X(t)) is an ergodic Markov process.

The origin of this criterion is the Lyapounov stability test of ordinary differential equations
adapted to the stochastic case. The function f is usually called a Lyapounov function. The
main problem with this kind of criterion is (of course !) to find an appropriate function f.
If the transitions of the Markov process are not sufficiently homogeneous, finding a function
that satisfies b) can be cumbersome, even in the ”obvious” cases.

To overcome this problem, the rescaled process (Xy(t)) is introduced

- fX(Ef(x))
3 XIt) = ,
® fo= 15U
if X(0) = z ; notice that X(0) = 1. The time variable and the space variable are scaled by

a factor f(z). The main result concerning the ergodicity is the following theorem. This is a
slight generalization of a theorem due to Rybko and Stolyar [18].

Theorem 3. If there exist an integrable stopping time T, constants A, € > 0 and a positive
function f on S such that

: f(X(7)) _
) kﬁﬁ&E(fm>)51 i
(5) lim sup E; (1) <A,

f(z)—+o0 f(w) N

if the subset {x € S/f(x) < K} is finite for any K € N, the Markov process (X (t)) is
ergodic.

Apparently the situation did not change with this theorem, there is still a function f to
find out. But in practice, if S is embedded in a vector space, f(z) = |z|, the norm of z, is a
good candidate in most of the cases. The condition (4) requires that at some random time
the norm of the process (X (#)) is, in average, below its initial value. This suggests then the
analysis of the process (X7 (¢)), when |z| — +o00. If one can prove that it converges almost
surely to 0 after some time 7', then up to an integrability argument, the theorem 3 can be
applied.

Usually it is easier to analyze the behavior of the sample paths of (Xf(t)) as  — +o0
rather than playing with the coefficients of the transition matrix to have condition b) of
Proposition 2. These scaling ideas are difficult to trace back. Similar methods are used
in the analysis of infinite particle systems but in a different context (see Comets [5] for
example).

The discovery of some unexpected phenomena for the stability of queueing systems (Bram-
son [1, 2], Lu and Kumar [15], Rybko and Stolyar [18] among others) gave an impulse to
the studies in this domain recently. Dai [6] set a framework to apply Rybko and Stolyar’s
scaling method to prove Harris ergodicity for queueing networks; for the transience, Dai [7]
and Meyn [17] obtained partial counterparts to the ergodicity results.

INRIA



On the stability of a bandwidth packing algorithm 7

3. A NATURAL ERGODICITY CONDITION

With our assumptions the system has a capacity of service C' and the offered load of
the flow of the items is AE(S). A natural condition for stability is thus AE(S) < C. The
following proposition shows that it is at least necessary for stability.

Proposition 4. If the Markov process (X (t)) is ergodic then AE(S1) < C.

Proof. The process can be viewed as a rectangle packing in an infinite horizontal strip of
height C'. The length of a rectangle is the time required by an item and the height is its size.
The z-coordinate of the bottom left corner of a rectangle is the time at which the item has
been accepted in the bin. Obviously, the rectangles do not overlap; if the process is ergodic,
the area covered by the rectangles arrived between 0 and ¢ must be less than Ct + o(t) for ¢
sufficiently large. The law of large numbers shows that this implies AE(S;) < C. O

With the same argument, it is easy to prove that the condition AE(Sy) < C is sufficient
for ergodicity under the condition that the bin is full whenever the size of the queue is
sufficiently large. The gap between the “optimal” condition AE(S;) < C and the real one
is due the waste of space in the bin. The reference [8] studies this problem.

Theorem 5. If there exist an integrable stopping time 7 and a random variable D such that

1. the items present at time O have been served at time T ;
2. the bin is full during 7 — D between 0 and T and

E,(D) _
|z|—>+400 |£L'|

the Markov process (X (t)) is ergodic if AE(S1) < C.

