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Abstract: We present in this report a mathematical modelization of a pure gas flow in strong
vibrational nonequilibrium. The model is deduced from the kinetic theory by the generalized
Chapman-Enskog procedure. The transport coeflicients are solutions of complex systems obtained
in a general framework. Simpler systems are deduced from physical approximations and may be
solved numerically at a low computational coast.
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Approche cinétique par niveaux dans le cas d’un diatomique
pur en fort déséquilibre vibrationnel.

Résumé : Nous proposons dans ce rapport un modéle mathématique pour les écoulements en
fort déséquilibre vibrationnel, pour un gaz pur. Le modéle est déduit de la théorie cinétique des
gas par la méthode de Chapman-Enskog généralisée. Les coeflicients de transport sont solutions
de systémes complexes obtenus dans un cadre trés général. Différentes approximations physiques
permettent d’en déduire des systémes simples que I’on peut résoudre numériquement pour un faible
cout.

Mots-clé :  déséquilibre vibrationnel, Chapman-Enskog, coefficients de transport, systémes.
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1 Introduction

In simulations of hypersonic flows, the one-temperature or multi-temperature models are commonly
used [1], [2], [3], [4]- These models assume that the population of each vibrational level is described
by a steady-state distribution, at the gas temperature in the case of equilibrium between all the
degrees of freedom, or at a vibrational temperature in the case of vibrational nonequilibrium. But
this assumption is not always valid. In particular, in a short relaxation zone behind the shock
wave, where the vibrational distribution is strongly disequilibrated and can not be described by a
steady-state distribution. Such flows are characterized by a mean vibrational collision time of the
same order as the characteristic time of the flow and much greater than the mean translational and
rotational collision times. It is important therefore to consider the population of each vibrational
energy level as an unknown and to use the so-called level approach.

Various attemps have allready been made to study real gas flows using the level by level approach.
Among the most recent, we may mention works on vibrational-chemical coupling behind a shock
wave [5], [6], [7], [8], [9], [10], on expanding flows and nozzles [11], [12], on a nonequilibrium
boundary layer near re-entering bodies [13], [13], [14] and on shock layer [15].

Following the level kinetic approach, the resulting macroscopic system has been derived in [16]
in the case of a reacting gas mixture, including strong chemical nonequilibrium. In this paper, we
will restrict our attention to a pure gas and, using notations of [16], recall the main results of the
generalized Chapman-Enskog method. Then, we derive general systems to compute the transport
coefficients: the shear and bulk viscosity, the thermal conductivity, diffusion and thermal diffusion.
The complexity of inelastic collision cross sections prevent any computation without additional
approximations. Thus, we propose approximations in order to obtain solvable systems. In this
aim, we consider approximations used by [17], in the case of a gas mixture, assuming that the
molecules at the different vibrational energy levels behave as molecules of different species. The
resulting systems are formally similar to those derived in [18] for polyatomic gas mixtures.

2 Chapman-Enskog’s zero order solution

We consider the semi-classical Boltzmann equation associated to the distribution function f;;(r,u,t),
where the subscripts ¢ and j denote rotational and vibrational energy levels respectively and the
arguments denote the velocity u, the space co-ordinate r and the time ¢. That equation is written

o ) )

(1) f’LJ + u fl]
ot or

The collision operators Jz-rj“p , ijl simulate rapid and slow processes, respectively. The parameter

€ = Trap/Tsi is the ratio of the mean collision time of the frequent and rare collisions. The parameter

€ is small under the hypothesis that

(2) Trap << Tsi ~ 0,

1
= TG+ T

where 0 is a characteristic time of the flow. Assuming strong vibrational nonequilibrium, we may
write Ji' = Jgf + J7, T = J3P, where collision integrals Jg, Jf;, J5'", correspond to elastic
collisions and those including rotational and vibrational energy transfers respectively. The collision
operator for rapid processes may be written as

Si'sgc ' 52
3) JZ]'ap = Z / (fz'j’fkl's,-]? - fijfkl) gaz.].’kl d“Qduy,
kLGl 3o

where ai;:;clll is the inelastic cross-section of the collision leading to the change of translational and

rotational energy, g is the relative velocity of modulus g, dzﬂ = sinxdedy is the solid angle, x
and ¢ are the polar and azimuthal deflection angles, and s; is the statistical weight of rotational
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4 E. V. Kustova , F. Mallinger

energy level j for a molecule in vibrational level i. This integral describes the elastic collisions in
the case j =5, 1 =1".

