N

N

Experiments in Program Compilation by Interpreter
Specialization
Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles
Muller, Julia L. Lawall

» To cite this version:

Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, et al.. Experiments
in Program Compilation by Interpreter Specialization. [Research Report] RR-3588, INRIA. 1998.
inria-00073092

HAL Id: inria-00073092
https://inria.hal.science/inria-00073092
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073092
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Experimentsin Program Compilation by
| nterpreter Specialization

Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller,

Julia Lawall

N° 3588
Décembre 1998

THEME 2

apport
derecherche

% I N RIA

RENNES

Experiments in Program Compilation by Interpreter
Specialization

Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles
Muller, Julia Lawall

Theme 2 — Génie logiciel
et calcul symbolique
Projet COMPOSE

Rapport de recherche n3588 — Décembre 1998 — 20 pages

Abstract: Interpretation and run-time compilation techniques are becoming increasingly
important due to the need to support heterogeneous architectures, evolving programming
languages, and dynamically downloaded code. Although interpreters are easy to write and
maintain, they are inefficient. On the other hand, run-time compilation provides efficient
execution, but is costly to implement. One way to get the best of both approaches is to apply
program specialization to an interpreter in order to generate an efficient implementation
automatically.

Recent advances in program specialization technology have resulted in important im-
provements in the performance of specialized interpreters. This paper presents and assesses
experimental results for the application of program specialization to both bytecode and
structured-language interpreters. The results show that for general-purpose bytecode, pro-
gram specialization can yield speedups of up to a factor of four, while specializing certain
structured-language interpreters can yield performance equivalent to code compiled by a
general-purpose compiler.

Key-words: Specialization, interpreters, Java, Caml, domain-specific languages

(Résumé : tsvp)

This research is supported in part by France Telecom/CNET

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Teéléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71

Compilation de programmes par spécialisation
d’interpréetes

Résumé : Les techniques d’interprétation et de compilation & la volée sont d’un intérét
croissant en raison de I’hétérogénéité des architectures matérielles, de I’évolution des langages
de programmation et du besoin de chargement dynamique de code. L’avantage majeur des
interpretes réside dans leur facilité de conception et de maintenance. Cependant, ils sont
relativement inefficaces. Par ailleurs, si les compilateurs & la volée permettent une exécution
efficace, ils sont longs et complexes & implémenter. Dans cet article, nous nous intéressons a
une approche différente consistant a utiliser la spécialisation de programmes afin de générer
automatiquement un compilateur & partir d’un interprete.

Les progres récents de la technologie de spécialisation de programmes ont entrainé une
augmentation de la performance des interprétes spécialisés. Nous présentons ici des résul-
tats expérimentaux sur la spécialisation d’interpretes de code intermédiaire (bytecode) et
d’interpretes pour langages structurés. Nos résultats montrent que sur des interpretes de
code intermédiaire, la spécialisation apporte un gain en vitesse d’exécution allant jusqu’a 4.
Sur des interpretes pour langages structurés, le code spécialisé peut &tre aussi performant
qu’un programme compilé par un compilateur traditionnel.

Mots-clé : spécialisation, interpretes, Java, Caml, langages dédiés

Ezperiments in Program Compilation by Interpreter Specialization 3

1 Introduction

Modern computing environments are characterized by heterogeneous architectures, evol-
ving programming languages, and dynamically loaded code. Traditional compilers, which
perform complex, machine-specific optimizations, are not well-suited to such environments.
These problems have stimulated renewed interest in interpretation as a realistic language
implementation technique. Interpreters provide portability, ease of modification, and rapid
deployment of dynamically-loaded code. Nevertheless, interpretation carries a significant
performance penalty. One solution is to generate compilers from interpreters (e.g., [19, 34]).
Various techniques have been proposed to achieve this goal:

Run-time code generation. Run-time code generation languages, such as VCODE [11]
and ‘C [12], provide a high-level notation in which to write programs that generate
executable code at run time. This approach has been successfully used in networks for
generating highly efficient filters [13]. Similarly, an interpreter written in a language
that supports run-time code generation can be modified to generate code rather than
executing it. Nevertheless, the approach is error-prone since little or no correctness
verification of the code generation process is performed.

Ad-hoc bytecode interpreter optimization. Piumarta and Riccardi have proposed to
improve the performance of bytecode programs by selective inlining, i.e., replacing
each bytecode by the corresponding fragment of the compiled code of the interpreter
[31]. This approach is effective, obtaining up to 70% of the performance of C, and
safe, because the translator is specified in terms of the original interpreter. The main
limitation of this technique is that no run-time optimization can be performed. For
instance, this approach prevents the replacement of ordinary bytecode instructions by
_quick bytecode instructions. The use of _quick bytecode instructions is known to
be one of the main sources of efficiency of the Java virtual machine [14].

Directive-driven specialization. Specialization permits the optimization of a program
by precomputing expressions that depend only on early known inputs. Using the
directive-driven specialization approach [3], the programmer has to instrument the
original interpreter with annotations that help drive the specializer. While this ap-
proach automates the process of code generation, the correctness of specialization
depends on the annotations. Thus, it is still error prone.

