N

N

Ordonnancement de chaines indépendantes sur
processeurs uniformes avec délais de communication

Wieslaw Kubiak, Bernard Penz, Denis Trystram

» To cite this version:

Wieslaw Kubiak, Bernard Penz, Denis Trystram. Ordonnancement de chaines indépendantes sur
processeurs uniformes avec délais de communication. RR-3576, INRIA. 1998. inria-00073105

HAL Id: inria-00073105
https://inria.hal.science/inria-00073105
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073105
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Ordonnancement de chaines indépendantes sur
processeurs uniformes avec délais de
communication

Wiedaw Kubiak and Bernard Penz
GILCO, ENSGI-INPG, 46 avenue F. Vidlet
38031 Grenoble Cedex 1, France
Denis Trystram
LMC-IMAG, Domaine Universitaire, BP 53

38041 Grenoble cedex, France

No 3576
december 1998

apport
derecherche

%I INRIA

RHONE-ALPES

Ordonnancement de chaines indépendantes sur
processeurs uniformes avec délais de
communication

Wieslaw Kubiak* and Bernard Penz
GILCO, ENSGI-INPG, 46 avenue F. Viallet
38031 Grenoble Cedex 1, France

Denis Trystram

LMC-IMAG, Domaine Universitaire, BP 53
38041 Grenoble cedex, France

Théme 1 — Réseaux et systémes
Projet Apache

Rapport de recherche n " 3576 — december 1998 — 24 pages

Résumé : Nous montrons dans ce rapport que le probléme qui consiste a
ordonnancer un ensemble de chaines de taches unitaires indépendantes sur
une machine paralléle & processeurs uniformes est NP-difficile au sens fort (en
tenant compte ou non des délais de communications). Nous présentons un al-
gorithme linéaire qui calcule une solution optimale pour le cas de 2 processeurs
avec délai de communication, lorsqu’un processeur est a fois plus rapide que
lautre (avec a entier). Enfin, nous dérivons une heuristique dans le cas d’un
nombre fixé de processeurs avec une bonne garantie de performance.

Mots clés: Ordonnancement - Processeurs Uniformes - Chaines

(Abstract: pto)

* On leave from the Faculty of Business Administration, Memorial University of New-

foundland, St. John’s, Canada

Unité de recherche INRIA Rhdne-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Téléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International: +33 4 76 61 52 52

Scheduling Chains on Uniform Processors with
Communication Delays

Abstract: We show that the problem of scheduling chains of UET jobs on
uniform processors with communication delays to minimize makespan is NP-
hard in the strong sense. We also give a heuristic that generates solutions with
known, and relatively small, absolute error for this problem. The NP-hardeness
result holds even for the case without communication delays, and complements
earlier result of Gonzalez and Sahni who gave a polynomial time algorithm for
preemptive jobs of arbitrary length. We also study the structure of optimal
solutions for the two processor problem of scheduling chains of UET jobs with
communication delays, where one processor is a (integer) times faster than the
other. This investigation leads to a linear time optimization algorithm for this
case.

Keywords: Scheduling - Uniform Processors - Chains

Scheduling Chains on Uniform Processors 3

1 Introduction

The seminal works dealing with the problem of scheduling jobs on uniform
processors, i.e. processors with different speeds, were done in the seventies,
see [6] for review, and the eighties, [4], [7] and [9]. There is today a renewed
interest in studying such problems because of the popularization of networks
of workstations of the same type. These scalable systems may include seve-
ral micro-processors of different generations, which only differ by their clock
speeds (or frequency), or several types of clusters (mono, bi or quadri multi-
processors).

The evolution of network architectures has lead to three main architec-
tures: dedicated parallel machines (or supercomputers), homogeneous clusters
of processors and general networks of workstations. The first are very expen-
sive, while the third require computing resources on the Web to carry out larger
scale computations. We are interested in the second architecture because it rea-
lizes a good trade-off between price and performance for large applications. In
such an architecture, various implementations exist at the moment. For ins-
tance, several components of SMP (Symmetric Multi-Processors) or CCUMA
machines (Cache Coherence Uniform Memory Accesses) connected according
to a controlled and structured interconnection topology called Systems Area
Networks. An example of such a system is the dedicated network built wi-
thin the APACHE project to support the Athapascan parallel programming
environment [1]. It is composed of one SMP quadri-processor (Pentium 166
Mhz), two SMP bi-processors (Pentium 333 Mhz) and four mono-processors
(Pentium 133 Mhz) interconnected by Myrinet and Ethernet 100 Mb/sec.

Therefore, a reasonable model of job scheduling in such systems should
capture both the different speeds of processors and the delaying effect that the
interconnections between processors may have on communications between
jobs. A natural (first level) of approximation is to consider uniform processors
(homogeneous processors with homothetic speed ratio) and unit communica-
tion delays.