Proof. With the rectangle packing analogy, we get the following inequality,

N,[0,7]
Zmiag + Z S;o; > Cm — DC,
i=1
where the z; are the components of z, the ¢’s are the service times (with an upper index
0 for the initial items) and N, is the arrival process. Taking the expectation in the above
inequality, we get with the help of Wald’s formula

|z| + E,(D)C
< - 7
hence,
(6) lim sup B () < 1

le|otoo 7] T C'=AE(S1)

RR n~° 3605



8 Jean-Frangois Dantzer, Mostafa Haddani, and Philippe Robert

If (y;) is the vector of the sizes of the items present at time 7 in the system and (o)) the
vector of their residual services,

NA[0,7]

Zaéyi < inag + Z S;a; — C(t — D),
i=1

taking the expected values, we get
E(IX(7)]) < || + (AE(S1) — C)E(7) + CEy(D);

since the initial items are served we have CE(r) > |z|, hence

E(X(D)])  AE(S.) +CEE(D)7
|| c ||
E(|X E
(7 lim sup (X (r)]) < AB(51) <1
The inequalities (6) and (7) and the theorem 3 show the ergodicity of (X (¢)). O

The following corollary is deduced directly from the inequalities (6) and (7), it gives upper
bounds on the behavior the first time where the bin is not full.

Corollary 6. Under the condition AE(S1) < C, if Ty is the first time the bin is not com-
pletely used,

T, =inf{t/|B(t)| < C},
there exists A > 0 such that
(8) E.(T1) < Alz|, and E,(|X(T1)]) < ||,
forany x € S.

We can now give a simplified form of Theorem 3. This result reduces the size of the set
of initial states to consider in the analysis of ergodicity.

Proposition 7. If Sy is the subset of elements of S with the bin not completely full, S =
{z = (B, L) € §/|B| < C}, and if there exist constants ¢ >0, A € R and a stopping time T
such that

X
(9) limsup E (| (T)|) <1l-g,
|z|—+o00,2€80 |'7;|

(10) lim sup E (r) <A,

|z| —>+00,zESo |'T|
under the condition AE(S1) < C the Markov process (X (t)) is ergodic.
Proof. According to our hypothesis, for 9 < € and Ay > A, there exists K > 0 such that

) . (B0

||
if |z| > K and z € Sp. The random variable T is defined as follows:

E,
) <1l-—¢p, and |£|T) <A

INRIA
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1. if X(0) € S, T =7;
2. if X(O) ¢80 and |X(T1)| S (]. - 60)K, T= Tl;
3. T =T, + 7, otherwise;

as before T; is the hitting time of Sy. The variable T is clearly a stopping time. If z € §
is such that |z| > Ky = K/(1 — €9), then E,(X(T)) < (1 —&9)|z| when z € Sy. Otherwise
when z ¢ Sy, the strong Markov property of (X (t)) gives

E.(|X(T)]) = E-(|X(T1)) 141 x(11) | <(1-20)|2]})
+ Eo(Ex () (IX (111 x(10) > (1=20)12/})>
the inequality (11) shows that
E.(|X(T)]) £ EL(|X(T1)) 141 x(11)1<(1=20)|2]})
+ (1 — o) Ex(|1X (T0) 1§ x (1) > (1=0) 2]})

hence

E(|X(T)|) <E(IX(T1)]) — e By (IX(T0) 1 {1x(T1) | >(120) 2]})-
Using (8), we get finally

E,(IX(T)]) <|=/(1 — eo(1 = &0)),

whenever |z| > K;. With similar arguments, it is easy to prove that there exist Ky, Ay >0
such that E,(T) < As|z| when |z| > K. Theorem 3 shows that the Markov process (X (¢))
is ergodic. O

4. THE CASE OF DISTRIBUTIONS WITH TWO SIZES : THE ERGODICITY CONDITION
The possible sizes of the items are 1 and a € N, the capacity C' is an integer greater than
a and the probability distribution y is given by
p=pé + (1 —p)éa,

where p € [0,1] and &, is the Dirac measure in z. The condition AE(S;) < C'is A(p+a(l —
p)) < C. The capacity C is decomposed as C' = ka + r, with 0 < r < a; at most k items of
size a are served at the same time and r items of size 1 can be served simultaneously in any
case.