Automatic specialization. Automatic specialization [19, 5] replaces the manual anno-
tations of directive-driven specialization by automatically inferred annotations based
only on a description of the known inputs. This approach to generating a compiler is
more reliable, because it requires little or no modification of the interpreter. While
compiling programs by specializing interpreters has been extensively explored, these
studies have been done in the context of language subsets, using restricted implemen-
tation languages (e.g., pure functional languages) [8, 18, 20].

RR n3588

4Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

Recently, major advances in automatic program specialization have been achieved that
allow the design of program specializers for industrial languages such as C. Examples of
such specializers are C-Mix [1], developed at DIKU, and Tempo, developed at IRISA. In
this paper, we use Tempo for all our specializations. Tempo specializes C programs both at
compile time and run time [9]. Tt has been successfully used for operating systems as well
as scientific programming.

The ability to specialize C programs opens up many new opportunities for compiling
programs from interpreters. This paper presents new results in compiling programs by
specializing interpreters for realistic languages ranging from Objective Caml to a language
for active network protocols, PLAN-P [36]. We report very promising performance obtained
for the compiled programs.

In this paper we evaluate the results of the following recent advances in program specia-
lization in terms of the performance of specialized interpreters.

Off-line and on-line compilation. Tempo enables programs to be specialized both at
compile time and run time. Consequently, by specializing interpreters, not only can
programs be compiled off-line but they can also be compiled efficiently on-line, thus
achieving Just-in-time compilation.

Realistic languages. Because Tempo can process real-sized programs, interpreters for rea-
listic languages can be treated. We have specialized interpreters for abstract machines
(O’Caml, JVM, Berkeley Packet Filter) and interpreters for high-level languages such
as a language for graphic device drivers, GAL [38], and PLAN-P.

When the interpreter is written in an efficient language (i.e., C), specializing the inter-
preter with respect to a program generates an efficient implementation. Concretely, we show
that for languages dedicated to a domain such as GAL and PLAN-P, the performance of
compiled programs is similar to and sometimes better than the performance of equivalent
compiled programs written in a general-purpose language. Additionally, we show that spe-
cializing bytecode interpreters for general-purpose languages can achieve speed increases of
up to a factor of four.

These new results clearly demonstrate that program specialization can be a key tool in
language development and implementation for an important emerging class of languages,
domain-specific languages and bytecodes for portable/mobile applications.

The rest of the paper is organized as follows. Section 2 gives a short overview of the
Tempo specializer. Section 3 presents experiments in specializing bytecode interpreters.
Section 4 describes results of the specialization of structured code interpreters. We conclude
in Section 5 by assessing the perspectives offered by interpreter specialization.

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 5

2 A Specializer for C programs: Tempo

Tempo is an off-line specializer for C programs® [6]. An off-line specializer is divided into
two phases: analysis and specialization. The input to the analysis phase consists of a
program and a description of which inputs will be known during specialization. Based on
this information, the analysis phase produces an annotated program, indicating how each
program construct should be transformed during specialization. Because C is an imperative
language including pointers, the analysis phase performs alias, side-effect, and dependency
analyses. The accuracy of these analyses is targeted towards keeping track of known values
across procedures, data structures, and pointers [16, 17]. Following the analysis phase, the
specialization phase generates a specialized program based on the annotated program and
the values of the known inputs.

Tempo can uniformly perform compile-time and run-time specialization [7]. Although
compile-time is traditional, run-time specialization opens up new opportunities, since pro-
grams can now be specialized with respect to values not known until run time. In the
run-time case, Tempo generates a dedicated run-time specializer, and binary templates that
represent the building blocks of all possible specialized programs. At run time, the speciali-
zer performs the computations that rely on the actual input values, selects binary templates
and instantiates them with computed values [9, 29]. In the context of interpreters, this func-
tionality makes it possible to remove the interpretation layer at run time, thus achieving a
form of Just-In-Time compilation.

Tempo has been successfully used for a variety of applications such as operating systems
(Sun Remote Procedure Call — RPC [27, 25|, Chorus Inter-Process Communication —
IPC [39]) and scientific programs (e.g., convolution filters, FFT [29]). These applications
have demonstrated two key features of Tempo: (1) it can process realistic programs that have
not carefully been crafted for specialization (2) it can generate highly-optimized programs
(e.g., the specialized layer of the Sun RPC runs 3.5 times faster than the original one).

3 Bytecode Interpreters

We first examine the specialization of bytecode (flat, linearized code) interpreters. Typically,
bytecode instructions correspond closely to machine instructions without being tied to a
particular architecture. Thus, bytecode is often used in the context of a virtual machine.
Because bytecode interpreters provide both dynamic program loading and heterogeneity,
they are increasingly used in operating systems and embedded systems. Having the ability
to generate efficient compiled code for various platforms from an existing interpreter is thus
a promising technique. We investigate the specialization of three bytecode interpreters: the
Java Virtual Machine, Objective Caml, and the Berkeley Packet Filter. We first examine
issues common to most bytecode interpreters, and then consider the interpreters individually.

ITempo is publicly available at http://www.irisa.fr/compose/tempo.