The collision integral J;’jibr includes VT and VV processes. Here, TRV processes are neglect
because their probability is very small.

Following the Chapman-Enskog method, the distribution function f;;(r,u,t) is expanded in a
power series of the parameter € (¢ << 1). The zero order solution is obtained solving the equation

T ( fZ(JO), f(o)) = 0. The solution represents the Maxwell-Boltzmann distribution function for

translatlonal and rotational degrees of freedom and is given by

3/2 ni m gi.
4 0) _ m M )2 T
) fy = (27rkT) zr siep | o=V 37 |

where m is the molecular mass, k is the Boltzmann constant, T' is the gas temperature, v is
the macroscopic velocity, 6;- is the rotational energy of the molecule at the vibrational level i and
rotational level j, n; is the nonequilibrium population of the vibrational level ¢, Z7 is the rotational
partition function

. gt
(5) Z7 = Zsjemp (—k—}> )
j

Distribution (4) is obtained classically, knowing that the invariants of any collision are the mass
$i; = 1, the momentum ¢7; = mu,, v = 1,2,3, the total energy ¢f; = mu?/2 + 6 , and, under
condition of slow vibrational exchange, ¢i>‘j =a;, A =1,...,N (N is the number of vibrational
energy levels), where a; is a variable independent on the velocity and rotational energy level j and
arbitrary dependent on i. The peculiarity of the generalized Chapman-Enskog method is that the
zero order distribution function is already nonequilibrium.

The macroscopic parameters of the flows are defined as moments of the distribution function
fij(r,u,t). Thus we write

J

(7) Z / fOdu = > [ty = v,

Z/(—+E +E,> f,-(;')du = Z/<—+6 +al) fijdu

3
= §nkT + pE, + pE,.

(8)

Here n = Zn, is the total number density, p = mn is the mass density, ¢; is the vibrational

i
energy of a molecule at the level ¢, counted from the minimum of its potential curve, E,. and E,
are, respectively, the rotational and vibrational energy per unit mass:

= Z/Ej-fijdu, pE = ZE,’TLZ’,
ij i

3 Relaxation and conservation equations

The macroscopic equations associated to the Boltzmann equation (1) are obtained multiplying
equation (1) by (1,u, (mc?/2+¢’ +¢;), integrating over the velocity u and summing over rotational

INRIA



Level kinetic approach 5

levels j and over vibrational levels i ( the last summation is not performed on the first equation).
Under the conservative form, the macroscopic equations are written

opv
(10) W—FV-(pvv-}-P):O,
OpE
(11) %—i—v-(va%—Pv—kq):O.

Equation (9) is the relaxation equation for the population of the ith vibrational energy level and
equations (10), (11) are momentum and total energy conservation equations respectively.
The total energy per unit mass, F, is introduced as

1 3
pE = 5pv2 + inkT + pE, + pE,,

the diffusion velocity V; of a molecule at the ith vibrational level,
(12) n;V; = Z/Cfijdua
J

the stress tensor P

(13) P= Z/mccfijdu,
ij

and the heat flux q
me?
(14) q= E / T + €; +&; Cf,'jdll.
j

Here c=u-v is the peculiar velocity. In the zero order approximation V; = 0, q= 0, P= pI, p is
the pressure, and I is the unit tensor.
The right hand side of the equation (9) is defined by

(15) Ri=) / Jildu = Ry™".
J

Considering the zero order approximation, i.e. substituting f;; by fi(;)) in (15), the source term in
(9) can be written as

(16) Ri=R" =Y / 75O du.
J

The source term R§°) is determined by the VV and VT rate constants. Different attempts have
been made to derive the VT and VV rate constants. We mention here the exact fully quantum
calculations [19], the Billing closed coupled method [20], SSH theory [21], the modified FHO
theory [22], [23] and also a new model using the quasi-classical multidimensional scattering theory
for polyatomic gases developed by Gorbachev et al. [24], [25].