Assumptions. To avoid messy details, we discard some singular cases; we assume that Ap
is not r or C' — |C/a]a, and that (C' — Ap)/a and C(1 — p)/E(S1) are not integers.

RR n° 3605



10 Jean-Frangois Dantzer, Mostafa Haddani, and Philippe Robert

A priority mechanism. If at some moment, the bin contains a number of items 1 greater
than C — (@ — 1) so that an item a cannot be accommodated, the bin will be then filled by
the items 1 if there are many of them. As long as there will be an item 1 in the queue, the
first fit algorithm will serve only the items 1 (an item 1 is replaced by an item 1). In this
case, the first fit algorithm is similar to a priority queue.

Notice that this phenomenon occurs with positive probability if the initial state has
sufficiently many long strings of items 1 in the queue. If an item 1 is at the head of the
queue when an item a leaves the bin, then a items 1 will fill the @ empty places. The items
1 may occupy all the bin if this situation happens sufficiently often. However, if there is a
long string of items a at the head of the queue, an item a leaving the bin is replaced by
another item a.

From a heuristic point of view, the ergodicity condition can be easily guessed. If Ap > 7,
there will be no waste of space even when a long string of items a is served, the items 1 will
saturate the empty space in the bin; the condition AE(S) < C' is thus sufficient. Otherwise
Ap < 7, the items 1 will be transparent since they are served in the empty space left by the
items a, hence the condition should be A(1 —p) < k.

Proposition 8 (Ergodicity condition). If the distribution of the size of the items is given
by p=pb1 + (1 —p)ba, with p € [0,1], a € N and the capacity of the bin is C = ka +r with
0 < r < a, under the condition

(12) max(r — Ap,0) + A(p + (1 — p)a) < C,

the Markov process (X (t)) is ergodic.

Proof. To apply Proposition 7, we take a sequence of initial states (xn) = (I, bn) in the set
Sp such that |z x| converges to infinity as N — +o00; we denote by (Xn(t)) = (In(t),bn(t))

the process with initial state zy. All we have to prove is the existence of a stopping time 7
such that

By (XN (1))

(13) lim sup <1l-eg,
N—-+oc0 |-75N|
E
(14) lim sup 22> () ¢

N—+oco |-’L'N|
for some positive constants C' and € not depending of the sequence (zy)-
An element ((b;), (;)) of Sy satisfies >~ b; < C (by definition) and (I;) is a string of a,
l; = a for all j (since an item 1 would fit). Two cases occur, depending on the value of Ap.

Case Ap < r. The condition (12) is A(1 — p) < k. Since there are always r places for the 1
in the bin, the number of 1 in the system (L;(t)) is bounded by the number of clients in a
stable M /M /r queue with input rate Ap, service rate 1 and C initial customers. The first
time when this M/M/r queue is empty is integrable, consequently the same property holds
for the first time T3 when the number of 1 in the system is 0. At time T3, there will k items
of size a in the bin; using the same method as in the proof of Proposition 7 (7% playing the
role of T}), it is easily seen that we assume that for all the zy, there are k items of size a
in the bin.

INRIA



On the stability of a bandwidth packing algorithm 11

The items a arrive at rate A\(1 — p) and are served at rate k > A(1 — p). If 7 is the first
time when all the items « initially in the queue are served, it satisfies

Een(r) _ 1

li =
N—1>+oo |~73N| K’

by the law of large numbers. Because of the stability of the M /M /r mentioned above, the
expected value of the total number of items 1 is O(|zy|), and the number of items a is
bounded by N[0, 7], consequently

Eun (X(7)) _ A1 —p)

li = < 1.
NoFeo  |zy] k

Case Ap > r. The number of items @ in the bin for the initial state zy = (by,In) € Sp is
denoted by ky. At time 0 less than C' — kya items 1 are in the bin and [y is a string of
items a.