RR n3588

6.Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

3.1 Specialization of bytecode interpreters

All bytecode interpreters have a similar structure, as illustrated by the fragment of a byte-
code interpreter displayed in Figure 1-a. The inputs to a bytecode interpreter are typically
the bytecode program and a stack. Specialization should fully eliminate the dispatch depen-
ding on the bytecode program, producing a specialized program that only manipulates the
stack. The specialized program is thus essentially a concatenation of the implementations
of the program instructions. So that the dispatch on the program can be fully eliminated
by specialization, the fundamental problem is to ensure that the program counter’s value is
statically known at every program point in the interpreter.

Val execVM(Prog pg, Stack sp) Val execVM(Prog pg, Stack sp, Index pc)
{ {
Index pc = 0; while (TRUE)
while(TRUE) {
{ switch(pglpcl)
switch(pglpcl) {
{ RETURN:

RETURN: return sp[0];
return sp[0]; ..

IFEQ: IFEQ:

if(sp[0] == 0) if(sp[0] == 0)
pc += get_target(pc); return execVM(pg, sp, pctget_target(pc));
else else
pc += NEXT; return execVM(pg, sp, pc+NEXT);
} }
} }
a: Original interpreter b: Interpreter based on recursive call

Figure 1: Fragment of bytecode interpreter (known constructs are underlined)

When there is a conditional branch in the bytecode, the choice of which branch to take
can depend on the values of the inputs to the bytecode program, which are not known during
specialization. Thus, the specializer cannot determine whether the program counter will be
assigned the address of the true branch or the false branch and its value cannot be statically
known at the point after the conditional. This situation is illustrated by the interpretation
of the IFEQ instruction in Figure 1-a. Since the value of the program counter is unknown
after the conditional, it cannot be known for the next iteration, and thus, all references to
the program counter within the loop are considered to be unknown, and no specialization
occurs.

Within the branches of the if-statement implementing a conditional branch instruction,
the value of the program counter is still known. It does not become unknown until after
the if-statement, when the analysis merges the two possibilities. Thus one approach to

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 7

solve the problem is for the specializer to systematically duplicate all of the code that is
executed after every if-statement (including the subsequent iterations of the loop) within
the two branches of the if-statement. This approach is known as continuation-passing
style specialization [1, 4]. While this approach avoids the need to manually alter the source
program, unconstrained continuation-passing style specialization can lead to code explosion.

The approach we take instead is to manually duplicate the continuation of an if-
statement in the branches of the if-statement only when the duplication is necessary to
allow the program counter to remain known. Code explicitly following the if-statement can
be simply copied into the two branches. Subsequent iterations of the loop are modeled by
first extracting the loop into a separate procedure, and then making a recursive call. Finally,
each branch ends with a return, so that the value of the program counter does not affect
the rest of the while loop. The result of this translation is illustrated in Figure 1-b.

3.2 The Java Virtual Machine (JVM)

Java bytecode is a perfect target for specialization: its execution relies on a bytecode inter-
preter; alternatively, native code can be run using on-line (JIT) or off-line compilers. For
our specialization experiment, we have targeted the Harissa system [26]. Harissa is a flexible
environment for Java execution that permits mixing both compiled and interpreted code.
Harissa’s compiler (Hac) is one of the most efficient compilers for Java, while the interpreter
(Hi) is slightly faster than the Sun JDK 1.0.2 interpreter. Hi is a 1000-line hand-optimized
C program and thus demonstrates the power of Tempo’s analyses and transformations.

3.2.1 Applying Specialization

In addition to bytecode inlining, Java bytecode interpreters offer several opportunities for
specialization that are specific to dynamic loading of classes. As suggested by Sun [14],
certain instructions can be optimized by rewriting them into others (prefixed by _quick)
which take advantage of information available at run time. This situation typically occurs
when instructions refer to an element of the constant pool and need to dynamically resolve
its entry. Subsequent invocations of the same instructions need not resolve the entry again.
Interestingly, in terms of program specialization, a quick instruction is simply a specialized
version of the generic instruction: it is specialized with respect to the constant pool and a
specific entry.

3.2.2 Performance

We evaluate the performance of the specialized Java bytecode interpreter using Caffeine 3.0
benchmarks [35]. Each Caffeine micro-benchmark tests one feature of the Java machine,
and produces numbers, in CaffeineMarks (higher is faster), that allow one to compare hete-
rogeneous architectures and Java implementations directly. Among them, we consider three
tests (Loop, Sieve, Float) that are included in the “embedded” test suite. The other tests

RR n3588

8Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

are not relevant for this experiment since they measure the efficiency of features of the JVM
such as graphics or memory allocation that are not related to compilation.

JDK 1.0.2 | JDK 1.1.6 | Hi Hi Kaffe | Run-time || Hac | Compile-time
(no quick inst) spec. spec.
Sieve 90 191 127 16 479 242 1590 398
Loop 85 155 122 11 1119 302 4780 496
Float 103 219 126 16 1110 - 1980 454

Table 1: Results of the Caffeine 3.0 Java benchmark (in CaffeineMarks)

Tests were performed on a Sun Ultra-1/170Mhz by comparing three interpreters (JDK
1.0.2, JDK 1.1.6, Hi), a public domain JIT compiler (Kaffe), and the Harissa compiler
(Hac). The results are shown in Table 1. Due to many manual optimizations implemented
by Sun, the JDK 1.1.6 interpreter is about twice as fast as the older JDK 1.0.2 version. As
expected, Hi performs better than JDK 1.0.2. Interestingly, disabling _quick instructions
within Hi slows down the interpreter by a factor of ten. By specializing Hi with _quick
instructions disabled, we get an average speed-up of 32 for compile-time specialization and
21 for run-time specialization. This speedup includes automatic specialization of program
counter elimination and of the generic instructions whose result is equivalent to _quick
instructions. On the other hand, optimized classic and JIT compilers are still much faster
by a factor of 2 to 10. We elaborate on the reasons for this gap in section 3.5. Nevertheless,
the specialized code is up to four times faster than the interpreted code.

