N

N
N

HAL

open science

C++ Classes for 2-D Unstructured Mesh Programming

R. Bruce Simpson

» To cite this version:

R. Bruce Simpson. C++ Classes for 2-D Unstructured Mesh Programming. [Research Report] RR-

3592, INRIA. 1998. inria-00073088

HAL Id: inria-00073088
https://inria.hal.science/inria-00073088
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073088
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

C++ Classes for 2-D Unstructured Mesh
Programming

R. Bruce SIMPSON

No 3592
December 23, 1998

THEME 4

apport
derecherche

Zd INRIA

ROCQUENCOURT

C++ Classes for 2-D Unstructured Mesh Programming

R. Bruce SIMPSON *

Théme 4 — Simulation et optimisation
de systémes complexes
Projet Gamma

Rapport de recherche n ° 3592 — December 23, 1998 — 55 pages

Abstract: In this report, a set of C++ classes is presented for representing un-
structured triangular meshes of intrinsic dimension two; i.e. oriented 2-manifolds.
For simple mesh objects, i.e. vertices, triangles, and line segments, a small set of
class members that are sufficient for the mesh class are described. They define ab-
stractions based on their incidence relations and a few geometric primitives for a
mesh class, which is an intelligent container class of three lists of these simple mesh
objects.

The classes are intended to be components in an object oriented approach to
software for meshing applications described in the report. This context differenti-
ates the roles of the mesh class and the simple mesh object classes; these latter can
be extended as the carriers of the applications data. The capability of the classes
of this report to simultaneously simplify the coding of mesh methods and facili-
tate generalization of the code is discussed with examples. The report provides an
overview of the class design and use, tutorial examples, and, in a large appendix,
class documentation details.

Key-words: unstructured mesh programming, object oriented, C++

(Résumé : tsup)

* Visiting from the Department of Computer Science, University of Waterloo, Canada. The
hospitality of the Gamma project during the preparation of this report is gratefully acknowledged.
This research has also been supported by the Natural Science and Engineering Research Council
of Canada (http://www.nserc.ca/) and Communications and Information Technology Ontario
(http:/www.cito.ca/) E-mail: rbsimpson@uwaterloo.ca

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : 01 39 63 55 11 - International : +33 1 39 6355 11
Télécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30

Classes en C+-+ pour programmation des methodes des
maillage surfacique

Résumé : Ce rapport présente un ensemble de classes C++ permettant la re-
présentation de maillages triangulaires non-structurés intrinséquement de dimension
deux, 1.e., des surfaces orientées.

On indique quels sont les attributs de ces classes nécessaires a la description des
objets simples rencontrés, les sommets, les triangles et les segments. Ils déterminent
les relations liées aux liens topologiques présents et les quelques primitives de nature
géométrique de la classe maillage.

Les classes sont définies pour former les constituants d’une approche orientée
objet utile au développement et a I'implémentation de logiciels de maillages. Le
contexte fait la différence entre les roles de la classe maillage et les classes des ob-
jets simples intervenant. Ces derniéres sont modifiables afin de pouvoir prendre en
compte d’autres données jugées nécessaires pour applications envisagées.

Le but des classes introduites est de simplifier le codage des méthodes de construc-
tion de maillages et de permettre leur généralisation ou extension comme on le montre
sur quelques exemples.

Ce rapport présente donc une description des classes introduites. Il indique com-
ment les utiliser et donne des exemples simples. Par ailleurs, une annexe précise les
aspects techniques des classes discutées.

Mots-clé : maillage programmation, approche orientée objet, C++

C++ Classes for 2-D Unstructured Mesh Programming 3
Contents

1 Introduction 4

2 Geometry of the class objects 7

3 Introducing the classes 11

3.1 Mesh2D Data Editing Functions 15

3.2 Asimpleexampleo 17

4 The classes as software components for OOP 22

5 The project dependent classes: a tutorial example 29

6 Related Work and Conclusion 32

A Appendices 34

A.1 Specifications for Mesh2D editing members 34

A2 Headerfiles 38

A.2.1 the BVert, BTri , and BLSeg class header files 38

A.2.2 the MVert, MTri, and MLSeg class header files 41

A.2.3 The Mesh2D headerfile 42

A.3 Tutorial example - a trivial trough 46
A.3.1 Tutorial example: simple mesh object header and implemen-

tationfileso 46

A.3.2 Tutorial example: main program source code 50

A.3.3 examples of debugging files 51

RR n- 3592

4 R. B. Simpson

1 Introduction

We report on a set of C++ classes for representing unstructured triangular meshes
of intrinsic dimension 2, i.e. oriented 2-manifold meshes. Unstructured triangular
meshes are efficient, flexible 2 dimensional discretizations. However, the program-
ming of methods that exploit these advantages is too complex for one-off efforts to be
efficient from a program development viewpoint. Hence this programming effort can
benefit from modularization using software components, and the classes described
in this report are intended to play such a role. These classes support mesh genera-
tion in essentially arbitrary global geometries as we elaborate below. Three simple
mesh object classes are introduced for mesh vertices, triangles, and line segments,
and a mesh class which is a container class for three lists of simple mesh object
classes. As is commonly pointed out, effective abstractions of simple mesh objects
can be formed by separating topological data , i.e. incidences, from geometric detail,
usually with the addition of a few geometric primitives to aid the abstraction. The
simple mesh object class declarations define this separation, and the mesh class only
‘knows’ about the abstractions of the mesh objects. In this way, the mesh class is
largely geometry independent. The implications for simple mesh object hierarchies
are discussed in §4.

This report has several purposes. It is intended as a report on this and other
research into class design for mesh generation and applications. It also serves as
documentation for the classes presented and includes tutorial material on their use.
A basic familiarity with C++ is assumed, but familiarity with object oriented pro-
gramming (OOP) is not; the few relevant aspects of OOP involved are explicitly
described. In §2 and §3, we give an overview of the classes with general descriptions
of their data members and functionality. Details in terms of header files and function
member specifications are provided in Appendix §A.1 and Appendix §A.2. In §4, we
set these classes in the context of OOP design of mesh generation and applications
software to differentiate the roles of the simple mesh object classes and the mesh
class. A small tutorial example is described in §5; the details of the implementation
are given in Appendix §A.3.

The classes are, in effect, software components for writing mesh generation code;
e.g. refinement with Delaunay insertion or advancing front technique codes. The
abstraction of the simple mesh objects used by the mesh class can also be used by
the implementations of the mesh generation methods to produce code that is highly
geometry independent, as we elaborate in §4 and §5. The result is mesh generation
code that is reuseable in the sense that it can be linked to various application specific
simple mesh object class implementations. This follows the concepts of OOP design

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 5

that have been presented for stiffness matrix generation in the finite element method(
Mackie '92 [10], revue européen des Eléments finis 98 [2]) and which we discuss
further in §4. In fact, it would be natural to construct mesh object classes that
combine the geometry specific members of the simple mesh object class of this report
with the physical modeling and shape function members of the OOP FEM classes.

A mesh representation, this one or other, plays a well known role in software
design of defining a software programming interface for modularity and program
components. The primary goals of this design are the usual OO objectives of simpli-
fying programming while simultaneously facilitating generalizing the program parts;
i.e. increasing code reuseability. This programming simplification is sought through
intellectually manageable abstractions and applies not only to code creation initially,
but perhaps even more importantly, to subsequent code maintenance, where much
code reuseability is actually realized.

In an application area for which these techniques are relatively new, such as me-
shing, it is not likely that one can a prior: anticipate the extent to which specific
representation classes can reach these goals. It seems necessary to build some proto-
types and gain some direct experience. Moreover, the merit of such representations
does not rest solely on these goals. A representation that offers benefits in code
development /maintenance efficiencies must also be reasonably competitive in run
time efficiency. This work is still in a state of providing direct experience with the
representation; we have been using versions of these classes for about four years. Al-
though efficient implementation has not been a first priority during this time; several
considerations have influenced the design in anticipation of this need. Our choice of
abstractions has been guided by the need to be able to implement any of the more
efficient algorithms associated with meshing applications. The mesh class has been
implemented so that it does not require inheritance in the simple mesh object classes,
(neither does it preclude it.) Inheritance would provide helpful approaches to several
implementation issues as we discuss in §4. But our initial experience confirms that of
others; i.e. run time linking associated with inheritance for small objects can impose
a high execution time cost. A closely related issue is the separate compilability of
the implementations of the mesh class and the simple mesh object classes; this issue
is also discussed briefly in §4.

Many of the ideas in this report have close connections with other meshing soft-
ware designs. Although we make some references to these throughout the text,
we primarily reserve comparative comments on related work to §6. Although the
OOP approach is actively reported in the engineering literature on the FEM, de-
tails of class design are rare. More is available in closely related domain of com-

RR n- 3592

6 R. B. Simpson

putational geometry programming, however. The library under development in the
CGAL project is well documented in the report by Fabri et al , 1998 [5], and on-line
at http://www.cs.uu.nl/CGAL/; the report references much related computational
geometry software. The class designs of this report and their roles in mesh program-
ming are connected to the 2 dimensional triangulation classes of the CGAL project.
More directly connected to meshing applications but less explicit, are the codes des-
cribed in Mobley, Carroll, and Cannan, [11], Palmer [13] , and Vavasis; see §6 for
further comments.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 7

2 Geometry of the class objects

In this section, we will add to the familiar geometry of 2-D meshing some precision
about the terminology and properties of the objects used in connection with the
Mesh2D classes. We will restrict the discussion to features as used to mesh orien-
ted polyhedral surfaces to reduce the technicalities of the description, although the
classes are designed to be used for general oriented surfaces.

Geometry of the simple mesh objects and meshes

Directed edges join vertices in 2 or 3 space and are directed from an origin vertex
to a destination vertex, i.e. they are ordered pairs of vertices.

Triangles are cycles of three directed edges which are locally numbered 0,1,2. Of
course, the destination of each edge is the origin of the next edge. In meshes, these
cycles must have a counter clockwise direction described further below. Triangles ¢
and s are neighbours if there is an edge e which belongs to ¢t and such that -e belongs
to s.

Line segments are bidirectional edges, or pairs of edges that join the same two
vertices but with opposing directions. The two directions are locally numbered 0
and 1. This view allows the neighbouring relation to be extended to a triangle ¢ and
a line segment s, so as to permit a line segment to have two neighbouring triangles.