4 Chapman-Enskog’s first order solution

At the first order approximation the Chapman-Enskog expansion can be written in the form:

(17) Fii(r,u,t) = fO (0,0, 8)(1 + ei5(r, u, 1)),

RR n~ 3577



6 E. V. Kustova , F. Mallinger

where fi(f) is the zero order distribution given in the previous section. The perturbation function
¢;j is obtained solving the first order equation

dry 10) _
(18) # - Zs] annk-[z]k

where d/dt = /0t + u.0/0r, and

(19) Iuk(

- / O 1O (63 + S — iz — ¢kz')9‘7uf,lélld29d“17
T nk '

is the linearized collision operator of rapid processes.
The derivative dfi(jo) /dt is given by

df(o) ©) 2 .
dt = fzg {<2k—T—§+g>C-V1nT+
d; + Lot s vvs
—C cC — — M A%
i kT 3¢
2 2 (0)
(20) me P (mc 3 o ) R
T \3kT T (e + o) \2kT 2 T 60) )V VE o,
ZR§°)< kT + (), +sz>
—_ i m_CZ _ § +50
pT(ctT + Crot) 2kT 2 i ’

where d; = V(n;/n) is the diffusion driving forces, satisfying the relation ). d; =0,

3k OE,

21 r= 35 rot = "m0
(21) °t 2m Crot = BT

denote the translational and the rotational specific heats at constant volume (per mass unit)
respectively. In Eq. (20) the following notation is introduced:

&y =& —(Er,

where £f = ¢! /kT and ((;;)r is the averaged value of (;; over the rotational spectrum
i 2
Z s;Gijexp | — T

J
i &
ZSJ exp _k_T
J

From the expression for df 9 /dt, we deduce that a particular solution of equation (18) can be
written as

(Cz'j)r =
1 1 1

1 1 .
(22) $ij = ——Ay-VInT -~ > D -dy — ~Byj 1 Vv = —F;V v - —Gij.
k

INRIA



Level kinetic approach 7

Uniqueness of the solution is provided by adding the constraints following from the normalization
conditions of the Chapman-Enskog method (6)—(8):

(23) Z/fi(f)cﬁijdu -0, i=1,..,N,
J
(24) Z JE

(25) / (0)@3 (— +ei+ e,) du=0

Substituting (22) in (18) and separating the independent quantities we obtain the following
integral equations

n;ng _ 1 2 5 0 (0)
i1=1,.,N, j=1,..,.M,
;N - m 1 &2 (0)
i=1,.,N, j=1,.,M,
;N 1
(28) >R LD = = (da = ) ef),
k (]
Z:]‘ﬂ 5N) l:]‘ﬂ '5N5 .7217 7M)
ning . 1 mc? p mc? 0 (0)
(29) ; n? I”k(F) a n (3kT ! pT(CtT‘ +Crot) (QkT +g f’l] ’
i1=1,...,.N, 37=1 ..M,
S RY ( kT + (1), +e,)
NNy 17
Y PG = —= X
2 Y
(30) % n n pT(Ctr +cr0t)

me® 3 o0\ 0 1(0)
X <—_§+(€”> f” _nJS + f” )
i=1,.,N, j=1,..,M,

where M is the total number of rotational levels. It can be shown that the form of A;;, B;j, ij,
F;; and Gy is

(31) A,’j = A,’j (CZ)C,

(32) Bz] = B“(C2) (CC — %C2I> 5
(33) D{; = D (e,

(34) Fy; = Fj;(c%), Gij = Gy (c?).

Substituting (31)-(32)-(33)-(34) in (22) and then (22) in (23)-(24)-(25), the conditions of normal-
ization become

(35) Z/fz'(;)AijCQdu =0,
i

RR n~3577



8 E. V. Kustova , F. Mallinger

(36) }j/jypggmnqx k=1, N,
(37) Z/ OF;du=0, i=1,.,N,
(38) Z/f(O)G du=0, i=1,..N,

(39) 2/ ( +elte;
(40) Z/f(o)( +ek e

Furthermore, as in [26], we add the relation

(41) ZDk Pr _

Now the functions A, D”, B,;, Fij, Gi; are uniquely determined by the corresponding integral

equations and constraints (35)—(40) and (41).
To compute P, V and q, the bracket notation is used

n;n
(42) [A, B] = Z ik / BijLiji(A
ijk
which can also be written, using symmetry relations, as
n;n
(43) [4,B] =3 —5° (4, Bl + [4, BJiy),
ik
where
(44) [4, Bl = 2nmk 3 / I E By — By )(Aij — Aijr)go it dQduydu,
Jlg'r
(45) 4, Bl = 2nm;c Z/ IO FD (Bij = Big) (A — Aw)go jit d*Qdurdu.
jlgr

It follows that the stress tensor is given by

(46) P= (p_prel) I_ZMS_T’V v IJ
where &
(47) pra = kT[F,G], n=kT[F,F], p= E[B,B],

are the relaxation pressure, the bulk and shear viscosity coefficients respectively. The notation S
denotes the tensor of deformation

ovy, ov; 1
(48) S = |: (81‘[ ) + (a—rk) - gék[V.V] y .