3.3 The Objective Caml Abstract Machine

Our second bytecode interpreter is the Objective Caml (O’Caml) abstract machine. The
O’Caml bytecode is significantly different than the JVM in that it is the target of a functional
language. For example, the O’Caml bytecode implements closures to handle higher-order
functions.

In PLDI 98, Piumarta and Riccardi used the same O’Caml bytecode interpreter to
demonstrate how selective inlining can optimize direct threaded code [31]. We obtain per-
formance comparable to the results obtained with their inlining technique. However, unlike
selective inlining, specialization is a general tool that can be applied to a larger class of
applications. For example, selective inlining would not work with the JVM quick instruc-
tions, whereas using Tempo we get the functionality of quick instructions without having to
implement them explicitly.

3.3.1 Applying Specialization

As for bytecode interpreters in general, the goal of specializing the O’Caml bytecode inter-
preter is to eliminate instruction decoding and dispatch. However, because the O’Caml by-
tecode supports higher-order functions, the program counter is not exactly statically known.

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 9

= Interpreter

mmm Specialized (run-time)
== Specialized (compile-time)
mmm Compiled

20

154

10

execution time (sec)

5] 57 56

52 44 55 56

65 54

fibl fib2 gsort fft take taku seve soli boyer

Figure 2: Results on O’Caml benchmark suite

When a called function is the value of an arbitrary expression, it is not possible to deter-
mine the address of the entry point of the called function based on the bytecode program
alone. Nevertheless, although the number of different closures that can be created during
the execution of a program is potentially unbounded, the set of code fragments associated
with these closures is bounded by the number of closure-creating instructions (closure and
closurerec) in the bytecode program. Thus we simply specialize the interpreter with res-
pect to all of the possible code fragments, and store the specialized code in a table, indexed
by the address of each unspecialized fragment. At run-time, a function call is implemented
by using the code pointer of the invoked closure to extract the specialized definition from
this table.

3.3.2 Performance

To measure the performance of the specialized interpreter, we used a standard O’Caml
benchmark suite.? The results of these benchmarks are shown in Figure 2 for four versions:
interpreted using the standard optimized interpreter, compiled by specializing the interpreter
at run time, compiled by specializing the interpreter at compile time, and compiled using the
standard native code compiler. The heights of the bars represent the relative run times. The
numbers on the bars for the specialized interpreters indicate the run time as a percentage
of the run time of the interpreted code. In the graph, fibl represents the recursive fib in the
standard benchmarks and fib2 represents an iterative version not in the original benchmark
suite. All measurements were taken on a Sun Ultra-1/170Mhz.

In all of these benchmarks, run-time specialization achieves results that are equivalent to
or slightly better than the results reported for the selective inlining technique [31]. It is not

2 Available at ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/benchmarks/objcaml.tar.gz

RR n3588

10Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

surprising that the specialized version is not significantly faster than the inlining approach
because the O’Caml bytecode is already optimized with many specialized instructions. Thus,
the ability to evaluate some of the instruction calculations is not needed and specialization
only selects and inlines the instructions (dispatch elimination).

3.4 The Berkeley Packet Filter (BPF)

A packet filter is a piece of code that is used to identify network packets belonging to a given
application. Packet filters are written using a dedicated bytecode language. They are loaded
into the kernel where they are traditionally interpreted at the expense of high computational
cost [24]. The Berkeley Packet Filter [23] is considered as a reference implementation for
many optimization techniques [13, 28].

3.4.1 Applying Specialization

/* Load 32 bit value */
case BPF_LD|BPF_W|BPF_ABS:

/* Load 32 bit value */ k = pc->k;
case BPF_LD|BPF_W|BPF_ABS: if (k + sizeof(int32) > buflen)
k = pc->k; return 0;
if (k + sizeof(int32) > buflen)
return 0; /* p is always aligned. */
] if (((p+k)&0x3)==0)
A=((u_int32)*((u_char *)p+k+0)<<24| A=%((u_int32 *)(p+k));
(u_int32)*((u_char *)p+k+1)<<16| else
(u_int32)*((u_char *)p+k+2)<<8| A=((u_int32)*((u_char *)p+k+0)<<24|
(1.1-1n‘c32)*((U-char *) p+k+3)<<0) ; (u_int32)*((u_char *)p+k+1)<<16|
continue; (u_int32)*((u_char *)p+k+2)<<8|
(u_int32)*((u_char *)p+k+3)<<0);
continue;
a: Original interpreter b: Modified for specialization