If Ap < C'—kpna then within an integrable amount of time all the items 1 will have left the
bin, hence k items a will occupy it. Without loss of generality we assume that the inequality
Ap > C — kya holds for all the initial states. The relation Ap > C' — kya implies that after
a finite time, the items 1 will saturate the places left by the items a and according to the
condition (12) it implies also that A(1 — p) < kx. Consequently the bin is full up to time T
when the initial string of items a has been served, clearly

lim Ean(T) (T) = b <1,
N—+o00 |.Z‘N| akN
moreover
i P (XD _A1=p) _ |
N—+o00 |.Z‘N| k
with k = inf{i/\(1 — p) < i}. Our proposition is proved. O

Notice the advantage of starting from a state in Sy, i.e. the queue is a string of items a, it
amounts to identify (zy) with (Jzx|) for the analysis of the ergodicity. The complexity of
the numerous patterns of 1 and a is ruled out with this method.

5. THE CASE OF DISTRIBUTIONS WITH TWO SIZES: THE TRANSIENT BEHAVIOR

We describe here the way the process (X(t)) goes to infinity when it is transient. It is
important to describe the transient behavior of such a process. Indeed, if for example there
are three possible sizes for the items, 1, ¢ and b with 1 < a < b, the analysis of the stability
in this case necessarily contains the study of the following case: a large string of b at the
beginning of the queue and kg items b in the bin; if there are sufficiently many items a and
1, the rest of the bin is occupied by them. For a while there is a bin of size C — kob with
an arrival stream of items 1 and a and this system may be transient. When the string of
items b at the head of the queue is processed, to describe the future behavior of the system,
it is necessary to know how many items 1 and a remain in the queue at that time and how

RR n° 3605



12 Jean-Frangois Dantzer, Mostafa Haddani, and Philippe Robert

they are distributed. This is why a precise description of the transient behavior is a minimal
requirement to get some insight on more general distributions.

Proposition 9. If the distribution of the size of the items is given by u = pé1 + (1 —p) bq,
p € [0,1] and the capacity of the bin is C = ka + r, with 0 < r < a, under the condition

(15) max(r — Ap,0) + A(p + a(1 — p)) > C,
the Markov process (X (t)) is transient.

Proof. The proof is straightforward: if Ap < r, the condition (15) is A(1—p) > k, the number
of items a is exploding at least at rate A(1 — p) — k. Otherwise if Ap > r, the condition (15)
is simply AE(S1) > C; The rectangle packing view of the algorithm gives, almost surely,

I

t—+o0

the process (X (t)) is transient. O

More interesting is the way the shape of queue evolves. We describe now the paths to infinity
in the transient case. Throughout this section the condition (15) holds.

Definition 10. Fort € Ry, v(t) is the rank of the first item of size 1 in the queue,

v(t) = inf{i/li(t) = 1},

if X(t) = ((I;(t)), (b;i(t))), and with the convention inf @ = +o0o. The variable T is the first
time when an item of size 1 is at the head of the queue and n is the first time when the queue
is a string of items a,

T =inf{t/v(t) =1} and n=inf{t/v(t) = +oc}.

The variables T, Nz and v,(t) denote respectively the variables T, n and v associated with
the initial state X (0) = x.

5.1. A saturated model. At time ¢t = 0, the state of the system is defined as follows:

1. the bin contains kg items of size a, kg < k and C — kga items of size 1;
2. the queue is an infinite vector (Ly) = (I;) such that
(a) ;=afori=1,...,N;
(b) {l;x+n,% > 1} is an infinite string of ii.d. random variables with distribution
p=pby + (1 = p)éa.
Since there is an infinite number of items 1 in the queue, the bin remains full forever.
Moreover the process (Z(t)) = (v(t), B,(t)) has the Markov property. As we shall see, the
process (Z(t)) is transient in some cases; its exit states will give the key of the transient
behavior of the process (X (t)). The following lemma gives the condition under which (Z(t))
is transient, or equivalently when the string of items a at the head of the queue grows or
shrinks. This will be useful to classify the paths to infinity of the process (X (t)).