In a mesh, we expect the triangles to fit together to tile some two dimensional
region i.e. to abut each other as neighbours. Most of the edges between neighbours
are artifacts of the mesh; however, applications typically specify some edges as either
boundaries or internal interfaces. Line segments are introduced to distinquish these
edges, but to do so in a relatively inobtrusive way from a programming point of view,
i.e. by being basically special kinds of triangles. In FEM applications, line segments
may be finite elements themselves, carry physical modeling and shape function data.
Figure 1 shows an exploded view of some technicalities of the neighbours relation.
Triangles t1 and ty are neighbours on their edges locally numbered 0 and 1 respec-
tively. Line segment s is shown as a pair of directed edges between vertices () and
R; the edge numbered 0 is directed from) to R. Triangle t; and line segment s
are neighbours on their edges numbered 2 and 1 respectively and triangle t3 and s
are neighbours on their edges numbered 0 for both. However, we do not regard t;
and t3 to be neighbours, in consequence of the presence of s; in fact, this is just
the point of introducing s. Every triangle then can be viewed as having three neigh-

RR n-3592

8 R. B. Simpson

Figure 1: A configuration of neighbours

bours, which may be other triangles, or line segments, or NULL - as on edge 1 of tj.
Similarly, every line segment has two neighbours, but these are restricted to being
either triangles or NULL , not other line segments.

Meshes are a triple of sets: a set of vertices, a set of triangles, and a set of line
segments. We do not allow isolated vertices, but otherwise one of the other two sets
can be empty; e.g. a mesh with only line segments could be the boundary represen-
tation of domain to be meshed, or a planar straight line graph (PSLG) (see Bern &
Eppstein, 1992 [1]) to be triangulated.

Each mesh in 3-D is associated with a positive direction vector pointing into the
half space on its positive side. Meshes do not have to be strictly planar, but every
triangle of a mesh and its neighbours, must be visible from sufficiently far out on
a ray emerging from the mesh in its positive direction. The local numbering of the
cycle of edges of a triangle in the mesh should result in a counter clockwise cycle
when seen from the positive side of the mesh plane. Two dimensional meshes can be
considered to lie in the (z, y) plane of 3-D and obey this convention with the positive
z axis as the normal.

Vertices, triangles, and line segments each carry a positive global index, (also
referred to as its label) which must be unique in a given mesh. These indices do not

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 9

need to be consecutive, i.e. a contiguous range of integers.

Application domains often have natural decompositions for which it is convenient
both logically and for programming to assign individual meshes ! | see multiblock
meshing techniques Chapter 9, P. L. George [6]. For example, it may be convenient
for meshing polyhedral surfaces to identify a mesh with each face. The mesh class
supports programming with collections of meshes abutting on common boundaries
marked by line segments for these purposes. We refer to such collections of related
meshes as a composite mesh. It is common in the literature to regard this global
mesh as the mesh and its components as submeshes, but for our class definitions it
is more convenient to use this composite mesh terminology.

Figure 2 shows a very small 2-D composite mesh made up of two meshes A and
B each with 2 triangles, and with line segment labels set in square boxes. Figure 3
shows a exploded view of a boundary representation of a cube with a corner removed
which is a composite mesh of 9 faces bounded by line segments and without triangles.

mesh A | mesh B

Figure 2: a small composite mesh Figure 3: exploded cut out cube

The incidence relations between simple mesh objects and meshs of a composite
mesh are:

e a triangle can belong to only one mesh

e a line segment can belong to two meshes, if it is part of an internal boundary
of a composite mesh

e a vertex can belong to many meshes

also called surface patches

RR n-3592

10 R. B. Simpson

As Figure 2 shows, the label for each mesh component is to be positive, and unique
in each mesh that it is registered in. It is not necessarily unique in the composite
mesh, nor are these labels necessarily consecutive. In particular, a globally unique
numbering of the simple geometric objects in a composite mesh induces an acceptable
labeling for each (sub)mesh.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 11

3 Introducing the classes

We now introduce the main features of the C++ data types for the geometric objects
just described, with a few details needed for the example of §3.2. The mesh repre-
sentation data declared in the simple mesh object classes for vertices, triangles and
line segments are essentially standard in finite element mesh programming. In an
object oriented approach to programming mesh based applications, the classes for
these mesh objects may also contain applications and geometric data in addition to
that needed for mesh representation alone, as we discuss further in §4 and §5. As
seen by the mesh class, the mesh object classes define abstractions of their geometric
counterparts that primarily carry local incidence data. As seen from the mesh class,
their functionality is limited to accessing it. The capability to change this data is
encapsulated in four powerful editing function members of the Mesh2D class dis-
cussed in §3.1. First we present the simple mesh object classes as seen by the mesh
class.

To present a quick conceptual overview of the definitions of incidence data mem-
bers in these classes, we use some entity-relationship notation borrowed from data
modeling (Simpson, 1997 [14]). In Figures 4 to 8, C++ class names are in larger bold
type and model entities which do not have C++ identifiers are in smaller, italic type.
More details can be found in the header files of Appendix §A.2.

MVert is the class for a vertex . Figure 4 shows it as a relation , or a tuple,
involving global label GVnum, coordinates which are some unspecified form of coor-
dinates, and an adjacency list of MTri or MLSeg which are incident on the vertex.
edge MTri, shown in Figure 5 characterizes the data associated with a directed
edge of a triangle, i.e. each edge is associated with a local edge number,edge No, an
MVert , which is opposite the edge, and either a MTri or a MLSeg, which is the
abutting neighbour on this edge. The view of mesh triangles here is edge oriented;
i.e. the edgeNo is used to access triangle vertices or neighbours in coding using these
classes.

; GVnum MVert > MTrior MLSeg
coordinates global label vertex opposite edge_ MTri neighbour on
edge edge
list of incident edgeNo

MTri and MLSeg

Figure 4: the MVert relation

RR n-3592

Figure 5: the edge MTri relation

12 R. B. Simpson

MTri is the class for a triangle . Figure 6 shows it as a 4 item tuple with an integer
label GTnum and three edge MTris. It indicates that local addressing of triangle
data is based on edge numbering. Hence, edge i has for its origin (destination) the
vertex opposite edge (i + 1) mod 3 (edge (7 + 2) mod 3).

GTnum edge_ MTri
global label for edgeNo 0,1,2

Figure 6: the MTri relation

edge MLSeg is a relation characterizing the data associated with an edge of a line
segment, as shown in Figure 7. It is similar to the edge MTri relation with the
addition of a Mesh2D datum which indicates the mesh to which the neighbouring
MTri datum belongs. Note that only MTri data are permitted to be neighbours.
MLSeg is the class for a line segment . Figure 8 shows it as a 3 item tuple with an
integer label GLSnum and two edge. M LSegs. The two edge. M LSegs correspond
to the two directions of a single undirected line segment; they carry different data in
the different directions 2.

The convention for connecting vertices to edges in a MLSeg is that the vertex

opposite e is the destination vertex of e. The convention for edge based indexing

Mesh2D

MVert MTri
vertex opposite edge_ MLSeg neighbour on GLSnum edge_MLSeg
edge edge global label edgeNo = 0,1

edgeNo

Figure 7: the edge_ MLSeg relation Figure 8: the M LSeg relation

of MLSeg data can be illustrated using Figure 2. Consider the MLSeg object of

2Since edges are actually directed edges and occurs in cycles they could be identified with the
half edges used in representations for polyhedral surfaces, e.g. Kettner, 1998 [9]. Single (half) edges
are not, however, explicitly represented in these classes as indicated above.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 13

GLSnum = 7. If we set the edge locally numbered 0 to be the edge from the MVert
of label 4 to that of label 3, then MTri of label 2 in mesh B will be the neighbour of
this MLSeg on edge 0, and the M Vert of label 3 will be the vertex opposite edge 0.

Mesh2D is the class for meshes . Its data consists primarily of three lists; a
list Vertices of MVert objects, a list Triangles of M'Tri objects and a list Boundary
References of MLSeg objects. To be explicit,these are lists of pointers to the simple
mesh objects They are implemented as hash tables using the object labels as hashing
keys. A composite mesh could be represented by an array of Mesh2D objects,
e.g. the cut out cube of Figure (3) can be represented by an array declared as
Mesh2D * cface[9] As we note in §5 however, while it may be convenient, it is not
necessary to use a separate mesh for each planar surface.

In Figure 9, we show a schematic of the representation of the simple composite
mesh of Figure 2 using these classes. Four MTri object have been allocated dynamic
memory space, and 6 MVert and 7 MLSeg objects. Two Mesh2D objects, meshi
and meshB, have been constructed and pointers to the various mesh elements have
been entered in the Mesh2D lists. See that MVert 3 is registered in both meshes,
as is MLSeg 7. The simple mesh objects carry their local incidence data. Mesh
tasks involving local incidences such as element patch based error estimation can be
carried out without reference to the Mesh2D objects. Indeed, Lawson’s oriented
walk search to locate the triangle in a convex composite mesh which contains a given

point can be carried out using these local incidences without explicit reference to the
Mesh2D meshes.

While the Mesh2D class supports meshes with the neighbours incidence data of
the simple mesh objects as described, it doesn’t require all of it. A Mesh2D object
could contain a Triangles list of MTri with all NULL neighbouring data, which could
be a useful simplication for some application. Similarly, a line segment can serve
as a convenient connector between triangles in adjacent meshs of a composite mesh,
but it is not required. If a program using these classes either does not need this
connection or keeps its own records, it could dispense with the common line segment
neighbour. (See detailed specifications of Appendix §A.1.)

Class member functions

With respect to their incidence data, the simple object classes, MVert, MTri, and
MLSeg , are basically abstract data types that only provide data access. E.g. the
MTri class has members functions GetVOE(int) and GetNOEint which take a local

RR n-3592

14 R. B. Simpson

mesh A mesh B

Vertices - Vertices

,,,,,,,,,,

,,,

,,,

Triangles

Triangles

Dynamic Memory

Figure 9: Schematic of Class objects

edge number as parameter and return a pointer to the vertex opposite this edge, or
to the neighbour on this edge, respectively. It is common in mesh programming to
require, for a shared edge, its local edge number in the neighbour; we will refer to
this number as the complementary edge number. To provide this datum, the MTri
class has a member function named ComplEdgeNum(int), which has the property

== (t — GetNOE(i)) — GetNOE(t — ComplEdgeNum(i)) (1)

The MLSeg class has been designed to be very similar to the MTri class to
simplify the concept and programming of mesh neighbours. Indeed, conceptually
one could think of MLSeg as a class derived from MTri . This point can be illus-
trated by the fact that relation (1) holds even if ¢ — GetNOE(i) is a MLSeg object.
However, we have not explicitly declared MLSeg as a derived class, nor overloaded
the assignment operator. So, assigning a pointer to a MLSeg object to a MTri *
variable requires an explicit type cast.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 15

The simple mesh object classes also have a few validation member functions; a
MVert can determine if its coordinates differ from those of another MVert ; a
MTri can supply orientation information. However, essentially all of the incidence
data editing capabilities are vested in Mlesh2D member functions. For this purpose,
the Mesh2D class has been declared a friend by the simple object classes. The
Mesh2D class has two major categories of member functions: data access members
and data editing members.