Figure 3: Fragment of BPF interpreter

As for the other bytecode languages, specializing the BPF interpreter eliminates instruction
dispatch. Here, we also take advantage of the fact that the interpreter will be specialized by
coding optimizations in the interpreter. Figure 3-a shows the original interpreter code for
a packet load instructions. This instruction loads the 32 bit value stored at a fixed offset
from the beginning of the packet. Due to alignment requirements on the SPARC, these load
instructions access the values one byte at a time, in case the address is not aligned. Figure
3-b shows an implementation of these instructions that is intended to be specialized. This
version chooses between two implementations for each instruction. If the address is aligned
the value is loaded all at once, otherwise the value is loaded one byte at a time. While this
would make the original interpreter slower, it results in faster specialized programs because

INRIA

Ezperiments in Program Compilation by Interpreter Specialization

11

Interpreter | CT Spec. | CT Speedup | RT Spec. | RT Speedup
Pentium 3.32 0.98 3.40 1.95 1.7
Sparc (original) 2.62 0.68 3.89 1.57 1.67
Sparc (modified) 0.40 6.56 1.31 2.01

Table 2: BPF benchmarks

the condition of the added if statement is known statically and evaluated at specialization
time.

3.4.2 Performance

Table 2 shows the execution time for a simple filter program applied to 5000 packets. Results
are given for the Pentium and for the Sparc, with and without the optimization for aligned
loads. For the Sparc version with alignment optimization, the speedups are relative to the
original interpreter, since the modified interpreter is slowed down by an optimization that
one would never implement for ordinary interpretation.

3.5 Discussion

Section 3 presents performance results for both run-time and compile-time specialization of
three different kinds of bytecode interpreters. While the speedup obtained by specialization
is significant, it does not compete with results obtained with hand written off-line or run-
time compilers. There are two main reasons for this difference: bytecodes often already
contain specialized instructions, and compilers typically perform stack elimination.

Both the JVM and O’Caml bytecode include many specialized instructions to improve
performance. For example, both bytecodes include an instruction of the form LOAD n, which
loads the nt" item on the stack. However, for small values of n, the bytecodes also define
instructions with a fixed value for n, i.e., LOAD_O, LOAD_1, LOAD_2, etc. In the JVM
there are, additionally, the quick instructions which are specialized versions of the generic
instructions.

Additional speedups using compilers are due to transformations like stack elimination. To
determine the cause of the difference between the specialized O’Caml bytecode interpreter
and the native compiler, we have measured the effects of various transformations on the
results of a compile-time specialization. We performed three main transformations, by hand,
on a compile-time specialized version of the fib2 program. Since the interpreters are written
with recursive calls, as described in Section 3, the specialized code is a set of recursive
functions. Thus, the first transformation is to merge the specialized functions into a single
function. The second transformation is to make the interpreter’s state variables local to the
resulting function. Since normally the specialized code is a set of functions, the interpreter’s
state variables must be made global to be shared by all the functions. As a result the compiler
does not perform register allocation or any optimizations on these variables. Finally, stack

RR n3588

12Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

elements are converted into local variables. These permits register allocation and eliminates
many memory references.

After applying these three transformations, the resulting program is almost identical
to the program generated by the native O’Caml compiler. The only significant difference
remaining is due to the fact that the O’Caml compiler uses Unix signals to implement signals,
whereas the bytecode interpreter performs frequent checks to poll for pending signals.

4 Structured Code Interpreters

Interpreters for structured code are very different from interpreters for bytecode. Most
importantly, structured languages are higher level in that they offer syntactic constructs
and declarations. In terms of compilation, and thus specialization, this translates into more
actions that can be performed at compile time than in the case of bytecode programs. As a
result, compiled programs can run 10 to 100 times faster than interpreted programs.

The motivation in developing interpreters for structured languages is not to compete
with compilers for general-purpose languages (e.g., gec). Indeed, general-purpose languages
are stable in their design, and, if they become industry standards, high-quality compilers
are available for many different platforms. In this context, aiming at compiling code by
specialization raises little interest.

Beyond general-purpose languages, an emerging trend consists of developing languages
specific to a particular domain (or family of problems). This approach is actively studied
in both academia [10] and industry [2, 21, 22]. These languages, called Domain-Specific
Languages (DSL), consist of notations, abstractions, and values that are specific to the kind
of problems they are targeted for. DSLs require prototyping in the development phase, and
extensibility to address future needs. In fact, these are well-known features offered by a
language implementation based on an interpreter.

Both languages studied below are domain-specific languages: PLAN-P is a language
aimed at developing network application protocols and GAL is a language for specifying
video card device drivers. As shown by the performance of the programs compiled by
specialization, DSLs can compete with equivalent programs hand-written in general-purpose
languages, and sometimes even run faster. This efficiency is due to the fact that a DSL
often amounts to a glue language: it combines building blocks. This interpretation layer
can be systematically removed by specialization. Furthermore, the building blocks, written
in a general-purpose language, can be efficiently compiled using a traditional hand-crafted
compiler. Finally, because a DSL is restricted, it may rely on operations that are simpler
and faster than those used for a high-level general-purpose language. This last observation
makes it possible for specialized interpreters to be faster than native code produced by a
compiler for a general-purpose language such as Java.