The diffusion velocity V; is given by

(49) Vz' = — Z Dildl - DTiVlogT,
l

INRIA



Level kinetic approach 9

where 1
Dy = —[D!, D!
(50) il 3TL[ ) ]a
1 .
(51) Dr; = —[D", A].

3n
Here, D;; and D; are the diffusion and thermal diffusion coefficients for every vibrational species.
Finally, the heat flux q is given by

(52) = XVT-p Y Dridi+ 3 (e7 + e+ mavi,

where the coefficient of thermal conductivity, X, is given by

k
(53) )\I == )\tr + )\'r'ot = g[A, A]

5 Collision integrals

It is useful to introduce collision integral notations as proposed in [27]. The notations given in
this section will simplify greatly transport coefficient formulas. We recall the averaging operator
notation given by

ET\/? sisk
(54) < F >;= (%> Z Z21 e (5 +&F ) /6772}77 Uzijll dzﬂd’y,
jljlll T
where )
1 /m\1/2 i &
(55) 7= 3 (k_T> 9, 5j =
are the dimensionless velocity and energy. Then, the collision integrals are defined as follows
(56) QY =< 4% = 17'cosx >u
1 .
(57) Qgi’z) =<yt —42y2cos?x — EA(EM)Z >iks
(58) QY =< 7' — ¥y cosx >,
(59) QY =< 1° =y cosx >u,
where }
(60) A& = AE; + A&y,
A& = EJ’:, - EJ’:
(61) .
A&, = EF - &F,

where the superscript ~ is used to distinguish one of the colliding partner from the other in the
case i and k are the same. If ¢ = k, we adopt the notation
(62) .

The following notation will also be used

1057
1,1)°
2 ng )

150457 - ¥ . 1ay?
g QS; 1) ) ik = 3 Q(l "

(63) Ag = B =

RR n° 3577



10 E. V. Kustova , F. Mallinger

We also introduce the binary diffusion coefficient as

kT 1

(64) Dir = %W’
1

and the diffusion coefficient for the rotational energy as

3T 1

(65) D; rot,k = Snm Q(l 1)
i rot,k

with MCropi (11
(66) O =< EG(E] — €DV — (€5 — Eh)r cosx) >,
(67) Tl )k =< ER(ERY — Er/cosx) >u, (i # K),
where . '
(68) Ey=E—-<& >, .

In formulas (66) and (67), the partial specific heats per mass unit, cyet,;, is defined by

OE!

(69) Crot,i = 6—TJ

where the rotational energy for particles in vibrational level ¢ is given by
1 )
(70) Bi=o 2 / eifyd .

Furthermore, the following relations hold

(71) E, = : ﬁEZ'J Crot = Z #Crot,ia
k \2 7 2
(72) Crotii = — ( <(E) >, —(< & >y) ) .

6 Approximations of the transport coefficients

In order to derive the transport coefficients, it is needed to determine the unknowns A;;, Byj, Dl
and F;;. As proved numerically by [28], [4], the relaxation pressure is small compared to nkT and
may be neglected. The previous unknowns are classically approximated by polynomials expansions:
Laguerre and Sonine for translational energy and Wang Chang and Uhlenbeck polynomials for
rotational energy [1].

Laguerre and Sonine polynomials are given by the following formula

n

(73) 570 =2 (=),
and satisfy the orthogonality property
Oif n#p
(74) / e S (2)SP) (z)de = (Ln)l
if n =p.

n!

INRIA
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In the previous formula, we use the convention that

l I 1-1 1
hi=t -
(2). 5 X g X e X 2ﬁ.

The first polynomials are S(O)( )=1, Sl(l)(a:) =(1+1) -z
The Wang Chang and Uhlenbeck polynomials, for the discrete case, are written as

p! (r-1) (a)
(75) W) = w00+ 3 W 0o ),
q=0 "

where the first polynomials are W =1, w® = (y)r —y. It is easy to check the following
orthogonality property
(76) WPOWY =0 if p#r.

Thus, the expressions of A;;, Byj, D”, Fy; are

(77) A== ()"0 S d, s ewE),
r,p=0
(78) B, = ( C— —021) sz SEh(C?),
(79) D}, = (5o e Zod“sgjg W),
Tp=
(80) Z FL ST CHW® (e,
r,p=0

where C = (m/2kT)'/?c. The values I = 1/2,3/2,5/2 are chosen for later convenience.
Substituting (77)-(80) in (35)-(40), the conditions of normalization become

n; i
(81) Z P 0,

(82) 3 %dg;g -0, k=1,..,N,
i

fi,=0, i=1,.,N,

83
( ) Z ,,:; (ctT‘flO + Crot szl) 0.