Mesh2D data access members

Access by label to pointers to the simple mesh objects registered in a Mesh2D
object is provided by member functions named X0fI(int) for X = Vtx, Tri or
LSeg. Edges are identified by a pair involving a local edge number and a MTri or
MLSeg pointer. For each list of simple mesh objects, the Mesh2D class provides a
pair of member functions for scanning the list. For X = Vtx, Tri or LSeg, FirstX()
returns a pointer to the first item in the list; subsequent calls to Next X() return
pointers to the subsequent items until NULL is returned. Some care is necessary if
the list is modified during a scan, say by mesh refinement, to avoid generating infinite
loops. The Mesh2D class also defines several list utilities, including a label server
for each list. NewGXnum() , for X = V, T or LS, returns a label for a simple mesh
object that is larger than any label ever registered in the relevant list (during the
scope of the Mesh2D object).

3.1 Mesh2D Data Editing Functions

The data access function members just described are probably what the reader
would anticipate from the preceding incidence data modeling discussion. But per-
haps less obvious is how this design concentrates the data editing functions in four
member functions of the Mesh2D class: InsertTri, InsertLSeg, RemoveTri and
RemovelSeg.

InsertY, for Y = Tri or LSeg, is the only way to:
- insert MY or MVert pointers into a Mesh2D
- enter incidence data into a MY
add a MY to the adjacency list of a MVert
update the incidence data of a neighbouring MTri or MLSeg from NULL

RR n- 3592

16 R. B. Simpson

Remove V:
- removes an MY pointer from a Mesh2D
- does not delete it from dynamic memory
- removes it from MVert adjacency lists
- sets neighbours incidences to NULL
The signature for InsertTri is

ErrCode InsertTri(MTri *t, MVert* vbuf[3], MTri*x nbuf[3], int
cbuf[3]);

The signature for InsertLSeg is very similar; i.e.

ErrCode InsertLSeg(MLSeg *t, MVert* vbuf[3], MTri* nbuf[3], int
cbuf[3], Mesh2D * oppMesh);

Both of these member functions return the logical flag ErrCode with values SUCCEEDED
for a successful insertion, FAILED otherwise.

The basic idea is to allow for a variety of possible ways to specify the data for
the MTri to be inserted in this mesh. The MVert buffer array vbuf can specify
up to three input vertices for MTri *t and, taken pairwise, nbuf[i], cbuf[i] ,
i = 0,1,2 form a buffer of up to three candidate edges for *t. The buffers may
contain NULL or non-NULL data and should determine three vertices from which to
construct MTri *t, which we refer to as the candidate vertices. These vertices
are ‘candidates’ because they are subject to an orientation test. The buffers also
determine the neighbours data that is to be updated. Note that nbuf[i], cbuf[i]
actually determine an edge e of the potential neighbour of *t so the candidate edge
of *t is -e.

The calling program is expected to set up and re-use the actual arguments for
these buffers and hence they are declared the same size for both inserting members,
although InsertLSeg only requires buffers of length 2. Examples of typical patterns
of filling these buffers are given in the example code below and of §A.3.2. On retur-
ning, Insert Y sets buffers vbuf[i] and nbuf[i] to NULL as a convenience for the
next use; cbuf is unchanged.

Determination of the candidate vertices for *t
For the ith edge of *t, the input allows up to 3 possible vertices for the candidate
vertex opposite this edge. Using addition modulo 3 for InsertTri and modulo 2 for
InsertLSeg these up to three possibilities are:

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 17

vbuf[i]

vdestn[i]=
the destination vertex of input edge i+1, (i.e. nbuf [1+1]->Vtx0ppEdge[cbuf [i+1]+1].)

vinit[i]=
the origin vertex of input edge 1+2, (i.e. nbuf [i+2]->Vtx0ppEdge [cbuf [1+2]+2].)

If the input specifies exactly one non-NULL possibility for t->VtxOppEdge[i], it is
accepted as the candidate. If more than one non-NULL MVert pointer is present in
the input and they are the same, then this redundantly specified vertex is used as
the candidate. But if the multiple possibilities are not consistent, then InsertTri
returns FATLED.

If no candidate is specified, then InsertTri returns FAILED.

Updating neighbours incidence data

If input nbuf[i] is a non-NULL pointer, then a validation check is undertaken to
verify that *t and nbuf[i] can be identified as neighbours on edge i, and the com-
plementary edge to edge i, respectively. If the check succeeds, the incidence data for
both is updated. The principles of the validation check are described below and the
details given in Appendix §A.1. This is the only way that NULL neighbouring data
in a MTri or MLSeg can be modified.

It will be apparent that it is important in coding with these classes that an object of
type Y be removed with Remove Y prior to deleting it; otherwise unexpected NULL
pointers are created in the other incident simple mesh objects and the list of the
Mesh2D object. As we show in our simple example programs below, however, it is
more common to remove an object and then reuse its space instead of deleting it. If
a Remove Y operation results in an MVert with an empty adjacency list, then this
isolated MVert is also deregistered from this mesh . This has the potential for a
memory leak if the calling program does not retain a reference to the isolated vertex.

3.2 A simple example

As a simple, but reasonably typical, example of using these editing functions, we
provide the following code for refining a triangle of a mesh into three by the simple
insertion of a vertex. Assume that MVert #p has been defined as a point known to lie

RR n- 3592

18 R. B. Simpson

inside triangle *t. We assume *t is registered in Mesh2D *mesh, but *p is not. The
geometric configuration and labelling are shown in the figure adjacent to the code.
*t is the central triangle and its local edge numbering is shown; the new triangles
that have *p as a vertex are also shown.

// example : simple insertion of MVert *p in MTri *t
MTri **fn, *nbuf[3]; int cbuf[3], i; MVert *vbuf[3];

fn = t->GetNOE();
// £n[i] points to neighbour on edge i of *t

for(i = 0 ; i<3 ; i++)
{ vbuf[il NULL ; nbuf[i] = NULL; // setting null pointers
cbuf[i] = t->ComplEdgeNo(i);};

mesh->RemoveTri(t);
// de-registers t from mesh

vbuf [0] = p; nbuf[0] = fn[0]; // with cbuf[0], specifies t
mesh->InsertTri(t,vbuf,nbuf,cbuf);
// *t is re-registered and *p is registered

// all incidences updated
// pointers in buffers set to NULL; cbuf is unchanged

fn[0] =t ; // saved for later

nbuf [0]= fn[1] ; cbuf[0]
nbuf[1] = t ; cbuf[1]

cbuf[1] ;
2

t = new Tri(mesh-NewGTnum()) ;

mesh->InsertTri(t,vbuf,nbuf,cbuf);

nbuf[0]= fn[2] ; cbufl[0] = cbuf[2] ;
nbuf[1] =t ; cbuf[1] = 0 ;
nbuf[2] = £n[0] ; cbuf[2] = 1;

t = new Tri(mesh-NewGTnum()) ;
mesh->InsertTri(t,vbuf,nbuf,cbuf);

The two new MTri which must be added to the mesh are allocated memory using

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 19

a constructor MTri(int gTnum) whose parameter is the label of the new triangle.
The argument used for this parameter in the example is the return value of the mesh
MTri label server, Mesh2D: :NewGTnum(). Note that for the final insertion, all three
neighbours buffers are specified to ensure that their incidences are updated.

To simplify this example, we have not included tests of the ErrCode returned by
the Insert function calls. This is a useful practice during code debugging.

The extension of this example to inserting triangles in a mesh to fill a hole that
is star shaped with respect to *p is immediate. In particular, it is quite straight
forward to extend this example to the Delaunay insertion technique described in
George and Borouchaki [7] in which a set of triangles near the insertion point are
removed producing a cavity that is star shaped.

The pattern of the operation of these editing functions is that they analyse their
inputs for validity before undertaking their edits. If a validity check fails, or an edit
fails at any stage, the mesh is returned to its initial state before the function returns,
noting its failure. In the case of InsertLSeg, these edits may extend to data of
objects registered in an adjacent mesh (oppMesh) of a composite mesh.

The concept is that Insert Y (and to a lesser extent, Remove Y) are guardians of
a measure of mesh validity that is practical to check during editing. There are several
motivations for centralizing this function in the Mesh2D class. Despite the relative
complexity of the several editing tasks that occur, they are all logically related and we
believe that programming simplicity is gained by limiting the ways in which logically
related tasks can be accomplished. Another motivation is connected with the role
of the mesh object classes in OO application programming. The MVert , MTri
, MLSeg classes can be expanded by aplications programmers and become quite
complex objects. Hence we have chosen to vest the understanding of mesh data in
the Mesh2D class which is intended to be application independent.

These Mesh2D members functions incorporate some mesh validity rules i.e. are
intelligent editors. As part of this overview, we present the principles of these rules as
they apply to the input arguments, deferring the detailed specifications to Appendix
§A.1.

candidate vertices

We have already described how the Insert routines determine the candidate ver-
tices for the object to be inserted. These vertices must either be registered in this
mesh, and in oppMesh if non-NULL , or eligible to be registered, i.e. not repeat a
label of an already registered MVert , nor duplicate its coordinates.

RR n°3592

20 R. B. Simpson

netghbours incidences

The mesh in which the incidence data is to be edited should ‘know’ about the ob-
jects being edited. For InsertTri this simply means that non-NULL nbuf[i] should
be registered in this mesh. The corresponding rule for InsertLSeg is more complex,
although it can reasonably be inferred from the geometry. Recall that neighbours
of a MLSeg must be of MTri type, and hence should only be registered in one
Mesh2D of a composite mesh. Hence:

if oppMesh is NULL
then at least one nbuf [i] must be NULL and a non-NULL nbuf [i]

must be registered in this mesh.
else if oppMesh is this mesh

then any non-NULL nbuf[i] should be registered in this mesh

else (a non-NULL oppMesh different from this mesh mesh, so)
cannot have two non-NULL nbuf[i] both registered in this mesh or both
registered in oppMesh

A second general principle is that if nbuf[i] is not NULL , then nbuf[i] —
GetNOE(cbuf[i]) must be NULL . This is intended to put safety ahead of conve-
nience; i.e. it is based on the expectation that the presence of a non-NULL pointer
in nbuf[i] — GetNOE(cbuf[i]) is likely to signal a programming error.

Without question, these specifications are complex, and so is the task. Never-
theless, we feel that the operations are closely linked logically and that linking the
validity checking and related editing in one task contributes both to programming
simplicity, as argued above, and efficiency. In our programing with the Mesh2D
class, we have found that the Insert functions are used with a few standard buffer
patterns that become familiar. It is efficient to localize the mesh validity computa-
tions. Particularly in an OO programming scheme, much of the checking would have
to be done in some form in any case.

As a general rule, we have tried to avoid including members of Mesh2D which
are redundant, even if convenient. However, the edge swapping operation seems
sufficiently basic to 2-D mesh programming that we have included it as an editing
member function.