INRIA
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Lemma 11. If kg < C(1—p)/E(S1), the string of items a grows: almost surely there exists
some Ny € N such that for all N > Ny and t € Ry,

BzN,a(t) = kO;

Vgy(t) >0 and lim Van (%) = c-p)- kOE(Sl).
t—4o00 t p
If kg > C(1 — p)/E(S1), the string of items a shrinks: for N € N sufficiently large, the

variable ., is almost surely finite and

. Tzn p
N T REG) —CO=p)
Proof. The proof is fairly simple: as long as the first item 1 has not hit the head of the
queue, its rank decreases by 1 when an item a leaves the bin, i.e. at rate ky. When an item
1 leaves the bin, the item 1 located at v(t) enters the bin; the i.i.d. assumption shows that
the next item 1 in the queue is located at v(t) + G where G is random variable geometrically
distributed with parameter 1 — p. The process (v(t A 7, )) has the same distribution as

K(tATz )
nt Y Gi— N0t ATyl ),
i=1
with k(t) = No—keal0,t], (G;) is an i.i.d. sequence with a geometric distribution of parameter
p; all the random variables are assumed to be independent. The proof of the lemma, is then
easy to complete with the law of large numbers. O

5.2. A Markov chain at infinity. Roughly speaking, the transient behavior of the process
(X (t)) depends on the location of the number B, (0) of items a in the bin among the sub-
intervals 7y, 7; or Zp of {0,1,...,k}.

Definition 12.

Cll-p) C
In=|——,—| NN
’ [ E(S1) " a
The process with some specified large initial state is now investigated. We study separa-
tely the cases B,(0) € 7o and B,(0) € .

5.2.1. Starting from To. For N € N, the initial condition zy is the following

1. the bin is full and contains Yy = kg € Z, items of size qa;
2. an item 1 is at the head of the queue, it is followed by a string of ay i.i.d. random
variables with distribution p, an is equivalent to aN with a > 0.

If N is sufficiently large, an item of size 1 in the bin is replaced by an item 1. The function
t — B,(t) is thus a non increasing function, hence Y; = lim;_, o, B,(t) exists and the limit
is reached in finite time by (B,(t)).
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If Y1 > C(1 — p)/E(S1) Lemma 11 shows that with probability 1 there will be an item
of size 1 at the head of the queue an infinite number of times. Each time there is such a
configuration, with positive probability an item a in the bin is replaced by a items of size
1 in the bin. Hence with probability 1, B,(t) will be decreased at least by 1 as long as
its value is greater than C(1 — p)/E(S1); consequently the limit Y; satisfies the inequality
Y1 < C(1 — p)/E(S1), equivalently Y7 is in the set ¥; € Zy UZ;. We examine now the two
possibilities for Y7, either in 7y or Z;.

a) If Y7 € 7y, when Y; is reached by (B,(t)), the state of the bin does not change as long
as items 1 are in the queue, that is until n,, the first time when the queue contains
only items a. The condition Ap < C' — aY¥; and Lemma 11 show that 7,, is almost
surely finite. The initial number L, 1(0) of items 1 in the queue is equivalent to pa
and the number of items 1 is decreased at rate Ap — (C' — Y1a), hence almost surely

. an pa
= 1 = -
(@) Noteo N C —Yia—)p’

and moreover for 0 <t < 7(a),

. Lyy,o(Nt)
Jim ZevelD o)) -,
Lyya(Nt)
and N1i+w —N T P + (Ap — (C — a¥1))t,

in particular,
lim LmNﬂ(nmN) =a0(1 _p) _leE(Sl)
N->+oo N C-Y1—Mp

b) If Y7 € Z;. Since Ap > C' — Yia, the number of items 1 is converging to infinity, hence
Lemma 11 shows that for NV sufficiently large 1., = +o0 a.s. and for all t > 0,

. Lyy,o(Nt)
Jim EeeatlD o) (A1 - p) - Vi,
. Lana(N?) _
and NLHEOO N =ap+ (Ap — (C — aY7))t.

Here the number of items 1 and the number of items a explode linearly.

5.2.2. Starting from Ty. For n € N, the initial condition zy is the following

1. the bin contains Yy = ko € Zy items of size a;
2. the queue is a string of ay items of size a, ay is equivalent to an with a > 0.