RR n" 3576

4 Kubiak, Penz and Trystram

1.1 Problem description and notation

We consider a set of K chains Chy,...,Chg, K > 1, made up of unit
execution time (UET) jobs. Chain Ch; consists of N; jobs, i = 1,..., K. The
total number of jobs N equals 3% N;. These chains are to be processed on a
set P, ..., Ppy, M > 2, of uniform processors so that the completion time of the
last job, i.e. schedule makespan (), ,;, 1s as small as possible. Processor P; takes
a; units of time to perform a UET job, y =1, ..., M. We shall assume that all
a;’s are rational numbers. Therefore, without loss of generality we may assume
that a; = 1 for some processor j, and a; > 1, 5 = 1,..., M. Equivalently, we

could define the speed v; of processor P; as being equal to ai 3 =1,... M,

bl
however it will be more convenient for us to work with the aﬂti—speeds a; in
this paper.

A chain may be switched from one processor to another during its execution
if this shortens the exectution of the set of chains; consider for example two
chains with three UET jobs each and two processors with their anti-speeds
1 and 2. Starting both chains at 0, and then switching their processors at 2
would result in a makespan of 4. Obviously, any solution without processor
switching would be longer in this example.

Any switching can only occur between two neighbouring jobs in a chain,
in other words no job preemption is allowed in a feasible schedule. If a switch
occurs, then a chain completes its job on processor P; and continues on P; for
some ¢ # j. The switch requires ¢;; time units to exchange data and control
between the two parts of the chain. We shall call ¢;; a communication delay,
and assume that ¢;; =1 for all ¢+ and 3.

The problem will be denoted by Q|e;; = 1, chains, p; = 1|Chuasz-

1.2 Related Works

The problem @ | pj = 1 | Ciax without precedence constraints between
jobs can be solved in O(N log M) time (Lawler et al. [9]) even for the objec-

N
tive functions Y. f;(C;) and %naXN} fi(C;) where f; is a monotone function of
i=1 te{1

goony

the finish time C; of job i. Gonzalez and Sahni [6] give an O(N) algorithm
for problem Q|pmtn|Cpax with N independent jobs of arbitrary length on M
uniform processors.

INRIA

Scheduling Chains on Uniform Processors 5

Despite the fact that there is an O(N®)-algorithm for problem Q2 | pmin, prec,r; |
Limax, where jobs with arbitrary processing times, release times, and arbitrary
precedence constraints are to be processed preemptively on two uniform ma-
chines to minimize maximum lateness (Lawler [9]), only few polynomial algo-
rithms have been developed for special precedence constraints. Namely, Kubiak
[7] gives a polynomial time algorithm for problem Q2|tree,p; = 1|Chpax with
one processor a times faster than the other, where a is integer. Gabow [4] ta-
ckles the same problem for @ = 1 4 1/k, where k is an integer. The complexity
of the corresponding problem with arbitrary rational @ is unknown. Brucker
et al [3] give an algorithm for problem Q2 | chains,p; = 1 | Cpax with two
uniform processors, UET jobs, chain precedence constraints, and makespan
minimization. The algorithm works in O(K') time.

Blazewicz et al 2] give an algorithm for scheduling complete in-trees on
two uniform processors with anti-speeds 1 and a (integer) and communication
delays.

1.3 Organisation of the paper

In Section 2, we study the computational complexity of problem Q|¢;; =
1, chains, p; = 1|Cpar with arbitrary number of processors and arbitrary anti-
speeds. We show that this problem is NP-hard in the strong sense. Actually,
we prove a stronger result, namely, that problem Q|chains,p; = 1|C\., wi-
thout communication delays is NP-hard in the strong sense. Then, in Section
3, we present an optimization algorithm for two uniform processors, Q2|¢; ; =
L, chains,p; = 1|Cp4p, with anti-speeds 1 and integer a. In Section 4, we
present a heuristic for Q|¢; ; = 1, chains,p; = 1|Cyq, and prove that it gene-
rates solutions within 2M — 1 units from optimum.

2 The problem with arbitrary number of pro-
cessors

We first study the complexity of the case with arbitrary number of proces-
sors.

RR n" 3576

6 Kubiak, Penz and Trystram

Theorem 1 Problem Q|chains,p; = 1|Ciar is N P-hard in the strong sense.

Proof. The transformation will be from the Numerical 3 Dimensional Mat-
ching (N3DM) problem defined as follows (Garey and Johnson [5]).

INPUT: Sets X = {z1,....,x.}, Y = {y1,..,un}, and Z = {2z, ..., 2.}
Positive integer weights s(x;) for each z; € X, s(y;) for each y; € Y, and s(z;)
for each z; € Z. A positive integer B.

QUESTION: Is there a partition of X UY U Z into three element disjoint
subsets {x;,y;, zx}, such that z; € X, y; € Y and z; € Z, and s(z;) + s(y;) +
s(zz) = B in each subset?

This problem remains NP-hard in the strong sense even if the following two
conditions are met:

(1) s(z1) < s(z2) < .o < s(@p) < s(y1) < s(y2) < ... <s(yn)

(2) For any two y;,y; € Y and z, € Z we have s(y;) + s(y;) + s(zx) > B;

Given an istance of N3DM, we define an instance of Q|chains, p; = 1|Cpaz

with N = nB® + 8n + Xn: f(@)+ i g(¥;) jobs, K = Tn chains, and M = Tn
=1 7=1

processors. All details of this instance are given in Tables 1 and 2. Furthermore,
we set the threshold value for makespan equal to y = B®. We have the following
two simple propositions about the instance that will be used later in the proof.