Debugging support
The Mesh2D class includes two elementary debugging facilities; a log file of mesh

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 21

operations and a formatted dump of the current mesh. A log file for a mesh object
is created, or not, by the constructor with signature:

Mesh2D(int LogFileOn, const char* LogFileName)

Mesh2D has a member variable LogFileOnIsOne which can be used to control the
recording of operations on this mesh subsequent to creating a log file. LogFileOnIsOne
is initialized by the first argument of the constructor; if this argument is 1 (, or not
zero) then a log file is created in the execution directory with name given by the
second argument. If LogFileOnIsOne is subsequently set to 0, then the transcription
of operations will be suspended until such time as it is reset to 1. If LogFileOnIsOne
is initialized to 0 and subsequently reset to 1, an I/O error will occur, as might be
expected.

The Mesh2D class dump member function has the signature:
void Dump(const char* FileName, const char* string)

A file with the name provided in the first argument is created (overwritten) and
the second argument is entered in the first record as an identifying comment. The
function then outputs the lists of labels of the MTri, M Vert, MLSeg objects with
their incidence data. Examples of log files and dumps are given in Appendix A.3.3.

RR n° 3592

22 R. B. Simpson

4 The classes as software components for OOP

These classes are intended to be components in meshing applications software that
uses an object oriented design. In Figure 10, we show a simple schematic of a conven-
tional organization of software for a mesh generator plus an application, which is
stiffness matrix generation. The schematic shows the user’s view with circles repre-
senting (one of more) files and rectangles representing (collections of) programs. The
mesh generation input files, labeled A, would contain a description of the geometry
of the domain to be meshed, mesh control space data, etc. The stiffness matrix input
file, labeled B, would contain physical model data, element shape data ... Typically,
the computations of Figure 10, are performed on a project basis; e.g. a particular
research project or the design/analysis cycle of a product. Many instances of the pro-
ject defined model are to be computed. For purposes of discussion, we can identify

global

stiffness
matrix

T

Stiffness
Matrix Generator

Mesh Generator —

Figure 10: A conventional organization of mesh generation plus application software

the following three categories of information associated with the schematic:

the software design context This is the information about the class of inputs that the
black boxes are intended to handle. It is found in the user’s manuals, in the
software specifications.

the project context This is the information that characterizes a specific project in the
design context and is constant, or slowly varying, during the project.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 23

global
stiffness
matrix

Stiffness
. p <1--------
simple mesh | classes)
object classe - Matrix Generator

-
-
P t -
; -
.
.

\ - ‘ I

B \ 2 T
Meshing Basic
7777777 >
method code Representation >

Mesh Generator

Figure 11: An OO organization of mesh generation plus application software

instance data the information specific to a particular run within the project.

The software design context describes the generality of the software. Clearly, the
project context information must specify a subset of the software design context; in
fact, this is its role. The project context information and the instance data combine
to constitute the program data input of files A and B of Figure 10.

It is advantageous to design software with a significant breadth of generality, of
course. However one result is that a larger component of project context information
is needed in the input data for a specific project to identify the portion of of the
software design context that it uses. Increasing generality presents the software
designer with a several challenges; one being the anticipation of the details of all
the projects to be covered and another being a suitable user interface. An object
oriented software design can help to meet these challenges in a manner illustrated
schematically in Figure 11. Here, a box representing classes that can be modified by
the user to describe the project context information has been added to Figure 10; this
box represents then project dependent classes that form part of the user interface.
Since these classes reduce the component of project context information in the input
data, the size of the circles for files A and B has been reduced. The mesh generation

RR n- 3592

24 R. B. Simpson

software now includes a description of these project dependent classes as part of the
the software design context. Naturally, this presupposes a relatively sophisticated
‘user’, which is the nature of software components. The challenge of anticipating the
details of project usage becomes the design issue of finding suitable abstractions of
the project context to require in a project dependent class definition.

The implication for the classes introduced above is that the members which
the Mesh2D class expects of the simple mesh object classes must be present in
the project dependent classes known to the mesh generator software. The project
dependent classes must be named MVert, MTri, MLSeg and declare Mesh2D a
friend. The dashed arrows of the figure point from software to classes on which it
depends, i.e. that it knows about. The diagram does not distinguish, however, that
the level of ‘knowledge’ of the simple mesh object classes differs between the mesh
generation code and the Mesh2D class. The former know only the public members
of the simple mesh object classes, in accordance with standard information hiding
practices. The latter is implemented in terms of the private members since Mesh2D
has been declared a friend by the simple mesh object classes.

The designer of the mesh generator now has the availability of project dependent
classes to help expand the design context of this code. As a software component,
the Mesh2D class does not constrain this context to any particular type of global
coordinate system. It is unaware of whether MVert coordinates are pairs (2-D) or
triples (3-D), whether the system is Cartesian or polar, Euclidean or Riemannian,
nor what the arithmetic of the coordinate system is. A minimal extension of the
basic mesh object classes that supports 3-D surface meshing is presented in the next
section. Much of the mesh generation code can also be made coordinate system
independent by the judicious use of geometric primitives that would be required of
the project dependent classes. The triangulation of a simple polygonal face of a
composite mesh, the conversion of a triangle to a Delaunay triangulation and Delau-
nay insertion of new vertices, decisions on local refinement can all be implemented
using the Mesh2D class plus simple abstractions of geometric information that are
coordinate system independent. The ear clipping method , O’Rourke [12] requires
a line segment intersection primitive; Delaunay conversion and insertion require an
InCircle test, Guibas and Stolfi, [8]; local refinement requires some quantitative data
such as the length of the longest edge, or the radius of the circumcircle, Chew [3].
In Figures 12 and 13, we show two outputs from testing Delaunay insertion in a
composite mesh. Edges that are line segments are shown with darker lines. The
data were generated with two different main programs and M X classes , one with

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 25

test 3: plane Dec 9

i 8
3¢ 10
6 12 18 24 36
b2 i
5 11 17 23 29 35
4 5 £ 3 b7
9 22
4 10 1 22
28 34
19
b 20 i
3 15 104 27 3
8 1644 101 1
i > 6
2 7) 21 Y 26 32
h 0 6
1 14 13 19 25 31

T % 5 6 5 8 43 10 £7 T T Fe3 5

Figure 12: Delaunay insertion using plane project dependent classes

test3:surface

Figure 13: Delaunay insertion using surface project dependent classes

a 2-D and one with a 3-D global coordinate system, but each linked with the same
Delaunay insertion code and Mesh2D implementation.

There is a literature on OOP for the finite element method which is based on
this design strategy applied to stiffness matrix generation software, Mackie, 1992
[10], revue européene des Eléments finis, 1998 [2] . The result is to generalize the
stiffness matrix generation code to apply to a broad range of physical models and

RR n° 3592

26 R. B. Simpson

element types, which the model and element type for a specific project determined
by project dependent class. In Figure 11, we have shown the mesh generator and the
stiffness matrix generator sharing the same project context classes as well as both
using the Mesh2D class. In this context, the project dependent classes would be
expected to carry data for the stiffness matrix generator as well; physical model data,
boundary conditions, element shape function data. They would become substantial
objects; double inheritance involving basic objects classes for the stiffness matrix
code is a plausible mechanism for this extension. The ‘users’ for this interface then
would be expected to be developing FEM software or at least sophisticated program-
mers. This distinction between the different roles between the simple mesh object
classes and the Mesh2D class has contributed to the motivation for making the for-
mer simple, relatively passive classes and concentrating the mesh knowledge in the
Mesh2D class, with its intelligent editing functions. It also provides the motivation
for isolating knowledge of the mesh coordinate system in the simple object classes.

How can we ensure that the project dependent classes include the members re-
quired by the Mesh2D class embedded in the mesh generator, or mesh application
software, i.e. the stiffness matrix generator as shown in Figure 117 The primary OO
mechanism for this is to define base classes which we will designate BVert , BTri ,
BLSeg , that have the members that we have attributed to the simple mesh object
classes in §2, and allow the project context classes, now designated MVert, MTri,
MLSeg , to be derived from them. This elegant approach is unfortunately prone
to run time inefficiencies, [5]. It is, however, simple to implement and has been the
mode of our initial prototyping experiments with these classes. It is used for code
sharing only in this context, no use of polymorphism is implied by this design.

On a project basis, it would be feasible to simply expand the source code of the
B X classes to add the additional project context information. We have done this for
some performance studies ; however, it would lead to software management problems
when maintaining the mesh generator or mesh application software.

Effective, if not simple, techniques for this purpose can be based on template
programming. The CGAL library ,[5] and §6, makes extensive use of this approach.
A general mechanism for converting object hierarchies to template classes has been
described by Weihe, 1998, [15]. The basic idea is to write template classes that use
the members of the BX classes as template features as well as carrying other pro-
ject data. These template classes would then be instantiated with the simple object
classes to provide the actual project context classes.

Separate Compilation If the M X classes are to be project dependent and the Mesh2D
class not, it is clearly desirable to be able to compile the Mesh2D class indepen-

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 27

dently of the BX classes. C++ inheritance provides a mechanism for this. To use it
directly, the Mesh2D class would be declared in terms of the B.X classes which de-
clares some of its function members virtual and the M X classes would be necessarily
derived from the BX classes. However, we do not want to be tied to inheritance, so
we have employed a slightly more complicated approach that permits independently
declared M X classes. For this reason, the Mesh2D class has been written directly
in terms of the MX classes and only uses pointers to objects of these classes. In
particular, it neither creates nor deletes memory space for the objects themselves.

This approach requires some care in the organization of header files and the
storage of code, which we will illustrate with the help of the appendices. A header
file that declares a set of (possibly project dependent) M X classes will be named
MVandT.h (see Appendix §A.3 §A.3.1 for an example.). Each header files starts with
a conditional compilation check on an identifier for the file, e.g. #ifndef _MVandT_H_
3 for MVandT.h. The implementation of the Mesh2D class can be compiled with a
simple minimal declaration of the M X classes into an object library or semi-linked
object module. In the the code of the appendices, this skeleton set of M X classes
are derived from the base class declared in BVandT.h and shown in Appendix §A.2.1.
that declares the minimal members required by the Mesh2D class. The Mesh2D
class header file gets this skeleton declaration by an inclusion, typically #include
"MVandT.h" from the current directory. Note that the BX class member functions
are written in terms of the M X class objects, and BVandT.h starts with a forward
reference to these classes.

Independently, each set of project dependent simple mesh object class imple-
mentations, along with other project dependent source, and a main program, can
be compiled using the MVandT.h declarations appropriate to the project. The re-
sulting object code can then be linked with the object code for the Mesh2D class
implementation.

Details of the directory structure for this technique can be illustrated using the
tutorial example in Appendix §A.3. Consider a Unix directory, source, that contains:

- BVandT.h,

- a skeleton MVandT.h derived from it

- Mesh2D.h and the source for its implementation.