If N is sufficiently large, an item a in the bin is replaced by another item a; the number
of a, B,(t) is non decreasing. The condition kg € Zy is equivalent to Ap < C — B,(0)a
and as long as Ap < C — B,(t), the number of 1 in the queue remains finite and hits 0.
When this happens, L1 (t) = 0, there is a positive probability that at least a items of size 1
leaves the bin before the arrival of new item 1, hence that an additional item a enters the
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bin. Consequently when N is large and ¢ goes to infinity, B,(¢) converges to Y; such that
Ap > C —Yia. Again, Y] is either in 77 or Z
a) If Y7 € To. The lemma 11 shows that the variable 7, is finite and

. Td)N pa
1 — lim ®v —
(16) (e = i N T REGy-ci—p)

and for 0 <t < 7(a),

Loy o(Nt
(17) Jim Loa®0 oy ) -y,
(19) N e 1)1

and at time 7,,, an item 1 is at the head of the queue, followed by a string of i.i.d.
random variables with distribution pu. The length of this string is given by

: LwN,l(TmN)+LmN,a(TzN) _ )\p—(C—aYl)
(19) W N ~ViB(S) — 00 - )

b) If Y7 € Z;. This case is similar to the case b) of Section 5.2.1, with the following
modification due to the initial state: for all ¢ > 0,

) Lyy.o(Nt)
yim TNy et M -p) =Y,
) Lyy1(Nt)
and Nl—lrr-rl—loo — N =(Ap— (C —a¥1))t.

5.2.3. Starting from I;. When B,(0) € 71, we set Y1 = B,(0).
Definition 13. The probability matriz (Qi;) on {0,...,k} is defined by
(20) Qij = P(Y1 = j/Yy = ).

Notice that the Markov process associated with this matrix is not necessarily aperiodic:
if Zy and 7, are non empty and 7; is empty, the Markov chain jumps from Zy to Z, and
conversely.

The stochastic matrix @ is associated with a component (the state of the bin) of a
transient process at infinity. The variable Y; is in some sense the exit state of this transient
process.

5.3. Random fluid limits and paths to infinity. To describe the fluid limit in the
transient case we need the following definition.

Definition 14. The process (Y,,) is a Markov chain with transition matriz QQ with Yo =
ko € Iy UZy. The hitting time of Z; by (Yy) is denoted by H. The non-decreasing sequences
(sn), (trn) and the sequences (uy,), (vy) are defined by induction, so =0, ug =1,

S p(Ap — (C — aYay)) to—s 4 P
Y, E(S) — C(1 - p)’ T T Y B(S) — C(1 — p)’
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Ap—(C—aYay)
A(l—p)—aYy
A(1—p)—aYay

Ap—(B-aYan 1)
Ap—(C—aYy)

.
Un—-1 Un

I;=0 I1#0

FIGURE 1. Some paths to infinity in the transient case

if 2n < H, tp4+1 = +00 otherwise;
C(1—-p)—-Yo, 11 E(S 1
(1-p) an+15( ), S$ni1 =ttt + Un ’
p(C - aY’Qn-I—l - )\P) C - aY2n+1 - Ap
if2n+1 < H, sp41 = +00 otherwise.

Un+1 =VUn41

The sequences (sp) and (t,) are possibly constant and equal to 400 after some finite
rank, and for n € N, s, < tp41 < Sp+1- As long as 7; is not reached by the Markov chain,
Yon € To and Yap 41 € Zy, hence the denominators in the above definition are positive.

These definitions have the following interpretation, for a moment Nz will mean a quantity
equivalent to Nz when N is large. At time Nt,, a string of Nu,, items a composes the queue
and Y3, items a are in the bin. Since Y3, € 75, the string of items a decreases and Nt,,41
is the first time since Ns, when an item 1 is at the head of the queue. The queue is then a
string of i.i.d. random variables with Nv, items 1, and Y5, items a are in the bin. The
period between Nt,41 and Ns,41 is the opposite phase, the number of items 1 decreases
and a string of items a grows at the head of the queue. The next theorem gives a formulation
of this.

Theorem 15. If the initial state xn of the Markov process (Xn(t)) is a string of Ng = N
items of size a, and the bin is full with ko items of size a, ko € T; Uy, then almost surely
fort € [sn,tnt1],

(21) NE»IEOO %(Nt) =ty + (A1 = p) — Yau )(t — sp),
(22) and lim M Z(AP—(C—aan)(t—sn).