After some algebra, the transport coefficients are written as

(84) Dri = 3_TL[D aA] - _%G’OOa
(85) Dy [D’ D] = dé’o,
(86) X = A + Apot = [A Al = —kz Digio+ mz B ot iy,

RR n~3577



12 E. V. Kustova , F. Mallinger

(87) n=151BBl =~ Zijgbo,
kT n;
n = kT[F,F]= R ; (= Crotfio + Crot,if61)
(88)
kT n;
= X el = —kTZ —fio-

7 Computation of the transport coefficients

In this section, we calculate the coefficients a. , b, di:} and f7, of the polynomials expansions given
in the previous section. They are solutions of algebraic systems obtained multiplying equations
(26), (27), (27) and (27) by an appropriate Laguerre-Sonine and Wang Chang-Uhlenbeck polyno-
mial, integrating over the velocity, and summing over rotational quantum level j. Systems, similar
to those given in this section, were calculated in [18], [29], in the case of polyatomic gas mixtures
with internal energy, and in the case of independent energy modes [30].

The general system associated to the coefficients al, . is written

P
15n;
(89) Z Z Azrkp P ay, p = _n_kT‘Srl‘SpO +34 mTCrot ,i0r00p1,
k r'p
r,p=0,1,....i=1,...,N,
where
90 AL =m (Y B s ) Sw 5y + BEE [Sw P) gy e
r'p'rp ih
h
(91) SWP — csé;)z(cﬁw@) (D).
From the definition of the bracket integrals, the following property holds
ik _ Aki
(92) ALiprp = Aoy

Furthermore, it results from the momentum conservation in a collision that system (89) is not
linearly independent for p = r = 0. In this case system (89) is completed by the constraint

(93) > aj =o0.
%

Keeping the first non-vanishing coefficients of the expansions we obtain the following system

ik k ik k ik ko _ o
z (Abo00a00 + Aloooaio + Agigeas1) =0, i=1,..,N,

k
i i i 15 n .
(94) Z(Aolfnoago + Afbioato + Agi0as1) = kT i=1,...,N,
k
Z(AZOOIGOO + A1001a10 + Aowlagl) - 3 mTcTot iy 7: = ]., aeey N.
k

After some calculation, the coefficients of system (94) are written as

3kT x;xy,

(95) Ao = =5 (A#H),
K2
i 3kT i
(96) Ao = 5 3 22,
N oz T

INRIA
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]; (i # k),

. 3kT iz , . = .
97 Ao = =—"2(6C, — 5 k
(97) 1000 8n Dip (6Ci, )s (i # k),
iy 3kT i ~
(98) Albg = =S~ >~ 222 (6Cin — 5),
8n hti Dih
, 3kT < EY(Y2 = yy'cosx) >ik .
ko _ kl i
(99) Ao = szxk Q(.i’l)'D,'k ) (i # k),
2.
y T < E% (% — y7'cosx) >;
(100) Az)leO — _% Zwimh 1] (’7 (1”1)/)7 X) h’
h#i Qih Din
: 3kT wizp (55 . = S 25< (AER)? >a .
ik _ okl T 9 ap A _ S \ACik) >ik
(101) A1010 = 3n Dik < 4 3sz 4Azk 12 Q(Itfl) s (Z 7é k),
k3
y 3kT ~— zizn [ 55 . - - 25 < (A&n)? >in
Aforo = —Z : <__3Bih+4Aih+_ 1,1 +
( ) 8&n hi Dih 4 12 Qgh, )
102
KT 22 [ - 25< (A&w)? >
_}_:34_”’;_1 <4Aii+£<(9‘iz3) >zz>,
i s’
k%]
Ak _ _3kT wizy, 5 < A& AEL > < Em(Y* —'cosx) >
0110 dn Dy, |4 ol 2 ol
(103)
< EY (Y = y7"*cosx) >in .
LSl nicond 2l ),
Qip
Aii L — _3kT —~ mizh |i§ <ALAER >in | 5 < EY (¥ — vy cosx) >in
0110 . 1,1 1,1
(104) 4n heti Din |4 Qz(h ) 2 Qgh )
104
< EG( = Peosx) >in| | 15KT 23 < (A&w)® >ii
Q(.}L’l) 16n Dj; QL ’
1 kX3
(105)A | = _3kT mimy | < EGERTY = EQpyy'cosx) >in _3< A&EAEL >
2 Dy 5 g
Al _ 3T iz Merot,i | 3< (A&)? >in
(106) o 2n T [ *Divotn - 4 4, Din
106
+3k_T$2 merori | 3 < (Aii)” > _
2n ¢ kDi rot,i 8 Qg’l)’Diz’