Suppose further that we have several subdirectories; one for each project, and one
of these, named source/surface contains the example of Appendix §A.3. The
source/surface/MVandT.h file is shown in §A.3.1. In the subsequent section of this
Appendix, the code for the main program is given, also stored in source/surface.

see Ellis and Stroustrup, Chapter 16, [4]

RR n-3592

28 R. B. Simpson

The opening lines illustrate a key step; the MVandT.h header is included before the
../Mesh2D.h header file. As a result, the _MVandT_H_ identifier has already been set
as defined when the inclusion of . ./Mesh2D.h occurs. Consequently, the declarations
in the ../MVandT.h header file included by ../Mesh2D.h are conditionally skipped
in the compilation and it proceeds using the project dependent class declarations.
The advantage of this complexity is that we are free to use inheritance via the BX
classes or nor as we choose.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 29

5 The project dependent classes: a tutorial example

In this section, we discuss a minimal geometric extension of the basic simple mesh
object classes of §3 that can support 3-D composite mesh representation. We do
this by means of a example main program that is small enough that the code can
be included in Appendix §A.3. Although it is trivial in its extent, the program does
illustrate a general technique for generating an initial triangulation on a polyhedral
surface. Figure 14 shows two views of a boundary representation of a simple trough.
The vertices of the trough are labeled 1 to 6 (in Helvetica font) and the line segments

0.5+

Figure 14: Boundry representation of simple trough example: 2 views

are labelled 1 to 8 (in Times Roman.) The three plane sides of the trough are the
quadrilaterals, vy, vg, v3, v4, V1,4, Vs, Vg, and the triangle vy, v9,vg. The trough is
open at the top; vertices vy and v4 are the lowest vertices on this open boundary, at
height z = 0.0. If water were poured into the trough, it would fill until the water
spilled out at vy and wvy.

The MVert class used for this example extends BVert by adding the following
members:

- (z,y, 2z) Euclidean coordinates of type double

- an implementation of the virtual CoordDiff member, which defines the condi-
tions under which the coordinates of two MVert are regarded as different

RR n-3592

30 R. B. Simpson

- a new function , Write() to output the data for a vertex to stdout.

(See Appendix §A.3.1 for details.)

The main geometric extensions of BTri that are present in the MTri class of
this example are connected with confirming the correct orientation of candidate
vertices for Mesh2D: : InsertTri. The class declares a static member static double
MeshPlanePos[3] which provides a single array space that can be used as a buffer
by any MTri object. The intention is that when MTri *t is to be inserted into
Mesh2D mesh, a positive direction for mesh should be recorded in t->MeshPlanPos;
let it be denoted 7,,,. The implementation of MTri::Orientation then checks that

the positive normal to the triangle, T, defined by the candidate vertices vz(cand) of *t
points to positive side of mesh by computing the inner product
< ﬁpos, (U§cand) _ ,U(()cand)) % (Ugcand) _ ,U(()cand)) > (2)

Remarks 1. Note that Mesh2D simply enables this validity check to be used.
A program that uses Mesh2D can by-pass it by providing an MTri class with an
Orientation member function that always returns 1, for example.

2. As we illustrate in this example, the flexibility in this technique to select any
positive direction for a mesh plane simplifies the preparation of the input for the
object to be meshed. The inner product (2) is related to the signed area of this MTri
as seen from the mesh positive direction. For complex objects involving triangles that
are less well shaped than our simple example, the difficulty of correctly computing
the sign of this projected area may be an issue. For robust implementations, it would
be preferable to the the actual mesh plane unit normal as the MeshPlanePos vector.
3. We note that for 2-D meshes, the MTri::Orientation member function can be
implemented simply as a signed triangle area computation.

Appendix §, A.3.2 provides a program that constructs a composite mesh for this
trough represented by array Mesh2D #mesh[3]. The basic pattern of the program is
that of a general approach to constructing an initial triangulation of a polyhedral
surface:

step 1 define a vertex coordinate array (more generally by reading from a file)
step 2 build a boundary representation of the composite mesh

step 3 triangulate each mesh of the composite mesh

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 31

In step 2, both the vertices and the line segments are registered in their respective
meshes. Note that the line segments for the internal edges are registered with NULL
neighbours in both meshes. This facilitates the triangulation step.

In step 3, the first triangle to be inserted in mesh[i] must fill the MTri static
buffer MeshPlanPos with a positive direction for mesh[i]. In this example, the
positive sides of the planes are identified with the inside of the trough. The program
shows very simple choices of positive directions for each; i.e. the positive z axis for
mesh[0], the negative x axis for mesh[1], the negative y axis for mesh[2].

The log file for each of the mesh[i] objects has been created; When the trough
has been constructed, a description of the incidence data for each mesh is printed
out using the Mesh2d:Dump member. Note that the recording of transactions in these
files has been turned off just prior to thes dumps. The log files for : = 0 and 2 and
the dump file for ¢+ = 0 are shown in Appendix §A.3.3.

Remarks 1. For the first insertion, the return value of InsertLSeg has been checked,
but not subsequently. We note that it is a useful practice in developing programs
using Mesh2D to include such tests during initial debugging runs. Then, once
confidence has been gained in the code, it may be worth removing these tests in the
interests of readability and, in the case of heavily used code sections, efficiency.

2. The trough could be represented by a single mesh object; i.e. it is not essential
to use a three mesh composite mesh. The view of the trough from the centroid
of vs, v4, vs shows the positive side of all three faces, Hence a single MeshPlanePos
direction could be assigned to a Mesh2D object, Mesh2D #*meshTrough, that could
serve the MTri:0rientation) member of all five MTri ; e.g. the direction from vy to
the centroid. The internal line segments, (numbered 1,6, and 7), could be omitted
and neighbouring incidences to neighbouring MTri on adjacent faces created. The
resulting single mesh would be topologically equivalent to the planar mesh created by
projecting the trough onto the y = 0 plane along the mesh plane positive direction.

RR n-3592

32 R. B. Simpson

6 Related Work and Conclusion

A number of the issues and approaches discussed in this report have been considered,
with varying degrees of explicitness, by other authors. Comments on the literature
in the OOP approach to the FEM and its relation to this work have already been
been included in §4.

The CGAL project 4 is producing a comprehensive library of computational geo-
metry algorithms for applications. The report by Fabri, et al ; 1998, [5], gives an
overview of the programming strategies employed as well as the project goals and
management. The documentation web site for the project

http://www.cs.uu.nl/CGAL/Information/doc_html/index.html

provides explicit descriptions of library and class details. The simple mesh object
classes of this report are related to the elementary objects of the triangulation and
half edge classes of CGAL. The Mesh2D class is a specific container class while
the CGAL strategy is to support implementations that are generic with respect
to the container classes. CGAL has a clearly defined strategy for these generic
implementations that is based on template programming. It would appear that this
strategy is meant to be used on a project basis, as well as for the development of
geometry specific codes for the library itself.

In [11], Mobley, Carroll, and Canann comment on the benefits of separating
geometric from incidence data in their design of finite element oriented classes for
software that interacts with both CAD data and finite element mesh data for 2 and
3 dimensions. Several authors have described designs and implementations which
broaden the design context of the mesh list class further by parametrizing the topo-
logy of the mesh elements. The CHAINS code of Palmer ’95 [13] and the QMG code
of Vavasis ° use k-simplicies as the basic element; Vavasis also uses a general object
class called a face which is parametrized by its intrinsic dimension and its embedded
dimension and has some similarities to the M[LSeg class of this paper when these
dimensions are 1 and 2 respectively.

The report has tried to provide the option to be read with more or less detail by
giving a combination of general overview and specific detail of the classes presented.
We have described their intended role in an established OOP approach to mesh ap-
plications software and indicated by tutorial examples the style of programming that
they support. Hopefully, this will indicated how we intend the classes to provide for

‘http://www.cs.uu.nl/CGAL/
Ssee http://simon.cs.cornell.edu/home/vavasis/qng-home.html

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 33

simplifying mesh programming while facilitating the generality of method implemen-
tations. A significant part of the simplification is derived from centralizing the mesh
data editing in the four editing function members of the Mesh2D class. We have
not seen a similar strategy in other class desriptions. The separation of incidence
data from coordinate based geometric data is a common approach to facilitating the
generality of method implementations and is present in one form or another in the
designs mentioned above. The classes of this report make this separation in the pro-
ject dependent mesh object classes; the separation may be explicit (by a inheritance
hierarchy, or template instantiation) or implicit, as suits a particular project.

RR n-3592

34 R. B. Simpson

A Appendices

A.1 Specifications for Mesh2D editing members

The signature for InsertTri is

ErrCode InsertTri(MTri *t, MVert* vbuf[3], MTri* nbuf[3], int
cbuf[3]);

The signature for InsertLSeg is the same except for an additional parameter Mesh2D*
oppMesh
Both of these member functions return the logical flag ErrCode defines in Global.h
with values SUCCEEDED for a sucessful insertion, FAILED otherwise.

The basic principles of the design of this signature are described in §3; here we
give a detailed list of specifications for these functions.
Requirements Common to InsertTri , InsertLSeg

Insert.1 =*t is the object to be inserted, or registered, in this mesh . t->GTnum
must be valid® for this mesh , but t must not be registered in this mesh . Any
existing VtxOppEdge, NaybrsOnEdge data for *t will be ignored.

Insert.2 vbuf[i] iseither NULL , or points to a potential candidate for VtxOppEdge[i]
of *t. vbuf[i] need not be registered in this mesh , but vbuf [i]->GVnum must
be valid for this mesh . Morever, the coordinates of this vertex must be distinct
from any other vertex registered in the mesh, (based on the MVert member
function CoordDiff).

Insert.3 Either nbuf[i] is NULL , or the pair nbuf[i], cbuf [i] should determine an
edge in this mesh . In this latter case, edge cbuf[i] of nbuf[i]) is a candidate
for the ith edge of *t(reversing the direction) A ND nbuf->NaybrOnEdge [cbuf [i]]
must be NULL . The value of cbuf[i] must be consistent with the actual type
of *t i.e. 0,1 for MLSeg and 0,1,0or 2 for MTri .

Insert.4 There is a complex requirement governing the acceptable combinations of
NULL input for vbuf, nbuf described in the following paragraph for determining
vertices for *t

Strictly speaking, these requirements apply for 1 = 0,1,2 for InsertTri and i =
0,1 only for InsertLSeg.

51t must be positive and not duplicate an existing MTri registered in this mesh

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 35

Determination of the candidate vertices for *t

For the ith edge of *t, the input allows up to 3 possible candidate vertices for the
vertex opposite this edge (i.e. t->VtxOppEdge[i]).

Le. (using addition modulo 3 for InsertTri and modulo 2 for InsertLSeg in sub-
sequent expressions)

vbuf[i]

vdestn[i]=
the final vertex of candidate edge i+1, (i.e. nbuf [i+1]->VtxOppEdge [cbuf [i+1]+1].)

vinit[i]=
the starting vertex of candidate edge 1+2, (i.e. nbuf [i+2]->Vtx0ppEdge [cbuf [1+2]+2].)

If the input specifies exactly one candidate for t->VtxOppEdgel[il], it is accepted as
the candidate. If more than one vertex specification is present in the input and they
are consistent, i.e. the global M Vert number of each is the same, then this redun-
dantly specified vertex is used as the candidate. But if the multiple specifications
are not consistent, then InsertTri returns FAILED.