N—-+4+o0 N
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and for t € [tni1, Snt1),
o(Nt) 1-p

. TN, _ _ _ _

(23) NEIEW N =Un D + (A1 = p) = Yapt1)(t — tn),
L, 1(N

(24) and  lim Lon 1 (NY) =vp + (Ap — (C — aYan41))(t — tn),

Proof. Everything has been already proved in the sections 5.2.1, 5.2.2 and 5.2.3. To illustrate
this assertion we prove the first step between so and ;.
If Yj is in 75, then the string of items a at the head of the queue shrinks and disappears
at time 7, . Taking ug =1, s9 = 0, the variables ¢; and v; are defined by
p
YE(S1) = C(1—p)’

the last equality is given by the relation (16), and with (19) we define v; by
o i Lowa(m) 00— (C—aty)
N—+oo N YoE(S1) —C(1—p)

Between sg and t; the behavior of the number of items 1 and a is given by (17) and (18),
namely for ¢ € [so, 1],

. LzN,a Nt
Jim Lot 1) < 0)0 - s0),
Loy 1 (Nt
and NE+W#=(/\1)—(C—(LYU))U—SO).

At time 7,, there is an item 1 at the head the queue followed by an i.i.d. sequence of length
Lyn1(Ton) + Lay,a(Toy ). The system is then in the same caseas in Section 5.2.2.
If Yy is in 77, the results of Section 5.2.2, case b) apply. Taking t; = +oo for all ¢ < ¢;,

Ly o(Nt
Jim Loa®0 ) v,
and NEr_rl_loo Loy 1 (N?) =(Ap — (C — aY)p))t.

O

Remark 16. The above theorem shows that in the transient case the fluid limit is piecewise
linear, the fluid equations are given by (21), (22), (23) and (24). The queueing network
considered by Lu and Kumar [15], Rybko and Stolyar [18] has also this property. The addi-
tional and interesting feature of our model is the non deterministic nature of the slopes of
these paths. This is mainly due to the “richness” of our state space. The scaling methods
basically eliminate the stochastic noise around the limiting trajectories. But some random-
ness may remain, here at the instants (for the renormalized process) (s,) and (t,) when the
process “chooses” the slope of the next piecewise path. A similar phenomenon occurs in the
case of the particular model analyzed in [10]. In the case of queueing networks it is (perhaps)
possible if the network has a significant number of nodes or classes.
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Theorem 15 considers a special initial condition: kg € 7y items a in the bin and a string of
N items a in the queue. We now give a somewhat informal description of the general case:
all the transient paths will stick to the transient paths we described. If z is a “large” initial
state, the initial items 1 will be served, hence after that time the size of the items after the
first item 1 in the queue are i.i.d. with distribution px. We can assume that this is the initial
state. At this point we have several possibilities:

1. L, ,(0) € Zy: in a finite time the queue will be a string of items a. This is the initial
condition of the theorem.
2. L;4(0) € I,: in a finite time the queue is an i.i.d string with distribution p (Lemma

11). This is the state of the system at time ¢; in Theorem 15.

3. L;0(0) € 14,

(a) if (By,q(t)) remains forever in Z;; this is the case described in the theorem after
the hitting time of Z;.

(b) If (B, (t)) visits Zop, necessarily there will be an item 1 at the head of the queue
followed by an i.i.d. string, otherwise the number of items a in the bin could not
decrease. But then the number of items 1 in the system will reach 0, this is our
case 1) here.

(c) If (By,a(t)) visits Zo, again at some time the queue will be a string of items a
which will vanish with probability 1, this is the case 2) here.