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 13

4.1 PLAN-P

PLAN-P? allows the programmer to define protocols that manipulate packets associated with
a specific application [36, 37]. Because the network is a shared resource, each router needs
to verify that downloaded PLAN-P programs satisfy its safety and security constraints.
Furthermore, a network is often heterogeneous. Thus, to facilitate verification and allow
portability, PLAN-P programs are downloaded as source code. Because new applications
may be deployed on the network at any time, PLAN-P programs must be downloaded and
checked dynamically. In this context, traditional off-line compilation would be too time-
consuming. Thus, PLAN-P can either be interpreted or compiled using a JIT.

The PLAN-P language is originally based on PLAN, a Programming Language for Active
Networks [15], which is dedicated to network diagnostics. While PLAN-P retains most of the
SML-like syntax of PLAN, the semantics is significantly different in order to treat a larger
scope of applications such as the adaptation of distributed applications and services [37].
While PLAN is interpreted, our PLAN-P interpreter is specialized at run-time using Tempo,
thus achieving the same functionality as a JIT. Our previous experiments have shown that
PLAN-P protocols can be as efficient as the equivalent hand-crafted C version.

Performance

We evaluate the performance of PLAN-P on a performance-demanding application, a lear-
ning bridge. A bridge is a network node that is connected between multiple LANs to form
one logical LAN. A learning bridge keeps track of where packets come from in order to
determine which LAN a host is connected to, so that packets for that host are only repeated
on the LAN it is on. The learning algorithm uses a hash table to record the source address
and the LAN of received packets, thus learning which host is on which LAN rather than
repeating packets on all LANs.

We have done two types of benchmarks: (i) micro-benchmarks that measure the pure
computation time without including the run-time system, (ii) a real benchmark that mea-
sures the throughput of the system. The interest of micro-benchmarks is to evaluate the
comparative performance of specialization ws compilation, while real benchmarks measure
the impact of specialization on the real system taking into account input/output, cache
accesses, etc.

Embedded C PLAN-P Java PLAN-P
specialized at run time | compiled with hac | interpreted
Sun Ultra-1 170Mhz 3 14 19 1218
PC/Pentium Pro 200 Mhz 4 182 18 440

Table 3: Ethernet bridge micro-benchmark (times in micro-seconds)

3 A prototype of the PLAN-P run-time system is available at http://www.irisa.fr/compose/plan-p.

RR n3588

14Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

Micro-benchmark We first measure the time spent to treat a single packet on a PC
Pentium-Pro and a Sun Ultra-1 (see Figure 3). On the Sun, while the run-time specialized
PLAN-P bridge is 5 times slower than a hand-crafted embedded C version, it is 35% faster
than a Java version compiled and optimized by Hac. Performance for the PC is worse: the
speedup between the interpreter and the run-time specialized version is 87 for the Sun and 2.5
for the PC. The main reason for this difference is that the current version of Tempo is much
less optimized for the Pentium than for the Sparc. In particular, for the Pentium, function
inlining is not performed at run time. We expect to have the same level of performance for
the PC as for the Sun when this optimization will be implemented.

45

40 + e T T s

35 F R C learning bridge —+—
\ PLAN-P specialized ---x---
JVM - learning bridge ------

PLAN-P interpreter &

30

25

20

throughput (Mb/s)

15

10

5k 7
ba. a -}
ul B

0 Il Il Il Il

32 512 1024 2048 4096 8192

packet size (bytes)

Figure 4: TCP bandwidth of the Ethernet learning Bridge

Real-benchmark The configuration used for the experiment was two hosts connected to
a bridge via 100 Mbps Ethernet. Both the hosts and the bridge were Sun Ultra 1/170 Mhz.
Throughput was measured using ttcp with packet sizes varying from 32 to 8192 bytes (see
Figure 4).

The relative performance of the programs shown in Figure 4 is as one would expect.
The PLAN-P interpreter has the lowest throughput. The Sun JDK has greater throughput
than the PLAN-P interpreter, but still has considerable interpretation overhead. Since
the specialized PLAN-P interpreter eliminates the interpretation layer, it achieves higher
bandwidth than either source-code interpretation or bytecode interpretation. Finally, the

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 15

throughput of the hand-written C code is only 4% larger than the throughput of the code
automatically produced by specialization.

4.2 GAL

GAL is a language for the specification of graphic adaptors for the purpose of generating
device drivers [38]. Using GAL allows the program to remain at a high level of abstraction,
thus eliminating error-prone low-level code such as bit manipulation. GAL specifications
are up to 10 times smaller than the corresponding C drivers. Additionally, the language
allows specifications to be automatically checked for certain errors, such as the specification
of registers that overlap.

GAL was implemented as a structured interpreter like PLAN-P, simply to minimize the
implementation time. Using the interpreter also allows rapid driver development, since the
compilation phases are eliminated. Once the specification is fully tested, however, it is
desirable to generate compiled code. Since device drivers can be compiled off-line, compiled
code can be generated by applying compile-time specialization to the GAL interpreter.
Because the compiler is generated automatically from the interpreter, we are guaranteed
that the functionality is preserved.