If no candidate is specified, then InsertTri returns FAILED.

Note: Non-NULL nbuf data is used both for identifying mesh neighbours to be up-
dated for *t, and for specifying candidate vertices for it. In fact, for some insertions,
it is the need for the former purpose that leads to redundancy in the second as dis-
cussed.

Note: candidate vertices are determined for this mesh

Requirements Specific to InsertTri
For a successful insert:

InsertTri.5 Non-NULL *nbuf[i] may be either MTri or MLSeg . and be registe-
red in this mesh

InsertTri.6 The MTri member function Area must evaluate positive for the the
candidate MVert s

Requirements Specific to InsertLSeg
For a successful insert:

InsertLseg.5 Requirements Insert.1 must also apply to oppMesh.

RR n-3592

36 R. B. Simpson

InsertLSeg.6 for non NULL oppMesh, candidate vertices must be registerable in
oppMesh

InsertLSeg.7 non-NULL nbuf[i] must be MTri , i.e. cannot be MLSeg

InsertLSeg.8 if exactly one of nbuf[i] is NULL , i = 0,1, then the non-NULL nbuf
must be registered in this mesh. oppMesh may be NULL or not.

InsertLSeg.9 if both nbuf[i] are not NULL , then oppMesh must be non-NULL. One
of the nbuf[i] must be registered in this mesh and the other in oppMesh (
including the case oppMesh = this mesh.)

Note: vbuf[2], nbuf[2] and cbuf[2] are ignored.

Updating common to InsertTri, InsertLSeg
For a successful insertion:

Update.1 Candidate vertices are assigned to t->VtxOppEdge and registered in this
mesh (in Vertices). This is the only way to assign vertices to MTri, MLSeg .

Update.2 t is registered in this mesh (in Triangles).
Update.3 t->NaybrOnEdge[i] = nbuf[i] (whether NULL or not.)

Update.4 if nbuf[i] is not NULL then nbuf[i]->NaybrOnEdge[cbuf[i]] is set to
t. These are the only ways to assign neighbours data for an MTri, MLSeg .

Note: For InsertLSeg, Update.3 and Update.4 apply regardless of which meshes
are involved.

Updating specific to InsertLSeg
UpdateLSeg.5 Update.l and Update.2 also apply to non-NULL oppMesh

UpdateLSeg.6 If nbuf[i] is in this mesh then t->MeshOnEdge[i] = this. But
if nbuf [i] is in oppMesh then t->MeshOnEdge[i] = oppMesh.

In particular, MVert can be registered in this mesh only through Insert X member
functions, although not necessarily only through those of this mesh, i.e. possibly
through a neighbouring mesh.

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 37

On return
The buffers vbuf and nbuf are set to NULL to facilitate subsequent updates. On
returning ErrCode == FAILED, no mesh data is changed.

RemoveTri , RemoveLSeg
The signatures of these Mlesh2D member functions are :

ErrCode RemoveTri(MTri *t); ErrCode RemovelLSeg (MLSeg *t);

Updates common to both
Remove.1l removes *t from Triangles (or BoundaryRefs) for this mesh.

Remove.2 all neighbours pointers in *t are set to NULL and all pointers to *t in
its neighbouring mesh entities are set to NULL .

Remove.3 removes t from the incidence list of each of its vertices. If, for one of
these vertices, this results in an incidence list with no MTri or MLSeg objects
registered in this mesh, then the vertex is deregistered in this mesh.

Note that RemoveX does not delete X which is the task of the destructor for X.
This remark also applies to any M Vert objects that are deregistered implicitly. This
has some potential to be a source of a programming bug in which a vertex becomes
de-registered from every mesh and is assumed ‘gone’ by the programmer, but has
not actually been deleted from dynamic memory.

RR n° 3592

38 R. B. Simpson

A.2 Header files

This appendix contains:

a) the header file BVandT.h for the BVert, BTri , and BLSeg that define the
minimal simple mesh object class members expected by Mesh2D

b) a header file MVandT.h that derives MVert MTri , and MLSeg classes from
B X and that can be used to compile the Mesh2D class implementation

c) the header file declaring the Mesh2D class

An example of project dependent classes derived from the BVert, BTri , and BLSeg
classes and implementations of them are given in the example code of the next
appendix.

A.2.1 the BVert, BTri , and BLSeg class header files

#ifndef _BVandT_H_
#define _BVandT_H_
#include <iostream.h> // defines NULL ()

// Forward references needed by BTri, BVert and BLSeg
class Mesh2D; class MTri; class MVert; class MLSeg;

// Structure used by the adjacency list for each BVert

struct BTLSegList { // Triangle linked list for vertex adjacency info
MTri *t; // A triangle or line segment pointer
BTLSeglList *next; // Next structure in the list

s

[11777777777777777777777777777777777777/77/77/7777
// Class BVert

class BVert {
friend Mesh2D ;

public:
int GVnum; // the global vertex label
virtual int CoordDiff(MVert *w) = 0;
// compares coords of this BVert with #*w
// defined as pure virtual to force subclass definition
// returns 0 if coordinates are, by definition of this function, the same

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 39

// 1 (not zero) if they are different
protected:
BVert(); // default constructor
BVert(int num); // explicit constructor providing global label
virtual ~“BVert(); // default null destructor

BTLSeglList *adjList; // triangles or line segments incident on this vertex
}; // BVert

[171777777777777/77/7/77777/777/777777777/777777/77777777777/7/7/7777777/7777777777
// Class BTri
//

class BTri {
// triangle data can be accessed by the members of this class
// but not modified. Modification of triangle incidence data can
// only be done through the Mesh2D class member functions
friend Mesh2D;

public:
int GTnum; // global Tri index
MVert *GetVOE(int edgeNo);
// if -1< edgelNo <3
// then returns pointer to vertex opposite edge of edge
// numbered edgeNo
// else returns NULL
MVert **GetVOE();
// returns pointer to a variable array of MVert opposite edges
MTri *GetNOE(int edgeNo);
// requires -1< edgeNo <3 or program terminates !!
// if -1< edgeNo <3
// then returns pointer to neighbour (MTri or MLSeg) on edge
// numbered edgeNo
// else returns NULL
MTri **GetNOE();
// returns pointer to variable array of neighbours on edges
MTri #GetNOE(int edgeNo, int &cegno);
// returns neighbour on edge edgeNo AND complementary edge no
virtual double Orientation(MVert** vbuf) = 0;
// returns pos if vbuf[i], i=0,1,2 form a counter clockwise triangle
// viewed from positive side of a given mesh plane

RR n°3592

40 R. B. Simpson

// TFor 2-D, treat coordinate plane as embedded in 3-D with pos
// vertical as positive direction
// (Note: virtual function initializer must be 0!)
int ComplEdgeNum(int edgeNum) ;
// if (-1 < edgeNum < 3)

// then

// if edge(*t,edgeNum) has NULL neighbour opposite this tri

// then the function returns -1

// else Let neigh be neighbour of this tri on edge(*t,edgeNum)
// The function returns edgeNum2 such that

// e = edge(*t,edgeNum) = -edge(*neigh,edgeNum2)

// else the function returns 3

protected:
BTri(); // default constructor
BTri(int gTnum); // explicit constructor
“BTri() {} // destructor and constructor are protected

MTri *NaybrOnEdge[3];
// pointers to MTri and MLSeg mesh neighbours for each triangle edge
MVert *VtxOppEdgel[3];
// pointers to MVert opposite each triangle edge
}; // BTri

II11177
// Class BLSeg
//

class BLSeg: public BTri{ // for a BLSeg, VtxOppEdge[2] == NULL
friend Mesh2D;

public:
Mesh2D *GetMOE(int edgeNo);
//if -1 <edgeNo <2
// then returns pointer to mesh (possibly NULL) sharing edge edgeNo
// else returns NULL
protected:
BLSeg(): BTri() {} ;
BLSeg(int gTnum): BTri(gTnum){};
“BLSeg() {}
Mesh2D *MeshOnEdge[2];
// pointers to Mesh2D mesh on edge 1

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 41

};

// BLSeg

#endif // _BVandT_H

A.2.2 the MVert, MTri, and MLSeg class header files

#ifndef _MVandT_H_
#define _MVandT_H_

#include "BVandT.h"

class MVert : public BVert {

};

public:

double X,Y; // Euclidean plane coordinates

MVert(); // default constructor

MVert(int GVnum, double x, double y); // explicit constructor
“MVert(O){} ; // default null destructor

int CoordDiff(MVert *w) ; // required by Mesh2D

class MTri : public BTri {

friend class Mesh2D ;

public :

MTri(): BTri() {} ; // default constructor
MTri(int gTnum): BTri(gTnum) {}; // explicit constructor

“MTri() ; // default destructor

double Orientation(MVert** vbuf); // signed area of triangle with

class MLSeg : public BLSeg {

};

friend class Mesh2D ;

public:

MLSeg(): BLSeg() {};

MLSeg(int gTnum): BLSeg(gTnum) {};
“MLSegO{} ;

double Orientation(MVert** vbuf);

#endif // _MVandT_H

RR n-3592

42 R. B. Simpson

A.2.3 The Mesh2D header file

#ifndef _Mesh2D_h_
#define _Mesh2D_h_

#include <fstream.h>
#include "Hash.h" // includes declaration of basic Hash table
#include "MVandT.h"

enum ErrCode { SUCCEEDED = 0, FALSE = 0, FAILED = 1, TRUE = 1 };
class Mesh2D {

F A
// This class is a container class for storing lists of vertices,

// triangles, and boundary line segments. These lists will be referred
// to as Vertices, Triangles and Boundaries, respectively.

F A

public:
Mesh2D(int LogFileOn, const char* LogFileName) ;
// constructor
// if LogFileOn = 1 (, or not zero,)
// then create and open for write a log file named LogFileName
// in the directory of executing program
int LogFileOnIsOne ; // flag to control writing entries in LogFile
// 0On if =1 (or not 0) ; Off if = 0
~“Mesh2D();

111717177777 777777777777/777777777/777777777/77/7/777777/77/77777777777777
// %% ACCESS ROUTINES

LIITTIII1177

int NewGVnum(){return ++NewVertex;};

int NewGTnum(){return ++NewTriangle;};

int NewGLSnum(){return ++NewLSeg;} ;
// returns a global vertex,triangle, or line segment number
// larger than any EVER registered in this mesh
// NOTE: NewX may also be modified by InsertY Y = Tri, LSeg

int NumVtx() { return NVtx;};

int NumTri() { return NTri;};
int NumLSeg() { return NLSeg;};

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 43

// return the number of vertices, triangles, boundaries

MVert *FirstVtx();

MTri *FirstTri();

MLSeg *FirstLSeg();
// initializes a scan of Vertices, or Triangles, or Boundary Refs
// ensures return of a pointer to an MVert, or MTri, or MLSeg
// ; or NULL if the corresponding list is empty

MVert *NextVtx();
MTri *NextTri();
MLSeg *NextLSeg();
// returns the next MVert in a scan of Vertices

// (or next MTri , or next MLSeg)

// requires a prior call to FirstX or NextX that

// returned non NULL pointer, for X = Vtx , or Tri, or LSeg

// ensures return of either a pointer to an MVert(,MTri, MLSeg) or NULL
// if current scan is complete

MVert *Vtx0fI(int vNum);

MTri *TriOfI(int tNum);

MLSeg *LSegOfI(int tNum);
// ensures return of pointer to MVert with index vNum
// (or MTri with index tNum , MLSeg with index tNum)
// NULL if not in Vertices(Triangles, Boundary Refs)

int Mesh2D::TriOnVtx(MVert *v, MTri ** tList, int maxNumOfTri) ;
// requires: vertex *v and array MTri * tList[maxNumOfTri] declared in

// calling program. maxNumOfTri must be positive

// ensures: function value is total number of MTri objects (including MLSeg)

// incident on v in all meshes. The first min(TriOnVtx, maxNumOfTri) of
// them are stored in array tList[k].