5.4. An explicit expression of the exit matrix Q. With the above notations Z;, i = 0,
1,2 and C = ka +r, we define —1 < n <k, -1 < m < k so that Zo = {0,...,n} and
I, = {m +1,...,k}, with the convention that Zy [resp. Z5 ] is empty if n = —1 [resp.
m = k.
Proposition 17. The coefficients of the matriz @Q describing the transient behavior of the
process (X (t)) are given by

l.ifieZpandjeIi={n+1,... ,k},

i1
Qi) = fG.a) [ (- ft,0)),
I=n+1
forl>mn, f(l,-) is given by
C—la C—la
f(l,a) = > H(C-lai) J[ A -H(C -la,j))
i=C—(I+1)a+1 j=itt

where the sequence (H(K,1)) is defined by induction

H(K,K)=1— g,
25) H(K ) = A\pH(K,i + 1)

CAp+i—1+H(K,i+1)
for KeNandi< K.
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2. Ifi e Iy, Q(i,1) = 1.
3. IfieIy and j € Z§ = {0,... ,m},
Q(Zaj) = 4qj H (1 - ql);
I=j+1
with, for [ < m,
__ (C=l(a=1))"'A=p) = lp* H(C =l(a—1))*"?
I C—a— 1) 11— p) —1p*1(C—1a)(C — I(a—1))*2

Proof. 1. If i € Ip. Initially the queue has an infinite number of items a and no item
1, the bin contains i items a and C' — ia items 1. By definition the arrival rate Ap of
the items 1 is strictly less than their maximal rate of service C —ia. If Ap < (i + 1)a,
the total number of items 1 (in the bin and in the queue) will reach C' — (i + 1)a with
probability 1, leaving a free places. At that time, an item a enters the bin and the
items 1 are served at rate C' — (i + 1)a at the maximum, consequently the number of
items a in the bin will reach the set Z§ at the value n + 1.

ItieZ§ ={0,... ,k} —Zp , \p > (C —ia), there is a positive probability denoted
by f(i,a) that the number of items 1 remains strictly greater than C' — (i + 1)a; on
this event the total number of items a remains constant equal to i.

Considering an M /M /K queue with arrival rate Ap, service rate 1 and Ap > K, we
have to express the probability that, starting with K initial customers, the number of
customers of this queue will always be strictly greater than K — a.

For 1 < K, denote by H(K,1i) the probability of never reaching 7 — 1 starting from

i, clearly
K
H(K,K)=1-—,
(K.K)=1-
H(K,9) :/\;\f’r (H(K,i+1) + (1 - H(K, i+ 1)H(K,q),

for ¢ < K. The quantity f(I,a) can be expressed as

C—la C—la
flhay= > H(C-lai) [[ A-H(C ~1a,j).
1=C—(l+1)a+1 Jj=i+1

The first part of the proposition is proved.

2. If i € 71, by definition Q(%,%) = 1.

3. If i € 7. An item 1 is at the head of the queue followed by an infinite i.i.d. sequence
with distribution g. The bin contains ¢ items @ and C' — ia items 1. When an item a
leaves the bin and if there is an item 1 at the head of the queue, it enters in the bin
and it is followed by a — 1 items 1; the number of items a is thus decreased by 1 and
the first item 1 in the queue is at the position 1 + Z?;ll (; in the queue, where the
Gy’s are i.i.d. random variables with a geometric distribution with parameter 1 — p.
As long as the number of items @ in the bin is in 75, the number of @ at the head of the
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queue will reach 0 and at these moments there will be an item 1 in the first position of
the queue, hence the possibility of replacing an item @ in the bin. The number (B,(t))
of items a in the bin hits the set Z§ in m.

The first time (B,(t)) reaches the value j € Z§, there is a string of 1 + Z?z_ll G
items a at the head of the queue and there is a positive probability g; that (B,(t))
remains in j forever,

a—1 a—1 C—ja
g =1-FE (h(j)1+21 G’) +E (h(j)1+Zl G') Waj—l)’
and h(j) is the probability that starting with exactly one item a at the head of the
queue, an item 1 will reach the head of the queue; by homogeneity h(j)* is the pro-
bability of the same event but with k items a initially at the head of the queue. A
classical result (easily verified) shows that

N J
M) = Tp© i@y

trite calculations finish the proof.

O

The sequence (f(l,-) defined by (25) may be expressed of course more explicitly (with
hypergeometric functions) ; in any case it is a complicated expression.
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