The system associated to the coefficients bF, is written as
. n;
SN HEE = 5#(»0,
(107) koot
r=0,1,.., i=1,.,N,
where
T

(108) ok =3 7[SW<T’>, SW L 8 +
h

niNg

n2

RR n°3577
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14 E. V. Kustova , F. Mallinger

c?
(109) SW) = (cc )sg;;(cz)
Considering the first non-vanishing coefficients, the general system reduces to
(110) ZHg’gb’g = 5— i=1,.,N,
where 10
Hik = 23,2, [—?Qg};” +of 2’] . (i #£Fk)
(111)

} 10
Hiy =2z [?Qg};” + QEZ’Q’] + 422057,
h#i

The system associated to the coefficients d“F | is written as

Tlpl
ik .k T
ik duh, = 3T (614 — =) 610650,
(112) ; % rrrlp ( n ) 4
r,p=0,1,..., i,l=1,...,N,
where
(113) 'yﬂ“p,rp =m (Z n;nh [SW(T ?') ,SW (P! [SW r'p’) , SW P )
h
(114) SWrp) = csgjg(cz)ww) (&D).
It is obvious that vk , = Ai  Though it is possible to consider only the coefficients d, we
Trp'rp = Sripirp € 00

may consider coefficients d:¥ for (r,p) = (0,0),(1,1),(0,1). The resulting system can be deduced
from (94), substituting in each equation, the right hand side by

3kT(5il—%), 0, 0,

respectively.
Finally, the general system associated to the coefficients f;, is given by

ik nz' 1
Z Z Ir p'rp - n m(_crot(spo(srl + cTOt,i6p16T0)7
(115) ko r'p'
r,p=1,.., +=1,..,N,
where
(116) I:,kp o= (Z NiNp [SW(T ') S’W(TIJ)] Sk + nznk [SW(T ') ,SW TIJ)] )
h
(117) SWP = 57 (WP (£)).
From the definition of the bracket integral, the following property holds
ik _ ki
(118) IT' p rp I’r‘pr p

Furthermore, for r = p = 0, system (115) is not linearly independent. This is a consequence of
the total energy conservation in a collision. In that case, system (115) is supplemented by the
constraint equation

(119) Z 7:: (cerfio + Crot,ify) = 0.

i
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Level kinetic approach 15

In practice, system (115) is solved for (r, p) = (1,0), (0, 1), ie. only the first nonvanishing coefficients
in the expansion (80) are considered. With the previous hypothesis, we write

E : ik k ik ky —
(11010 10 + 10110 01) -
k

n; Crot .
- i=1,..,N,
n Cip + Crot
(120)
(Iz'k fh o4k gk ) = Ni  Crotyi =1 N
1001J10 otorJo1) = "m0 e’ = 1,...,IV.
I tr rot

After simple algebra, coefficients of system (120) may be expressed as

(121) Iflélo = ZT;Tk [—401(;’1)—}— < (Agzk)2 >ik] . (1 #k),
(122) Iibio = wizy [495,?4 < (A&i)? >ih] + 222 < (AEx)? >u,
h#i
(123) I o = —2zimp < (A&) (A&ik) >, (i # K),
(124) Igino = —QZ.Z'i:Eh < (A&-h) (Agi) >in —2.%'12 < (Agiz’)2 >iis
h#i
(125) Ik = 4z < (AE) (A&L) >ir, (i #£ k),
(126) Iéiml = 4237,’.%’}1 < (Agi)z >in +2$§ < (A&')Z >ii -
hi

We point out that only new definitions have been introduced to express the coefficients of the
different systems, no approximation has been made at this level.

8 Approximations and Relaxation times

In this section, we define relaxation times, as done by [31], assuming that molecules in the different
vibrational levels are molecules of different species. Moreover, taking into account additional
physical approximations, used by [31], we give simplified expressions for the systems given in the
previous section.

Considering that only the term associated to Fj; remains different from zero in the Chapman-
Enskog distribution [31], [17], we write

) =P OEu) (1= LT v - TWIEN LT ).