// If any of the MTri are registered in this mesh, then

// tList[0] is in this mesh

inline ErrCode Mesh2D::IsBoundary(MTri *t)
{ // returns TRUE if *t is MLSeg - FALSE otherwise
if (t==NULL) return FALSE;
else
return (t->VtxOppEdge[2] == NULL ? TRUE: FALSE);

RR n-3592

R. B. Simpson

inline ErrCode InThisMesh(MTri *t) ;
// returns TRUE if *t is registered in this mesh

void Dump(const char* FileName, const char* title);
// Debugging aid
// Dump the contents of the mesh to FileName
// with title included at top of dump file

1117117177777 7/777777/7/77777777/7777/777/77/7/77777777777/777777777777
// %% UPDATE ROUTINES
1117117177777 7/777777/7/77777777/7777/777/77/7/77777777777/777777777777

// the data insertion members, InsertTri and InsertlLSeg, perform several
// types of data updating after some validation checks

// Assuming the validations are passed, these members

// 1) register *t and possibly new MVerts in this mesh

// ii) update incidence data in *t about its vertices and neighbours

// iii) wupdate the reciprocal incidence data in the vertices and neighbours

//

// Similarly, the data removal members, RemoveTri and RemovelLSeg, perform

// several modifications of the incidence data for the mesh and its objects

// after some validations. I.e.

// i) removal of t from the Triangles or Boundaries 1lists and the

// adjacency list of each of its vertices

// ii) NOT the deletion of the dynamic memory allocated to *t

// iii) the removal of t as a neighbour of its pre-removal neighbours

// iv) the removal of any vertex of *t which has an empty adjacency list

// after removing t from Vertices list; but not the deletion of
// the dynamic memory allocated to this vertex.
//

// ***%*x See Tech Report Appendix A for details ***x*
ErrCode InsertTri(MTri *t, MVert* vbuf[3], MTri* nbuf[3], int cbufl[3]);

ErrCode InsertLSeg(MLSeg *t, MVert* vbuf[3], MTri* nbuf[3],
int cbuf[3], Mesh2D* oppMesh);

ErrCode RemoveTri(MTri *t);
ErrCode RemovelLSeg (MLSeg *t);

ErrCode Mesh2D::EdgeSwap(MTri *t, int locENum);

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 45

// Let *t1 = neighbour of *t on edge determined by *t and locENum

// requires #*t and *tl both be MTri ; No test to be sure each is in
// this mesh
// returns SUCCEEDED if it swapped edge determined by *t and locENum
// for alternative diagonal in quadrilateral formed by *t, *til
// no convexity check on this quadrilateral
// returns FAILED otherwise

protected:
ofstream LogFile; // name of the log file
ofstream DumpFile; // name of the debugging dump file
int NVtx; // number of vertices in Vertices
int NTri; // number of triangles in Triangles
int NLSeg; // number of line segments Boundaries
int NewVertex; // number of the next vertex (always increasing!)
int NewTriangle; // number of the next triangle (always increasing!)
int NewLSeg; // number of the next LSeg (always increasing!)
HashTable<MVert> #vHTable; // hash table for Vertices
HashTable<MTri> #tHTable; // hash table for Triangles
HashTable<MLSeg> *bHTable; // hash table for Boundary Line Segs

privat

e:

ErrCode RemoveVtx(MVert *v);
ErrCode CheckVertices(MTri *t, int dimT, MVert* vbuf[3], MTri #**nbuf,
int #cbuf, int* alreadyIn);
ErrCode CheckAndUpdateNaybrsLSeg(MLSeg* t, MVert **vtxOppEdge,
MTri **naybrOnEdge);

ErrCode AddVtx(MVert *v);
ErrCode AddAdjacency(MVert *v, MTri *t);
ErrCode DelAdjacency(MVert *v, MTri *t);

¥ //

#endif

RR n~°

Mesh2D

// _Mesh2D_h_

3592

46 R. B. Simpson

A.3 Tutorial example - a trivial trough

Figure 14 shows two views of the boundary representation of a simple trough with
three planar faces. The code that constructs a representation using an array Mesh2D*
mesh[3], and the MVert, MTri, MLSeg header files, are given below. A discussion
of the example is given in §5

Each mesh[i] is constructed with a log file named mesh:.Log and each has a
dump file named mesh¢.Dump showing the final mesh[i] incidence data. meshO.Log,
mesh2.Log and meshO0.Dump are shown in the subsequent subsection.

0.5+

Figure 15: Boundary representation of simple trough example: 2 views

A.3.1 Tutorial example: simple mesh object header and implementation

files

Project dependent class header files for tutorial example

class MVert : public BVert {

public:

double X,Y,Z; // Euclidean 3-D coordinates
MVert () :BVert (){}; // default constructor
MVert(int gVnum) :BVert(gVnum){}; // semi explicit

INRIA

C++ Classes for 2-D Unstructured Mesh Programming 47

MVert(int vNum, double xc, double yc, double zc)
{X=2xc; Y=yc ; Z=2c ; GVnum = vNum ; }; // explicit constructor
“MVert (){} ;
int CoordDiff(MVert *w) ;
// returns 0 if this and w deemed to have the same coordinates
void Write(); // outputs vertex data to stdout (extra member)

};

class MTri : public BTri {
friend class Mesh2D ;

public :
static double MeshPlanePos[3] ; //a positive direction of mesh plane
// used temporarily to confirm orientation
// of this MTri during Mesh2D::InsertTri

MTri(): BTri() {}; // default constructor

MTri(int gTnum); // explicit constructor

“MTri() ; // default destructor
double Orientation(MVert** vbuf);

class MLSeg : public BLSeg {
friend class Mesh2D ;

public:

MLSeg(): BLSeg() {};

MLSeg(int gTnum): BLSeg(gTnum) {};

“MLSeg O){} ;

double Orientation(MVert** vbuf);
};

#endif
Project dependent class implementations for tutorial example

#include "MVandT.h"
// the next three lines are used for CoordDiff
#include <math.h> // provides fabs
#define macheps 1.0e-15 // floating point machine epsilon
#define max(a, b) (a>b ? a : b)

RR n°3592

48 R. B. Simpson

int MVert::CoordDiff (MVert #*w)
//

{

double Xw = w->X ;

double Yw = w->Y ;

double Zw = w->Z ;

//
if (fabs(X-Xw) < 10.#*macheps*max(fabs(X), fabs(Xw))
&&
fabs(Y-Yw) < 10.*macheps*max(fabs(Y), fabs(Yw))
&&
fabs(Z-Zw) < 10.*macheps*max(fabs(Z), fabs(Zw)))
{return 0;}
return 1;
}
void MVert::Write(){
cout ¢« " GVnum " « GVnum <« " (" <« X <« ", "« Y ;
cout ¢« ", "« Z ¢« ")" « endl;
3

MTri::MTri(int gTnum) { // explicit constructor
GTnum = gTnum ;

}

double MTri::Orientation(MVert ** vbuf)
{

int egDummy;

double 1EgDummy, inner;

double ul3],v[3],n[3] ;

// get coords of vbuf[1], vbuf[2] relative to vbuf[0]
ul0] = vbuf[1]->X - vbuf[0]->X; v[0] = vbuf[2]->X - vbuf[0]->X;

ul1] = vbuf[1]1->Y - vbuf[0]->Y; v[1] = vbuf[2]->Y - vbuf[0]->Y;

ul2] = vbuf[1]1->Z - vbuf[0]->Z; v[2] = vbuf[2]->Z - vbuf[0]->Z;
// compute n = normal to plane of triangle = vector cross product u x v
n[0] = ul1l*v[2]-ul[2]*v[1] ;
n[1] = u[2]*v[0]-ul[0]*v[2] ;

INRIA

C++ Classes for 2-D Unstructured Mesh Programming

49

n[2] = ulol*v[1]-ul1]*v[0] ;
inner = n[0]*MeshPlanePos[0] + n[1]*MeshPlanePos[1] +
n[2] #*MeshPlanePos[2] ;

return inner;

}

// functions to satisfy virtual BTri::Orientation
double MLSeg::Orientation(MVert ** vbuf){return 0.0;}

//

RR n-3592

50

R. B. Simpson

A.3.2

// tutorial example - simple trough

"MVandT.h"
"../Mesh2D.h"
<stdio.h>
<stdlib.h>

#include
#include
#include
#include

int main()
{const int Hvtx = 6;

double a, x[Nvtx], y[Nvtx], z[Nvtx] ;
Mesh2D* mesh[3];

MVert * vbuf[3];

MTri *nbufl[3];

int cbuf[3], meshlo, i, vlab;

// declare, and set up log files for, each mesh
mesh[0] = new Mesh2D(1,'"meshO.Log");

mesh[1] = new Mesh2D(1,"meshl.Log");
mesh[2] = new Mesh2D(1,"mesh2.Log");
x[01 = 0 ; y[o]l = 1.4 ; z[0] = -.7;
x[1] = -1 5 y[1I1 =1 ; z[1] = 0 ;

x[2] = -1 ;y[21=0; z[21=05;
x[31= 0 ;y[31=0; z[31= 0;
x[41 = 1 ; y[41 =0 ; =z[4] =1 ;

x[61 = 1 ; y[5]1 =1 ; =z[5]1=0.5;

// build boundary representation

MVert* vstart = new MVert(1,x[0],y[0],z[0]);
vbuf[0] = vstart;

MVert* vdestn = new MVert(2,x[1],y[1],z[1]) ;
vbuf[1] = vdestn;

MLSeg* seg = new MLSeg(1);

if(mesh[0]->InsertLSeg(seg,vbuf ,nbuf,cbuf,mesh[2])==FAILED)

{cout ¢« " initial insert failed " « endl;

return O;