4.2.1 Performance

The GAL interpreter has been developed for the publicly available XFree86 X11 server [40].
The X server can be linked with the GAL interpreter or a driver generated by specializing the
interpreter for a given GAL program. We evaluate the performance of the results of specia-
lization using the standard XBench X server benchmarks. Although XBench reports several
measures of performance, we are only concerned with the lines/second and rectangles/second
measures, because these are the only operations that use the device driver.

Table 4 reports the XBench results obtained for three versions of an S3 device driver. The
first server, S3 XA A, was built with the standard hand-coded C device driver included in the
XFree86 distribution. The second server, S3 AM, was built using the GAL interpreter where
the interpretation layer has been specialized and only the basic (unspecialized) building
blocks remain. Finally, the S3 PE server was built using the GAL interpreter where both
the interpretation layer and the building blocks have been specialized. The building blocks
are also specialized because they are generic building blocks and the interpretation of their
parameters can be removed by specialization. The percentage column gives the percent of
the performance obtained as compared to the performance of the hand-coded driver in C.
As clearly seen by these results, there is no loss in performance due to the use of GAL, and
yet GAL provides a easier and more reliable method to develop device drivers.

RR n3588

16Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

Server lines/s percent
S3 XAA 189,000 -

S3 AM 150,000 79
S3 PE 191,000 101
Server rectangles/s | percent
S3 XAA 203,000 -

S3 AM 169,000 83
S3 PE 205,000 101

Table 4: XBench results with GAL

5 Conclusion

Interpretation is reemerging as a significant programming-language implementation tech-
nique, both for portability and to enable rapid prototyping of evolving languages. Neverthe-
less, interpretation carries a significant performance penalty, when compared to traditional
compilation. We have shown that specialization can help bridge this gap, generating com-
piled code safely and efficiently based on an interpreter. The experiments described in this
paper show the following;:

e It is now possible to specialize existing interpreters for real languages and achieve
acceptable performance. Earlier work on specializing interpreters focused on toy lan-
guages implemented using functional languages.

o Although specialization of the Java interpreter achieves good speedup (4 times faster
than the unmodified Hi and 22 times faster than Hi modified to eliminate the quick
instructions), the performance is far from that produced by an optimizing compiler,
because specialization does not eliminate the stack.

e In the case of O’Caml, we get same or better results than Piumarta and Riccardi as
reported in PLDI’98. Moreover, specialization is a much more general technique.

e It is not practical to manually develop a traditional optimizing compiler for domain-
specific languages that rapidly evolve. Specialization is particularly attractive in this
context.

Our experiments show that program specialization is entering relative maturity. Thus
we can expect that software engineers will soon have specializers, just as they now have
parallelizers, that will help the design and prototyping of compilers. With the increasing
need for dynamic code loading and heterogeneity support in many embedded systems (mo-
bile phone, smartcards, active networks, etc.), domain-specific languages, interpreters, and
specialization offer an appealing solution for the design and implementation of run-time
environments.

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 17

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]
[11]

[12]

L.O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, Computer Science Department, University of Copenhagen, May
1994. DIKU Technical Report 94/19.

B.R.T. Arnold, A. van Deursen, and M. Res. An algebraic specification of a language
for describing financial products. In ICSE-17 Workshop on Formal Methods Application
in Software Engineering, pages 6-13, April 1995.

J. Auslander, M. Philipose, C. Chambers, S.J. Eggers, and B.N. Bershad. Fast, effective
dynamic compilation. In PLDI’96 [32], pages 149-159.

C. Consel and O. Danvy. For a better support of static data flow. In J. Hughes,
editor, Functional Programming Languages and Computer Architecture, volume 523 of
Lecture Notes in Computer Science, pages 496-519, Cambridge, MA, USA, August
1991. Springer-Verlag.

C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of Pro-
gramming Languages, pages 493—-501, Charleston, SC, USA, January 1993. ACM Press.

C. Consel, L. Hornof, J. Lawall, R. Marlet, G. Muller, J. Noyé, S. Thibault, and
N. Volanschi. Tempo: Specializing systems applications and beyond. ACM Computing
Surveys, Symposium on Partial Evaluation, 30(3), 1998.

C. Consel, L. Hornof, F. Noél, J. Noyé, and E.N. Volanschi. A uniform approach for
compile-time and run-time specialization. In O. Danvy, R. Gliick, and P. Thiemann,
editors, Partial Evaluation, International Seminar, Dagstuhl Castle, number 1110 in
Lecture Notes in Computer Science, pages 54-72, February 1996.

C. Consel and S.C. Khoo. Semantics-directed generation of a Prolog compiler. In
J. Maluszynski and M. Wirsing, editors, Proceedings of the 3" International Symposium
on Programming Language Implementation and Logic Programming, number 528 in
Lecture Notes in Computer Science, pages 135-146, Passau, Germany, August 1991.
Springer-Verlag.

C. Consel and F. Noél. A general approach for run-time specialization and its applica-
tion to C. In POPLY6 [33], pages 145-156.

Conference on Domain Specific Languages, Santa Barbara, CA, October 1997. Usenix.

D.R. Engler. VCODE: A retargetable, extensible, very fast dynamic code generation
system. In PLDI’96 [32], pages 160-170.

D.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘C: A language for high-level, efficient,
and machine-independent dynamic code generation. In POPL96 [33], pages 131-144.