Then, if we linearize the Maxwellian-Boltzmann distribution

3/2 i
tr m ni . m Y R
(128) = (%th) ZT(T,?)SJmp< T, (u—v) kT;’) ,

2

with different translational , T}, and rotational T"¢, temperatures, and if we indentify the resulting
espressions with (127), we may write

(Ttr —T) i Vv
T - flO?a
(129)

(T; - T)

i Vv
T Ja

RR n° 3577



16 E. V. Kustova , F. Mallinger

After some algebra, the relaxation equation for Ef is written as

dE¢ 4k .
(130) D= =Y a— < (A& >u [T} - Ty
k

dt

To derive (130), we have made the approximation that complex collisions are rare. Complex
collisions are those involving more than a single quantum jump. In particular, we have the relation
AE;AEL =0 for i # k. Furthermore, we have assumed that vibrational relaxation is very slow and
does not affect the rotational relaxation.

The energy E! is defined by the relation

. 1 .
(131) Ei = p. Z/g; D1+ ¢ij)du.
b

The corresponding quantity evaluated with an equilibrium distribution function for an arbitrary
temperature Tp is

. 1 R
(132) E{O(T) = -3 [ au.
J
It follows that equation (130) may be written
dEL 171  _io
(133) @ n [Er - E, ] ;

where the relaxation time 7;, for the ith vibrational level, is given by

1 Tk
134 i =
(134) i ; Tik
where ) ik
(135) = = T (AE)? >,

Tik MCrot,i

is the cross relaxation time. Following Mason et al. [31], we introduce a collision number, related
to the cross relaxation time, by the relation

4 T
(136) Gk = = PTik
T Nik
with 7; a fictitious viscosity defined as
5 kT
(137) Nik = EW
ik
In practice, 7;, may be determined by
3 .
(138) gDik = gAiknz'k-

We also have, under the approximation of rare complex collisions, the following relations

2mTcror,; 1

139 <(AEy)? >i= ———,
( ) ( ) TNii Cis
and T .
(140) < A&EAE; >iu= M—.

™k Cik

INRIA
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Assuming that the internal and translation motion are uncorrelated, the following equalities hold

(141) <EN (v —%cosx) >u=0,  1,5>0,

(142) < EY(EQTY — EppyPcosx) >u= 0, (i £ k).

With the previous approximations, the matrix I may be written

Ik, = — Spp tive | T zizy (mcrot,i 4 MCrotk
4 Agnw T Mik Gi Cr

). a#m,

. 5 x;x 1 z;x MCrot.i = MCro AT 22 mcrot.;
Iﬁno:kTZ[ZN L+ — h( Bt t”‘)]+——‘ i

= L4 Aanmin L Gi Ch T G
Iglfm:_g%—?k%a (i # k),
(143) Nik k
5 2T TiTh Meroti AT T2 Mot i
It =—— o T =
Pl Gi T N G

Ig’f(n =0, (1 # k);

2

i = 4T Z TiTh MCroti . 4T T; MCrot i

0101 = - T
™ nin G T i G

’

h#i
the matrix A may be written

3kT T;X[

144 Ao = —=— j
(144) 0000 o Dy’ (i # k),
. 3kT T;Th
145 A _ 1 ’
(145) 0000 om hz;éz Din
i 3KT xixh, ,,, ~ .
(146) A1’(6)00 = 8 'Z;ik (6Cik — 5), (i # k),
. 3kT ; ~
(147) Moo = =5 2 o (6Cin = 5),
n ‘ Dz’h
h#1i
(148) Af)’ioo =0,
. 3kT z;xy, | 55 ~ - 20 A;r (MCroti  MCrot k .
149) Ak = = T2 | Z0 3B — 44, — — rot,t rot, k
(149) Afgio 8n Di l 1 k - G + A ) (i # k),
- 3kT T;Xp 55 ~ ~ 20 Aih MCrot,i MCrot.h
i = — — —3B; 4A4; — ’ ’
1010 8N hZ#Z Dy | 4 ih +4A;n + 3 Fr G + o +
(150)
3kT 1‘% ~ 20 /L',' MCrot.i
— 24 + — 2
+ 2n Dii i+ 3 krw Q ’

3T » &%k MCrot,k

151 Ak — T 4.
(151) 0110 o N D T G

(i # k),
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18 E. V. Kustova , F. Mallinger

y 3T - LiTp MCroti 6T - 22 MCrot,i
152 Al — T Ay oioh oty 77 g, i ot
( ) 0110 nm hzgéz i Din, Cz nmw " Dii Cz
(153) A0101 (i # k),
3T MCroti = 3T o MCrot.i
Al — 2 . Tot,i of 2 rot,i
otot 2n hti Tilh Dz rot,h 2n ¢ Dz rot,i
(154)
18T i ZiTh MCrot,i 18T ~”x_§mcmt,,~
Sn £ y "D G snm "Dy G