};
// MNow seg is registered in both mesh O and mesh 2
// and so are vstart and vdestn

vlab = 3; // explicit vertex label

// build open boundary at the top
for(meshllo = 0; meshlNo < 2 ; meshlo++)
{ for (i = 0; i<2 ; i++)
{ vbuf[0] = vdestn ;
vdestn = new MVert(vlab,x[vlab-1],y[vlab-1],z[vlab-1]);
vbuf[1] = vdestn;
seg = new MLSeg(vlab-1);
mesh[meshlNo]->InsertLSeg(seg,vbuf ,nbuf,cbuf,NULL) ;
// these lsegs are joined only to outside.
vlab++;
}s
};
// now all vertices are registered. Enter remaining
// internal line segments for boundary rep
vbuf[0] = vdestn; vbuf[1] = vstart ;
seg = new MLSeg(6);
mesh[1]->InsertLSeg(seg,vbuf ,nbuf,cbuf,mesh[2]) ;

vbuf [0]=mesh[0] ->Vtx0fI(4); vbuf[1]=vstart;
seg = new MLSeg(7);
mesh[0]->InsertLSeg(seg,vbuf ,nbuf,cbuf,mesh[1]) ;

vbuf[0]=vdestn; vbuf[1] =
seg = new MLSeg(8);
mesh[2]->InsertLSeg(seg,vbuf ,nbuf,cbuf ,NULL) ;

mesh[0] ->Vtx0fI(2);

// boundary rep complete

Tutorial example: main program source code

// Hote tricky relation of ifdefn MVandT

// add triangles in mesh[i], i = 0,1,2
nbuf[0] = (MTri *) mesh[0]->LSegOfI(1) ; cbuf[0] = O ;
nbuf[2] = (MTri *) mesh[0]->LSegOfI(7) ; cbuf[2] ;
MTri * t = new MTri(1) ;
// set MTri static member using +ve x axis as positive
// direction for mesh[0]
t->MeshPlanePos[0] 1.0 ;
t->MeshPlanePos[1] 0.0;

n
(=]

t->MeshPlanePos[2] = 0.0 ;
mesh[0]->InsertTri(t,vbuf,nbuf,cbuf);

nbuf[0] = (MTri *) mesh[0]->LSegOfI(2) ; cbuf[0] =
nbuf[1] = (MTri *) mesh[0]->LSegOfI(3) ; cbuf[0]
nbuf[2] = t ; cbuf[2] = 1;

t = new MTri(2) ; // t->MeshPlanePos already set

noi
o ©

mesh[0]->InsertTri(t,vbuf,nbuf,cbuf);

nbuf[0] = (MTri *) mesh[1]->LSegOfI(6) ; cbuf[0] = O ;
nbuf[1] = (MTri *) mesh[1]->LSegOfI(7) ; cbuf[1] ;
t = new MTri(2) ;

// using -ve x axis as positive
t->MeshPlanePos[0] = -1.0 ;
t->MeshPlanePos[1] = 0.0;

n
-

direction for mesh[1]
t->MeshPlanePos[2] = 0.0 ;

mesh[1]->InsertTri(t,vbuf,nbuf,cbuf);

nbuf[0] = (MTri *) mesh[1]->LSeg0fI(4) ; cbuf[0] = O ;
nbuf[1] = (MTri *) mesh[1]->LSegOfI(5) ; cbuf[1] = 0 ;
nbuf[2] = t ; cbuf[2] = 2;

t = new MTri(4) ;

mesh[1]->InsertTri(t,vbuf,nbuf,cbuf);

// finally - insert single triangle in mesh[2]
nbuf[0] = (MTri*) mesh[0]->LSegOfI(1) ; cbuf[0]=1 ;
nbuf[1] = (MTri*) mesh[1]->LSeg0fI(6) ; cbuf[1]=1 ;
nbuf[2] = (MTri*) mesh[2]->LSeg0fI(8) ; cbuf[2]=0 ;

t = new MTri(mesh[2]->NewGTnum()) ;
// using -ve y axis as positive direction for mesh[2]

t->MeshPlanePos[0] = 0.0 ;

t->MeshPlanePos[1] = -1.0; t->MeshPlanePos[2] = 0.0 ;

mesh[2]->InsertTri(t,vbuf,nbuf,cbuf);

// turn off recording mesh transactions
for(i=0; i<3 ; i++) mesh[i]->LogFileOnIsOne = 0;

mesh 0; tutorial ");

meE¥RIAtutorial ") ;

mesh 2; tutorial ");

mesh [0] ->Dump ("'meshO . Dump" , "
mesh[1]->Dump ("'meshi . Dump" ,"
mesh[2] ->Dump ("mesh2 . Dump" , "

return 1;

}

C++ Classes for 2-D Unstructured Mesh Programming

A.3.3 examples of debugging files
The mesh0.Log file

Mesh2D constructor: Vertices table size 50
Triangles table size 100
Boundary Reference table size 50
InsertlLSeg: 1line segment 1 AddVtx: attempting to insert 1
AddVtx: Successful
AddVtx: attempting to insert 2
AddVtx: Successful
InsertLSeg: SUCCEEDED
InsertlLSeg: 1line segment 2 AddVtx: attempting to insert 3
AddVtx: Successful
InsertLSeg: SUCCEEDED
InsertlLSeg: 1line segment 3 AddVtx: attempting to insert 4
AddVtx: Successful
InsertLSeg: SUCCEEDED
InsertlLSeg: 1line segment 7 InsertlLSeg: SUCCEEDED
InsertTri: triangle 1
InsertTri: SUCCEEDED
InsertTri: triangle 2
InsertTri: SUCCEEDED

The mesh2.Log file

Mesh2D constructor: Vertices table size 50
Triangles table size 100
Boundary Reference table size 50
AddVtx: attempting to insert 1
AddVtx: Successful
AddVtx: attempting to insert 2
AddVtx: Successful
AddVtx: attempting to insert 6
AddVtx: Successful
InsertlLSeg: 1line segment 8 InsertlLSeg: SUCCEEDED
InsertTri: triangle 1
InsertTri: SUCCEEDED

The meshO.Dump file

Syntax for dump file listings:

RR n°3592

52 R. B. Simpson

triangle neighbours : [GThum | -|,<LSeg>
GTnum is label of the neighbour | - indicates NULL
optional flag LSeg indicates that the neighbour is an MLSeg .

vertex adjacencies : GTnum,<LSeg>,<other>
G Tnum is label of the incident MTri or MLSeg
optional flag LSeg indicates the letter
optional flag other indicates that incident object is not registered in this mesh.

line segment neighbours : [GThum | -|,[this | other]
G'Tnum is label of the neighbouring MTri , - indicates NULL |
second field designates this or other mesh.

mesh 0; tutorial

Triangles:
Number:1
Vertices: 4, 1, 2
Neighbours: 1,LSeg, 2, 7,LSeg,

Number:2
Vertices: 4, 2, 3
Neighbours: 2,LSeg, 3,LSeg, 1,

Vertices:
Number:1
Adjacency: 1,other, 2,other, 1, 7,LSeg, 6,LSeg,other, 1,LSeg,

Number:2
Adjacency: 1,other, 2, 1, 8,LSeg,other, 2,LSeg, 1,LSeg,

Number:3
Adjacency: 2, 3,LSeg, 2,LSeg,

Number:4
Adjacency: 4,other, 2,other, 2, 1, 7,LSeg, 4,LSeg,other, 3,LSeg,

Line Segments:
Number:1
Vertices: 1, 2
Neighbours: 1,this, 1,other,

Number:2

Vertices: 2, 3
Neighbours: 2,this, - ,

INRIA

C++ Classes for 2-D Unstructured Mesh Programming

53

Number:3

Vertices: 3, 4
Neighbours: 2,this, - ,
Number:7

Vertices: 4, 1

Neighbours: 1,this, 2,other,

RR n-3592

54

R. B. Simpson

References

[1]

[2]

[14]

[15]

M Bern and D Eppstein. Mesh generation and optimal triangulation. In F K Huang,
editor, Computing in Euclidean Geometry. World Scientific, 1992.

P Breitkopf. Approche objet en elements finis. In Revue europpeenne des elements
finis. Hermes, Paris, 1998.

I P Chew. Guaranteed-quality mesh generation for curved surfaces. In 9th Annual
Symposium on Comp Geometry, pages 274-280, San Diego, California, 1993. ACM.

M A Ellis and B Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

A Fabri, G-J Geizeman, L. Kettner, S Schirra, and S Schonherr. On the design of cgal,
the computational geometry algorithms library. Technical Report 3407, INRIA, Sophia
Antipolis, 1998.

P L George. Automatic Mesh Generation : application to finite element methods. John
Wiley and Sons, Paris : Masson, 1991.

P L George and H Borouchaki. Delaunay Triangulation and Meshing. Hermes, 1998.

I Guibas and J Stolfi. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Trans on Graphics, 4:74-123, 1985.

L Kettner. Designing a data structure for polyhedral surfaces. In Proc. 14th Annual
ACM Symposium, Comp. Geom., pages 146—-154. ACM, 1998.

R. Mackie. Object oriented programming of the finite element method. International
Journal for Numerical Methods in Engineering, 35:425-436, 1992.

A V Mobley, M P Carroll, and S A Canann. An object oriented approach to geometry
defeaturing for finite element meshing. In Proc. 7th Intl Meshing Roundtable ’98. Sandia
National Laboratories, 1998.

J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.

R S Palmer. Chain models and finite element analysis: An executable chains formulation
of plane stress. Computer Aided Geometric Design, 12:733-770, 1995.

R B Simpson. A data base modeling abstraction for describing triangular mesh algo-

rithms. BIT, 37:138-163, 1997.
K Weihe. Using templates to improve C++ design. C++ Report, Feb:14-21, 1998.

INRIA

Index

BLSeg , 20

header file, 29
BTri , 20

header file, 29
BVert |, 20

header file, 29
MLSeg , 8, 31, 37
Mesh2D , 9

header file, 32
MTri , 8, 31, 37

example, 22
MVert | 8, 13, 31, 37

example, 22
ErrCode, 12
FirstLSeg, 11
FirstTri, 11
FirstVtx, 11
GetNOE, 10
GetVOE, 10
InsertLSeg, 11, 15, 26
InsertTri, 11, 26
LogFileOnIsOne, 16
NewGTnum, 11
NewGVnum, 11
NextLSeg, 11
NextTri, 11
NextVtx, 11
RemoveLSeg, 11, 28
RemoveTri, 11, 28
cbuf[], 12, 26
nbuf[]1, 12, 26
vbuf [1, 26

edge swap, 15
candidate vertex, 12, 15
compilation, 20

composite mesh, 9

debugging, 15, 41

design context, 17
destination vertex, 5
directed plane, 6
direction vector, 6

dump file, 15, 41
header file, 21

label server, 11
line segment, 24
class, 8

geometry, 5
log file, 15, 41

neighbour, 12
geometry, 5

origin vertex, 5

project context, 17
project dependent class, 18
example, 22

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr

ISSN 0249-6399