Proposition 1 ¢(7;) > B®, forj=1,...,n.
Proof. By definition ¢(7;) > y/(g(y;) —1) — 3, for i = 1,...,n. We need to
show that y > (B® + 3)(g(y;) — 1), for j = 1,...,n. Since g(y;) — 1 < B* + B,

we only need to show that y > (B® + 3)(B? + B). It can readily be checked
that the last inequality holds for B > 3 which proves the proposition. [

Proposition 2 f(z;) > B?, fori=1,...,n.

Proof. The proof is similar to that of Proposition 2 and will be omited. [

(if part) Consider permutations 7 and o of 1,...,n such that s(zrx)) +
$(Yo(ry) + s(21) = B f(ﬂk = 1,...,n. Schedule the first job of chain z,() to

start at 0 on very slow X-processor 7(k) and to continue on fast processor k in

INRIA

Scheduling Chains on Uniform Processors

RR

n

© 3576

TAB. 1 — Chains

Chains ‘ Number of jobs (N;)
1 flzy) = B* +s(z1) + 1
X-chains i flz;) = B>+ s(z;) + 1
z, | flz,)=B*+s(z,)+1
yi | g(y) = B?+s(y1) +1
Y-chains | y; | g(y;) = B*+s(y;) +1
Yo | 9(yn) = B* + s(ys) + 1
21 y—QBQ—B—I—s(zl)—I—Q
Z-chains 2k y—2B* — B+ s(z) + 2
Zn y—2B*— B+ s(z,) +2
T | f@)=ly/(f(z1) —1)] =2
Xechains |7, | TG0 = /T e) =1 =2
PR EES
9 | 9@) = ly/(g(y) —1)] =2
Vechains |7, |9(@)=[y/(g(y;) — D] -2
Yo |90, = ly/(g(y.) —1)] =2
T 2
X X-chains | Z%; 2
Tx, | 2
vy, | 2
YY-chains |7y, |2
vy, | 2

Kubiak, Penz and Trystram

TAB. 2 — Processors

Processors ‘ Time to do one UET job (a;) ‘

Lly—=(f(z)—1)

Very slow X processors i ly—(flzi)—1)

Very slow X X processors | ¢ | y— (f(zi) —1)

Very slow Y processors J | y—1(g(y;) —1)

Very slow YY processors | j | y — (g(yj) - 1)

Slow X processors i flz) —1
n| flz,) —1
1] g(y) -1

Slow Y processors J lgly;)—1
n | gly.) —1
111

Fast processors k|1

n |l INRIA

Scheduling Chains on Uniform Processors 9

ly—(f(zrk))—1),y]. Schedule chain y,) on fast processor k in [0, g(yo(x)) —1)]
and its last job to finish at y on very slow Y-processor o (k). Schedule the first
job of zj on slow Y-processor o(k) to start at 0, and its last job on slow X-
processor (k) to finish at y. Schedule all remaing jobs of z; on fast processor
kin [9(yom) — Ly — (f(@rp) — 1]

Finally, schedule chains T,() and ¥, on slow X-processor 7(k) and slow
Y -processor o(k), respectively, in intervals [f(zxux)) — 1,y — (f(2r@)) —1)] and
[9(Yor)) =1, y—(9(Yo(ry) —1)], respectively. This leaves intervals [0, f(zx))—1)]
on slow X-processor 7(k) and [y — (9(y,(x)) — 1), y] on slow Y-processor o(k)
available for X X-chain 7(k) and for YY-chain o(k), respectively. These two
chains may continue on very slow X X-processor 7 (k) and YY-processor o(k),
respectively. By repeating these steps for all chains z;, £ = 1,...,n, we obtain
a feasible schedule with makespan equal y.

(only if part) Consider a schedule with Cy,,, < y. We show how to build a
required matching. We have the following simple results for the schedule.

Claim 1 There are at most ny jobs on faslt processors.
Proof. The claim follows immediately from the fact that there are n fast pro-

cessors and it takes one unit of time to process a UET job on any fast processor.
[

Claim 2 There are at most g(y;) + 2 jobs on slow Y-processor j, j =1,...,n.

Proof. By contradiction. Assume that there are g(7;) + e, where e > 3, jobs
on some slow Y-processor j. Then, we have T; > (g(y;) + ¢)(g(y;) — 1) for the
total load T; on j. By definition of g(7;) we obtain T; > y+¢(g(y;) — 1), where
€ > 0. This, however, leads to a contradiction since T; < U, < y. (]

Claim 3 There are at most f(T;) + 2 jobs on slow X- processor i, 1 =1,...,n.

10 Kubiak, Penz and Trystram
(k) “ar) @]
< y = (f(@rr)) — 1)
_® (k)
XX
,?In(m
Y
o(h) . D]
Vv y_(\{c(k))_l)
(k) TE (k) °® ‘ 0, i @ ‘ it
X flerm) =1 y £ (f(@r) =)
o (k) 2 @ | o) @~ 0 N
v Yo(k))= 1 Y= (9Wor)) = 1)
st Yo(r@------- €| @ - € | @ - @k
processors 9(Wo(r)) =1 Y= (f(zr)) — 1)
y=B°

FiGg. 1 — Principle of allocation in the optimal schedule.

