Optimizing the Incidences between Points and Arcs on a Circle

Cela Eranda Dominique Fortin 1 Rudiger Rudolf
1 PRAXITELE
INRIA Rocquencourt
Abstract : Given a set P of 2n+1 points regularly spaced on a circle, a number pi for pairwise distinct points and a number alpha for pairwise distinct and fixed length arcs incident to points in P, the sum of incidences between alpha arcs and pi points, is optimized by contiguously assigning both arcs and points. An extension to negative incidences by considering $\pm 1$ weights on points is provided. Optimizing a special case of a bilinear form (Hardy, Littlewood and Pólya' theorem) as well as Circulant $\times$ anti-Monge QAP directly follow.
Keywords : BILINEAR FORM QAP
Type de document :
Rapport
[Research Report] RR-3593, INRIA. 1998
Liste complète des métadonnées

https://hal.inria.fr/inria-00073086
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:49:23
Dernière modification le : vendredi 16 septembre 2016 - 15:13:01
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:33:37

Fichiers

Identifiants

  • HAL Id : inria-00073086, version 1

Collections

Citation

Cela Eranda, Dominique Fortin, Rudiger Rudolf. Optimizing the Incidences between Points and Arcs on a Circle. [Research Report] RR-3593, INRIA. 1998. 〈inria-00073086〉

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

57