. 5. __x;Tk 5 .
155 Hik = Zpr= [— - +1], i #k),
(155) e R (i # )
5 xzn [ B 5 a2
156 HlY = kT ! [T + 1] + kT
(156) %4 hz;éz Nin | 3A;n 2 mu
In deriving these new coefficients, the following approximation was asumed: (; is approximated
by (i = G-

At this level it is quite impossible to compute the coefficients of the previous systems due to the
complexity of the collision integrals. Numerical values of collision integrals are not available in the
literature in the general case.

Before endding this section, we want to introduce the approximations commonly used in practice.
They are

(1) Approximation of rotational diffusion coefficients D; o, by ordinary diffusion coefficients
Dz’k;

2) approximation of collision integrals Q™) ( and thus Air, Bix, Cix) by calculated elastic
pp ik
values.

(r.5)

Furthermore, the collision integrals ;'™ are normalized by the corresponding value, noted

[Qz(,:’s)] rs, computed for the rigid sphere model and given by

(157) 009 s (%)1/2 (s -; 1)! [1 ~ 12-(FT(+—3T] o2,

1
where o;;, = —(0; + o) is the separation of the center of the two molecules, whose diameters are
o; and oy, respectively. Thus, we may write

Q(T73)

158 Qe — ik
( ) ik [Q(r s)] RS

We can now rewrite the fictious viscosity 7;;, and the diffusion coefficients D;y,, using approxi-
mation (2),

5 (7mkT)/2
(159) Nik = ( )

16 no, 07

3 (mmkT)/?

1 Dy = .
( 60) k 8nm 7T0'2k Q(;,l)*

INRIA
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The integrals ng,s) have been calculated by many authors, for more or less complex potentiels.
The dependence upon the vibrational energy levels appears through constants attached to the
molecule under consideration; for example, the molecular diameter and the minimum potentiel
for the Lennard-Jones potentiel. Assuming that these constants do not depend on the vibrational

energy levels, it follows that the quantities QE;’S) do not depend on the vibrational energy levels
either. Thus we can write QgZ’s) = Qrs),
As a result, the shear viscosity may be calculated directely, and after some algebra, we obtain
5 (mmkT)'/?
B= 16 wo?2 Q(2:2)*°
Furthermore, assuming constant specific heat c,ot,; = ¢rot and constant collision number (; = ¢,
the bulk viscosity is given by

(162) n

(161)

km Crot '
= 35"
4m (Crot + Ctr)
where 7' is given by formula (159) with no dependence on vibrational levels. Under the same
hypothesis, the thermal conductivity is given by

5 1
(163) N = ZkAlO + 5m0rotA01;

where Ajg and Ag; are solution of the following system

3 ~ 40;1mcmt GAmcmt 15
2 4d 4 LTt ) gy — 2 g = 2
4nD< 3kmC ) 07 knap T T 20

A 184
6—A10 § + 8— A01 = 3nD,
¢ 2

5m(
where A and D are given by formulas (63) and (64) respectively, with no dependence on the
vibrational levels. Finally, the thermal diffusion Dy; is equal to zero, and the diffusion matrix D
is given by
(164) Dy =-D, ifi#k,

(165) D;i=D (i - 1) .

Ti

The formulas we obtained in the latter case for shear viscosity, bulk viscosity and thermal con-
ductivity are similar to those derived in the monotemperature case. Of course, both approaches are
quite different. In the one temperature approach, the thermal conductivity includs the vibrational
mode. It is computed assuming a Boltzmann distribution for the population levels. In our case,
the vibrational energy transfers are due to diffusion terms containing D;;, and allowed us to predict
correctely vibrational energy transfers in flow regions where a strong vibrational nonequilibrium
occurs.

9 Conclusion

The transport kinetic theory of pure gas developed in the case of strong vibrational nonequilibrium
was recalled. The corresponding macrocopic system of equations is given, included the relaxation
equations for the population of each vibrational energy levels and the equations of momentum and
total energy conservation. General systems are given to compute transport coefficients. Finally
simplifications of the previous systems are proposed in order to deduce systems whose solutions
may easily be obtained by classical numerical methods.

That work may be generalized to a reacting gas mixture with strong vibrational and chemical
nonequilibrium.
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