INRIA

Scheduling Chains on Uniform Processors 11

Proof. The proof is similar to that of Claim 2 and will be omited. [

Claim 4 There is exactly one job on each very slow processor.

Proof. First, we prove that there is at most one job on each very slow pro-
cessor. Otherwise, the total load would be at least 2y — 2(f(z;) — 1) for
some very slow X- or X X-processor i, or 2y — 2(g(y;) — 1) for some very
slow Y- or YY-processor j. Either value is greater than y which leads to
a contradiction. Second, the fast and slow processors can process at most
anl(f(fz) +2)+ znjl(g(gj) + 2) 4+ ny jobs, which follows from Claims 1-3. This
= J=

leaves at least 4n jobs for 4n very slow processors, thus, the claim holds. =

Claim 5 Neither Z- nor X- nor Y- chains have their jobs on very slow pro-
CESSOTS.

Proof. By Claim 4, it is sufficient to show that executing at least one job of
either Z- or X- or Y-chain on a very slow processor would result in a schedule
longer than y. This, however, easily follows from Propositions 1 and 2, and the
definitions in Table 1. [

Claim 6 Fach Y -chain has exactly one job on a very slow Y- or YY - proces-
sor, and ils remaining jobs on fast processors. Also, each X-chain has exactly
one job on a very slow processor, and its remaining jobs on fast processors.

Proof. First, notice that no chain may have more than one of its jobs on very
slow processors, otherwise the chain could not finish by y. On the other hand,
by Claims 4 and 5, each X- and Y-chain must have at least one of its jobs on
very slow processors. Thus, any X- and Y-chain must have exactly one job on
very slow processors. Furthermore, none of the chain’s remaining jobs can be
on a slow processor in order for the chain to complete by y. Thus, all must be
on fast processors.

RR n~° 3576

12 Kubiak, Penz and Trystram

Finally, no Y-chain may be processed by a slow X- or X X- processor.
Otherwise, the total processing time of some Y-chain, say y;, would be at least

y—(f(z) = 1) +9(y;) =1 =y +s(y;) — s(z:)

for some i = 1,...,n, and y; would not finish by y since, by (1), s(y;) —
s(z;) > 0. n

Claim 7 FEzactly two jobs of each Z- chain are executed on slow processors.
Furthermore, neither X- nor XX - nor Y- nor YY -chain is done on fast pro-
CESSOTS.

Proof. First, we show that no Z-chain z; can afford to execute more than two
of its jobs on slow processors. Otherwise, it would take at least B¢ —2B% — B+
s(zr) + 2 + eB? — e, to complete chain z; with e > 2 jobs on slow processors.
This value equals y + (e — 2)(B* — 1) — B + s(zx) and is greater than y since
(e —2)(B* —1) — B+ s(z) is positive for € > 3 and B > 3.

Second, by Claim 6, there are Zn: flz:) + i g(y;) —2n = 2nB* + nB —
7=1 7=1

s

s(zk) + 2n — 2n jobs from X- and Y- chains on fast processors. By Claim
1

J

1, this leaves at most nB® — 2nB? — nB + Zn: s(z;) time on fast processors
=1
for Z-chains. Thus, at least 2n jobs from Z—cjhains must be processed on slow
processors. As we showed at the beginning of the proof, no more than two
jobs of any Z- chain can be executed on slow processors, thus, we have that
exactly two jobs of each Z- chain are executed on slow processors. Therefore,
there are exactly ny jobs from X-, Y- and Z-chains on fast processors, which
leaves no room for either X- or X X- or Y- or YY-chain to be scheduled on

fast processors. This proves the claim. [

Claim 8 Fach XX -chain and YY -chain has one of ils jobs on a very slow
processor and the other on a slow X-or Y -processor.

Proof. By Claim 4, each very slow processor must process exactly one job. By
Claim 5, this job must not belong to Z-, X-, or Y- chains. By Claim 6, exactly

INRIA

Scheduling Chains on Uniform Processors 13

2n out of 4n very slow processors are occupied by jobs from X- and Y-chains.
This leaves 2n very slow processors for 2n X X- and YY-chains. Thus, each
X X- and YY-chain has one of its jobs on a very slow processor. Furthermore,
by Claim 7, the other job must not be on a fast processor. Thus, it must be
on either a slow X-processor or a slow Y-processor. [

Claim 9 There are at least n XX - or YY -chains on slow X -processors.

Proof. By Claim 6 and 8, there are at least n X X- or YY-chains on very slow
X- and X X-processors. By (1), none of these chains may continue on slow
Y -processors to complete by y. Thus all must be on slow X-processors. [

Claim 10 FEzactly one job of each Z- chain is executed on a slow X -processor
and exactly one on a slow Y -processor.

Proof. A Z-chain can not have two of its jobs processed on slow Y-processor
since its processing time would then be at least

y—2B* = B+s(z) +9(y;) —1+9(yi) =1 =y — B+ s(z) +s(y;) +s(y:)
which, by (2), is greater than y.