RR n3588

18Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

[13] D.R. Engler and M.F. Kaashoek. DPF: Fast, flexible message demultiplexing using
dynamic code generation. In SIGCOMM Symposium on Communications Architectures
and Protocols, pages 26-30, Stanford University, CA, August 1996. ACM Press.

[14] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996. ISBN 0-201-63451-1.

[15] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. Network programming
using PLAN. In Workshop on Internet Programming Languages, Chicago, May 1998.

[16] L. Hornof and J. Noyé. Accurate binding-time analysis for imperative languages: Flow,
context, and return sensitivity. In PEPM’97 [30], pages 63-73.

[17] L. Hornof, J. Noyé, and C. Consel. Effective specialization of realistic programs via
use sensitivity. In P. Van Hentenryck, editor, Proceedings of the Fourth International
Symposium on Static Analysis, SAS’97, volume 1302 of Lecture Notes in Computer
Science, pages 293-314, Paris, France, September 1997. Springer-Verlag.

[18] N.D. Jones. Automatic program specialization: A re-examination from basic principles.
In D. Bjgrner, A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and Mized
Computation, pages 225-282. North-Holland, 1988.

[19] N.D. Jones, C. Gomard, and P. Sestoft. Partial Eveluation and Automatic Program
Generation. International Series in Computer Science. Prentice-Hall, June 1993.

[20] Siau Cheng Khoo and R. S. Sundaresh. Compiling inheritance using partial evaluation.
In Partial Evaluation and Semantics-Based Program Manipulation, pages 211-222, New
Haven, CT, USA, September 1991. ACM SIGPLAN Notices, 26(9).

[21] D. Ladd and C. Ramming. Two application languages in software production. In
USENIX Symposium on Very High Level Languages, New Mexico, October 1994.

[22] D. A. Ladd and J. C. Ramming. Programming the Web: An application-oriented
language for hypermedia service programming. In Fourth International World Wide
Web Conference, Boston, Massachusetts, December 1995.

[23] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-level
packet capture. In Proceedings of the Winter 1993 USENIX Conference, pages 259-269,
San Diego, California, USA, January 1993. USENIX.

[24] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The Packet Filter: an Efficient Mechanism
for User-level Network Code. In The Proceedings of the 11th Symposium on Operating
System Principles, November 1987.

[25] G. Muller, R. Marlet, E.N. Volanschi, C. Consel, C. Pu, and A. Goel. Fast, optimized
Sun RPC using automatic program specialization. In Proceedings of the 18th Interna-
tional Conference on Distributed Computing Systems, pages 240-249, Amsterdam, The
Netherlands, May 1998. IEEE Computer Society Press.

INRIA

Ezperiments in Program Compilation by Interpreter Specialization 19

[26] G. Muller, B. Moura, F. Bellard, and C. Consel. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. In Proceedings of the 3rd Conference
on Object-Oriented Technologies and Systems, pages 1-20, Portland (Oregon), USA,
June 1997. Usenix.

[27] G. Muller, E.N. Volanschi, and R. Marlet. Scaling up partial evaluation for optimizing
the Sun commercial RPC protocol. In PEPM’97 [30], pages 116-125.

[28] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proceedings
of the Second Symposium on Operating Systems Design and Implementation, pages
229243, Seattle, Washington, October 1996.

[29] F. Nogl, L. Hornof, C. Consel, and J. Lawall. Automatic, template-based run-time
specialization : Implementation and experimental study. In International Conference on
Computer Languages, pages 132-142, Chicago, IL, May 1998. IEEE Computer Society
Press. Also available as IRISA report PI-1065.

[30] ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation, Amsterdam, The Netherlands, June 1997. ACM Press.

[31] I. Piumarta and F. Riccardi. Optimizing directed threaded code by selective inlining.
In Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design
and Implementation, pages 291-300, Montreal, Canada, 17-19 June 1998.

[32] Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design
and Implementation, Philadelphia, PA, May 1996. ACM SIGPLAN Notices, 31(5).

[33] Conference Record of the 23" Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples Of Programming Languages, St. Petersburg Beach, FL, USA, January 1996. ACM
Press.

[34] D. A. Schmidt. Denotational Semantics: a Methodology for Language Development.
Allyn and Bacon, Inc., 1986.

[35] Pendragon Software. Caffeinemark 2.5. URL: http://www.webfayre.com/pendragon-
/cm2/index.html, 1996.

[36] S. Thibault, C. Consel, and G. Muller. Safe and efficient active network programming. In
17th IEEE Symposium on Reliable Distributed Systems, pages 135-143, West Lafayette,
Indiana, October 1998.

[37] S. Thibault, J. Marant, and G. Muller. Adapting distributed applications using exten-
sible networks. Research Report 1200, IRISA, Rennes, France, August 1998.

[38] S. Thibault, R. Marlet, and C. Consel. A domain-specific language for video device
drivers: from design to implementation. In DSL’97 [10], pages 11-26.

RR n3588

20Scott Thibault, Laurent Bercot, Charles Consel, Renaud Marlet, Gilles Muller, Julia Lawall

[39] E. N. Volanschi. An Automatic Approach to Speclializing System Components. PhD
thesis, Université de Rennes I, February 1998.

[40] The XFree86 Project. http://www.xfree86.org/.

INRIA

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