We now show that each Z-chain has exactly one job on a slow Y-processor.
The proof will be by contradiction. Assume that there are n — e¢ Z-chains,
e > 1, with one job on a slow Y-processor and one on a slow X-processor.
Thus, by Claim 7, there are e Z-chains with two jobs on slow X-processors.

Let s; and ¢; be jobs processed on slow X-processor 7, 7 = 1,...,n in the
intervals [0, f(z;) — 1] and [y — (f(z:) — 1), y], respectively. We shall call these
jobs 7ends”. We observe that there are 2n "ends”. By Claim 9, at least n out
of the 2n “ends” belong to X X- or YY-chains. Furthermore, at least n — e
“ends” belong to the Z-chains with one job on a slow Y-processor. To prove
this it is sufficient to show that at least y — 2B% — 2B jobs of any Z-chain
must be processed on fast processor between the chain’s jobs processed on
slow processors. First, observe that the processing of all X- and Y-chains on
very slow processors overlaps at any moment in the interval 0 = [¢(Ymaz) —
1,y —(9(Ymaz) —1)]. Thus, only Z-chains can be processed on fast processors in

RR n”° 3576

14 Kubiak, Penz and Trystram

o. Since there are n Z-chains and n fast processors, then no Z-chain can have
its job processed on slow processors in o. Therefore, any Z-chain can switch
to slow processors in the intervals [0, ¢(Ymaz) — 1] and [y — (9(Ymaz) — 1), Y]
only. Furthermore, neither interval can accommodate more than one job on
slow processors. Finally, y — 2(¢(ymas) — 1) >y — 2B* — 2B.

We now proved that there are at most e "ends" that belong to the e Z-
chains with two jobs on slow X-processors. Thus, 2¢ jobs from these chains
are on slow X-processors, but at most e of them are "ends". Therefore, there
is a Z-chain with a job processed on a slow processor in o which leads to a
contradiction. Notice that 2(f(Zmin) — 1) > 9(Ymaz) — 1.

We now proved that e = 0 and thus the claim holds. [

Consider Z-chain zi, k = 1,...,n. By Claim 10, one of its jobs is on a slow
X-processor, say m(k), and the other on a slow Y-processor, say [(k). Thus,
it takes at least

B® —2B* — B + s(z) + g(ym(k)) -1+ f(;z:l(k)) —1=B%— B+ s(z) +
$(Ym(r)) + s(T1())

units of time to complete z;. We must have

B® = B+ 5(21) + $(Ymr)) + s(ziry) <y

or

8(2) + 8(Ym(r)) + (i) < B.

Consequently

> s(@iwy) + X s(Ymy) SnB — 3 s(z) = X os(@i) + X2 s(y;)-

k=1 k=1 k=1 =1 7=1

Thus, if both [and m are permutations, then we have s(zx) + s(Yn) +
s(xyx)) = B and the proof will be complete. We now show that both I and m
are permutations.

Claim 11 Both | and m are permutations.

Proof. Let us index all inequalities in (1) from 1 (the leftmost) to 2n — 1 (the
rightmost). Let iy < ... < i,, for r > 1, be all the ” < ” inequalities in this
order. Define /; and L; to be the number of X- and Y-chains, and X X- and YY-
chains, respectively, processed on the 2: fastest very slow processors. Obviously,
we have [; + L; = 2i. Also, we have [; > L;, for © = 11, ...,¢,. Otherwise, [; < L;
for some 7 = 11,...,¢,, and then, [; < j. However, the longest 7 X- and Y-chains

INRIA

Scheduling Chains on Uniform Processors 15

can only be scheduled on the 25 fastest very slow processors to complete by y.
Thus, when [; < 7, at least one of these chains is outside of these processors
and so completes after y. Therefore, we get a contradiction, which proves that
l; > L;, for 1 = 2q,...,2,.. If [; = L;, for ¢« = 11, ...,1,, then each slow X- and
Y -processor processes exactly one job of either a X X-chain or a YY-chain.
Consequently, no two different Z-chains have jobs on the same slow X- or
Y -processor. Thus, both [and m are permutations.

Thus, it remains to prove that we never have [; > L;, for some 5 = i1, ..., ¢,.
Let A and C be the sets of all very slow X- processors with X-chains and X X-
chains, respectively. Let B and D be the sets of all very slow Y- processors

with Y-chains and YY-chains, respectively. If [; > L;, for some j = i,
then we have

L= () =)+ Z (= (o) 1) < Z (= (flz) = D)+ T (v -

ey Uy

1€ JEB 1eC jeD
(9(y;) — 1)

or

>os(x) + X s(yy) < X s(xi) + X s(y;).

1eC JjED 1€A jEB

Since .

osl@) + X os(yy) + X s(@i) + X2 s(yy) = Q(Z s(z:) + 3 s(y;))

eC J1€D €A JEB =1 7=1

we have

¥ s(r) + % s(yi) < 3 s(ai) + 3 s(y).
1eC j€D =1 j=1

Let £ and F' be the sets of all X- and Y-processors, respectively with with
X X- or YY-chains.

We have
>os(@) + X slyy) + X s(aw) + 2 s(Ymry) = 202 s(@:) + 2 s(y;)),
€N JEF k=1 k=1 =1 7=1

and, furthermore,

os() + X s(yy) < 2 os(z) + 2 s(yy)
= JEF i€C JED
which means

> s(a) + 3 5(Ymy) > 3o s2s) + 32 s(y;)
k=1 k=1 =1 7=1

and we get a contradiction. Therefore, [; = L;, for ¢« = 1y,...,7, and the

claim holds. m

16 Kubiak, Penz and Trystram

Theorem 2 Problem Q|c;; = 1, chains,p; = 1|Cyuay is N P-hard in the strong

SeENSe.

Proof. We show a simple transformation from Q|chains,p; = 1|Chpas to
Qlei; = 1, chains, pj = 1|Chqz. Actually, we restrict ourselves to the instances
of Q|chains,p; = 1]|Cp4e constructed in Theorem 1 as they make an NP-
hard in the strong sense subproblem of Q)|chains, p; = 1|C,qp. (Therefore, we
actually take the Numerical 3 Dimensional Matching problem as a point of
departure in our construction.) In these instances, we reduce the anti-speed of
each very slow X- and Y-processor by 1, we do the same for slow X- and Y-
processors. These reductions will allow for communications between two parts
of each X-, Y-, XX- and YY-chain, as well as between three parts of each
Z-chain. Therefore, it will be easy to obtain a schedule with communication
delays which is not longer than y for a given schedule without communications
delays not longer that y, see the first part of the proof of Theorem 1. Fur-
thermore, we increase the number of jobs in X-chain 7; to |y/(f(z:) —2)| —2
and the number of jobs in Y-chain y; to [y/(9(y;) —2)] — 2 to compensate

for shorter anti-speeds on slow processors. The threshold value of the makes-
pan will remain equal to y. We observe that after these changes Propositions
1 and 2, as well as Claims 1-10 hold for any schedule with communication
delays which is not longer than y. Thus, the first and the last job on each
slow processor belongs to either a Z-chain or X X-chain or YY-chain, and all
the remaining jobs on slow processors belong to either extended X-chains or
extended Y-chains. Thus, increasing the anti-speed of each slow processor by
1 and replacing the extended chains by the regular X- and Y-chains will result
in a schedule without communication delays which is not longer than y. [

3 The two-machines problem with integer anti-
speeds

We will present an optimization algorithm for the case of two uniform
processors. We consider fast processor, denoted by Py, and slow processor,
denoted by P,, with anti-speeds 1 and a (integer greater than 1) respectively.

INRIA

Scheduling Chains on Uniform Processors 17

We first assume a number of chains greater than three (K > 3), and then
discuss the case of no more than 2 chains.

3.1 A lower bound

We now establish a lower bound on the makespan.

Proposition 3 The minimal time to schedule a set of K chains on two uni-

form processors with anti-speeds 1 and a (integer) is at least: LB = [f_ﬁ}

Proof. We have N = (a+ 1)z +r, for some integer x and 0 < r < a+ 1. Thus,
LB = ax +r. On the other hand, we have Na = (a + 1)ax + ar. Consequently,

ﬁ_"i —ar+r — 1:-{1 and Wﬁﬁ = ax + r. Therefore, LB = [G‘J’i\ﬂ n

3.2 Scheduling more than 2 chains

We now present an algorithm for scheduling a set of K (K > 3) chains on
two uniform processors. We assume that the chains are sorted by decreasing
order of their lengths, in other words Ny > Ny > --- > Ng > 0.

Let N7, for s =1,..., K, be the largest integer p such that N; —p+ap < LB.
Define N/ = N; — N2.
Algorithm (A)
| Compute LB = [{%]
1 if (N; > LB) then
Allocate Chy to Py and all the remaining chains to P

else
if N=LB+ 1 then
2 if Ny =1 then
3 if N > 1 and (a + Nxg < LB) then

Allocate the first job of C'hy to Ps.
Allocate chains Chy,..., Chi_y to Py to start at 0. Allocate

|

|

|

|

|

| Allocate Chg to Ps and all the remaining chains to Py

|

|

|

| the remaining jobs of chain C'hg to Py to complete at LB.

RR n~° 3576

18 Kubiak, Penz and Trystram

4 if N > 1 and (a + Nxg > LB) then
Allocate all chains to Py.
5 if N> LB+ 1 then

|

|

|

| Determine the longest chain with N7 > 0.

| Allocate the first NZ{ﬂ tasks of C'h;,, to Py to start at 0.

| Allocate the last V7 tasks to P, to finish at LB.

| Allocate all the remaining chains in the decreasing order of their
| lengths from left to right to P, until it is

| possible to complete them by L B.

| If a chain, say Ch;,, 1 <1 <k, ig # i), needs to be split, then
| the last LB — NZ»J; — 2202_11275% N; tasks of C'h;, are allocated to Ps
| to complete at L B, while the remaining are allocated to

| P; to start at 0.

| The remaining chains are allocated to P; from left to right

| after C'hy,.

End

Proposition 4 Algorithm (A) builds an optimal schedule.

Proof.
It is easy to check that all disjunctive cases considered in the algorithm re-
present all possible cases for this scheduling problem.

The condition in line 1 holds. Then no communication occurs, and since
Ny > a(ZfZQ N;) the length of chain C'h; determines the schedule makespan.

In the three following cases, the shortest schedule is obtained by allocating
at most one task to Ps.

The condition in line 2 holds, then the lower bound LB is reached and no
communication occurs.

The condition in line 3 holds. Then, the algorithm splits chain C'hg. Since
K > 2, then Chi does not start before a + 1 on Py. Furthermore, Chg has

INRIA

Scheduling Chains on Uniform Processors 19

exactly one job on P, and this one completes at a, which leaves enough time for
communication between the two parts of C'hg. The lower bound L B is reached.

The condition in line 4 holds. Then a + (Ng — 1) > LB. This condition
means that allocating one task of the shortest chain to P, will exceed LB.
Obviously, then, the best solution is obtained by allocating all chains to Py
and the resulting optimal makespan equals LB + 1.

The condition in line 5 is met. Consider the time interval between NZ{; and
LB — aN;} . By definition of N7 , we have 0 < LB — (aN} + NZ{H) =d < a,
which allows for a unit time communication between the two parts of Ch;_,
and makes that the last job, if any, to complete by LB —aN} on P, starts by
Nii — 1. This job must be from Chg (see Figure 2). Therefore, if Chg is on
P, only, then the chain split between P; and Py, if any, does not overlap and
at least one unit of time elapses between its P, part and Py part which allows
for a unit time communication between this two parts. If C'hg is split between
P, and Py, then a > 0 of its jobs is scheduled on P; from time 0 and 3 > 0 of
its jobs is scheduled on Py to complete at LB. If the two parts did not make
a feasible schedule, then N, > 3 > aN; > a. Consequently, N; > Ny > a,
where C'h; is the first chain to start just after C'h;,, on P;. Thus, chain Ch;
would occupy Py in the interval [NZ{;, NZ{R + a], which means that C'hx could
not start earlier than LB — aN7 + 1. Then, however the two parts of Chx
would not overlap and the unit between NZ{H +a—1 and NZ»J; + a could be used
for communication. Therefore, we get a contradiction, and consequently the
two parts of C'hg make a feasible schedule, which proves that the algorithm
yields an optimal schedule if condition in line 5 is met. [

20 Kubiak, Penz and Trystram

plepttpt T

(a) allocation of Chy. (b) allocation of Ch,.

F1G. 2 — Principle of the main case of the algorithm (condition 5).

3.3 Scheduling 1 and 2 chains

Proposition 5 An optimal solution for scheduling 1 or 2 chains on two uni-
form processors with anti-speeds of 1 and a can be obltained in constant time.

Proof.
The proof is constructive. K=1:
Of course, the best strategy is to allocate the only chain to Pj.

K=2:

In this case, we have to distinguish three cases:

Ni < a: Then, min{N; — 1 +a, Ny — 1 4+a} = Ny — 1 4+a > Ny + N,. Thus,

the optimal solution is to schedule all jobs on Py, which results in a makespan

of Ny + Ns.

N; > aNj: Then the allocation of C'hy to Py and Chy to P, results in an

optimal schedule with makespan of V.

a < N; < aNy: Allocate the first le tasks of C'hy to Py to start at 0. Allocate

the last V] tasks to Ps to finish at LB. Allocate the jobs of chain C'hy to Py

until LB, the remaining jobs of C'hy are allocated to P; to start at 0.
Consider the time interval between N{ and LB — aN7 in this schedule. By

definition of N7, we have 0 < LB — (aN; + le) < a. Thus, if Chy completes

by le — 1 on Py, then the schedule is feasible and optimal (all jobs finish

by LB, see Figure 3a). If Chy completes at le or later, then the schedule

is not feasible since either C'hy overlaps on Py and P; or there is no time for

communication between different parts of C'hy, see Figure 3b. In this infeasible

schedule, however, the last job of C'hy completes by LB — ale, which follows

INRIA

Scheduling Chains on Uniform Processors 21

P; | ¢Torerererere I=

g

- 0
| e l
ny=9and np =7, a=3 ny =9 and ny =8, a=3
(@) both chains are splitted. (b) whereit isimpossible to reach the lower bound.

FiG. 3 — Ezxample of the algorithm for K = 2.

from the definition of LB. Thus, moving one job of C'hy from P, to Py makes
the schedule feasible and increases the makespan from LB to LB + 1.

Let Nj be the number of jobs from chain C'hy on Py in this schedule. Ob-
vioulsy, there are le jobs from chain C'h; on Py, and le + N, =LB+1.By
definition of le, reducing the number of jobs from C'hy; on P; would increase
the completion time of C'hy beyond L B. Since we have N2f > N}, then reducing
the number of jobs from C'h; on Py would increase the completion time of C'hy
beyond LB as well. Therefore, the schedule is optimal. [

4 A simple heuristic and a simple observation

We now show a simple heuristic for the general problem of scheduling UET
chains on uniform processors. The heuristic guarantees that its solutions are
within 2M — 1 units from optimum. It is based on an algorithm given by
Gonzalez and Sahni [6] for scheduling preemptible jobs of arbitrary length on
uniform processors.

Theorem 3 There is an O(K log K') heuristic H for Q|c;; = 1,chain,p; =
1Coax thal guarantees an absolute worst case behaviour of 2M — 1.

Proof. Let us consider chains Chy,...,Chg as preemptible jobs 1,..., K with
their lengths equal Ny, ..., Ng respectively. Apply the algorithm of Gonzalez

22 Kubiak, Penz and Trystram

and Sahni [6] for Q|pmin|C .. to these K jobs. In the resulting schedule, say
S, replace job 1 by its corresponding chain C'h;, preempting the UET jobs of
C'H; if necessary. Thus obtaining schedule S’. From S’, delete any UET job
that either is preempted or starts too early for a communication delay of one
time unit to be fit between the job and its immediate predecessor scheduled
on another processor. The algorithm of Gonzalez and Sahni ensures that the
number of UET jobs deleted from S’ does not exceed 2(M — 1). Thus, if we
add 2(M — 1) jobs at the end of schedule S’ to start at Css + 1 and finish by
Csi +2M — 1 on the fastest processor with its anti-speed equal to 1, then we
can easily re-arrange the UET jobs in each chain to obtain a feasible schedule
for Qle;j = 1, chain, p; = 1|Cyuar with makespan not exceeding Csi +2M — 1.
The above approach can be implemented in time O(K log K') which is essen-
tially the time required by the algorithm of Gonzalez and Sahni. [

We end this section with a simple observation that, contrary to optimal
scheduling of UET chains on uniform processors with unit communication
delays, optimal scheduling of UET chains on identical processors with unit
communication delays is not affected by the delays.

Observation 1 Unit communication delays never affect optimal makespans
for Ple;; = 1, chain,p; = 1|Cgs.

Proof. Let us consider the well-known McNaughton’s lower bound of max{ Ny, [N/M |}
for the problem [8]. Any chain Ch; with N; = max{Ny, [N/M]} can be sche-
duled on a single processor, and thus, will require no communication. Fur-
thermore, the wrap-around rule leaves at least one time unit between the
jobs of any chain Ch; with N; < max{Ny, [N/M]} scheduled on two dif-
ferent processors which allows enough time for communication. Thus, the Mc-
Naughton’s lower bound does not need to be exceeded in optimal schedules for
Plei; = 1,chain,p; = 1|Cras. n

INRIA

Scheduling Chains on Uniform Processors 23

5 Concluding Remarks

We showed in this paper that the problem of scheduling chains of UET
jobs on uniform processors with communication delays to minimize makespan
is NP-hard in the strong sense. We proposed a simple heuristic that generates
solutions within 2M — 1 units from optimum for the problem, and are currently
working on a heuristic with smaller than 2M — 1 absolute error.

We also investigated the structure of optimal solutions for the two processor
problem of scheduling chains of UET jobs with communication delays, where
one processor is a (integer) times faster than the other. This investigation lead
to a linear time optimization algorithm for this case. However, the complexity
of the problem for arbitrary rational ¢ remains open. So is the complexity of
the two processor problem of scheduling trees of UET jobs with communica-
tion delays.

Acknowledgment

This research of the first author has been supported by NSERC Grant
OGP0105675, and by a grant from the Fondation Scientifique de Lyon et du
Sud-Est.

Références

[1] An overview of the Apache project, http://www-apache.imag.fr

[2] J. Blazewicz, F. Guinand, B. Penz, and D. Trystram. Scheduling complete
trees on two uniform processors with arbitrary speed ratios and communi-
cation delays. submitted to Information Processing Lelters.

[3] P. Brucker, J. Hurink, and W. Kubiak. Scheduling jobs with unit processing
requirements and chain precedences on two uniform machines. Technical
Report 186, Osnabriicker schriften zur Mathematik, 1996. To appear in
Mathematical Methods of OR, 1999.

[4] Gabow, H.N. An almost-linear algorithm for two-processor scheduling.

Journal Assoc. Comput. Mach. 29, 1982, pp. 766-780.

RR n" 3576

24 Kubiak, Penz and Trystram

[5] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to
the theory of NP-completeness. W.H. Freeman, New York, 1979.

[6] T. Gonzalez and S. Sahni. Preemptive Scheduling of Uniform Processor
Systems. Journal Assoc. Comput. Mach. 25, 1978, pp. 766-780.

[7] W. Kubiak. Optimal scheduling of unit-time tasks on two uniform pro-
cessors under tree-like precedence constraints. Zeitschrifts fir Operations

Research, 33:423-437, 19809.

[8] R. McNaughton Scheduling with deadlines and loss functions. Management
Science, 6:1-12, 1959.

[9] Lawler, E.L. [1982]: Preemptive scheduling of precedence-constrained jobs
on parallel machines, in: Dempster, M.A.H., Lenstra, J.K., Rinnooy Kan,
A.H.G.: Deterministic and stochastic scheduling, Reidel, Dordrecht.

INRIA

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr

ISSN 0249-6399

