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Abstract: The authors® investigate a system with IV servers and with N sources connected
with the servers. A sources can be in state “on” or “off”. In state “on” the source generates
the Poisson flow of packets of rate A. The service time of a packet is distributed exponentially
with mean one. Upon its arrival a packet is directed to the server with the shortest queues
of the following two servers: the server where the packet has been generated and another
randomly selected server. The queue length probability as NV — oo is investigated.
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Sources on/off dans un réseau d’interconnexion: analyse

des performances quand les paquets sont routés vers la

file d’attente la plus courte entre deux serveurs choisis
aléatoirement

Résumé : Nous considérons un systéme constitué de N serveurs connectés a N sources.
Une source est alternativement en état “on” et en état “off”. A I’état “on” la source crée
un flot poissonien de paquets de taux A par unité de temps. Le temps de service sur un
paquet est distribué suivant une loi exponentielle de moyenne un. Lorsqu’un paquet est créé
il est dirigé vers la plus courte des file d’attente des deux serveurs suivants: le serveur ot le
paquet a té créé et un autre serveur choisi de maniere aléatoire.

Mots-clé : Sources on/off, réseaux, routage, distributions sous-exponentielles, distribution
super-exponentielles
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1 Introduction

In this paper we investigate the performance of an interconnection network where traffic is
generated by “on/off” sources. An “on/oft” source is a source which alternates between state
“on” and state “off”. In state “on” the source generates packets according to a Poisson rate
A. In state “off” the source does not generate any packet. An “on/off” source is a convenient
model of the behavior of a user in a data network. Indeed, “on” periods are when the user
uploads or downloads files of data, and “off” periods are when the user is inactive regarding
network activity: i.e. is thinking or locally processing its data.

We model the interconnection network Sy by a set of N nodes. On each node there is
a user, a queue and a server. In absence of routing the user directs its packet to the queue
of its node. In this paper we will investigate the effect of the following routing protocol:

1. when a user generates a packet, it randomly selects a remote node;

2. if the queue at the remote node is shorter than the local queue, the packet is directed
to the queue of the remote node, if the remote queue is greater than the local queue,
the packet is directed to the local queue;

3. if both remote and local queues are equal then the packet is randomly directed to the
local queue with probability 1/2 or to the remote queue with probability 1/2.

This routing protocol has been proposed and analyzed in [6] (see also [3], [4], [5], [8],
[9]) where user traffic model is Poisson of rate A\, A < 1, and the service is exponential of
rate 1. Under this model it was proved that as N — oo the distribution of the queue size
@ g of any random node has super-exponential tail:

Pr{Qr > k} = O(\?)

This result sounds very interesting, since without routing the queues are independent
and the distribution of their size ¢y have only exponential tails:

Pr{Qu >k} = 0(\*) .

The present paper is intended to analyze the same routing protocol under the assumption
that user traffic models are independent “on/off” sources and the service is exponential of
rate 1. We will prove that as N — oo queue size @ g has still super-exponential tail.

This result also sounds interesting because a large number of the “on/off” sources can
sometimes create a cumulated traffic with long term dependencies [11](see also [12]- [16]).
These long term dependencies are known to produce queueing with heavy tails. In other
words

Pr{Qu >k} = O(k™ ")

for some 3 > 0.
The system model of [6] is a model of a queueing systems with interacting servers and
with dynamic routing of the packets. Mathematical investigation of such systems is a very
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4 Philippe Jacquet, Nikita Vvedenskaya

difficult problem. We are not interested in specific interconnection network between nodes;
we just assume that every node are equally visitable, as it could be in a crossbar network. In
this case it may be attractive to investigate the systems with very large number of servers
using the mean field approximation of statistical physics. This approach was used in a
number of papers (see, for example, [1], [3]- [9] and the references in [7].) It was shown
( 6], 7], [9], [8]) that using the information about a small number of randomly selected
queues and directing the packet to a server that is less loaded may considerably reduce the
mean lengths of the queues.

In the above mentioned papers the input flow was supposed to be Poisson of constant
rate, and, in most cases, with an exponentially distributed packet service time. We are
interested in case where the input flow is Poisson with varying rates.

In section 2 we describe the model of the system where all sources have the same tran-
sition parameters 7+. In section 3 we consider the system of differential equations that
describe the system Sp in the limit as N — co. Main theorems about the convergence as
N — oo of Sy to the limit dynamical system are presented in section 4. The system where
sources have different transition parameters 7% is considered in section 5. Here the case of
infinite number of different 7% is investigated with and without routing.

2 System model

Consider a system Sy that consists in IV servers connected with N sources that can be
in state “on” or “off”. Each source is connected with ”its” server and has potential to be
connected to any of the other servers. In state “on” the source generates Poisson flow of
packets of rate A. In state “off” the source generates no packet.

The transition from “on” to “off” and from “off” to “on” is Markovian: each source
changes “on” to “off” with intensity 7—, and changes “off” to “on” with intensity 7% inde-
pendently of the mode of other sources.

Upon a packet arrival at a server (connected with its source), an other server is selected
(all servers are equally probable.) The packet is directed to the least busy of two servers,
where it joins a FCFS queue. (By least busy we mean the server with a shorter queue). If
the queue lengths of two servers are equal each server is selected with probability 1/2.

The service time of each message is independent of service times of other messages and
is distributed exponentially with mean equal to 1.

The work of Sy can by described by of a Markov chain with the state space represented
by the two sequences uy = (ujfy ,uy), ux = {uﬁk},;“;o, uf,’k = rE/N. Here 7} is the
number of servers in mode “on” with queue length equal to k, and r, is the number of
servers in mode “off” with queue length equal to k.

It is useful for us to consider the performance of Sy as a Markov factor-chain with the
state space represented by two sequences Uy = (UL ,Uy), UL = {Uik},@“;o, Uﬁ’k =
RE/N. Here R} is the number of servers in mode “on” with queue length not less then k,

INRIA
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and R, is the number of servers in mode “off” with queue length not less then k. Obviously,
+ _ g7t +
UN k= UN,k - UN,k+1-

Below we will omit index N and use the notations

we =l +uy, = {ur}il, (1)
U =UF+U,, UL, -Uf=uf, U={U},. (2)
We suppose that the non-overload condition holds
+
.
— = 1.
T+ 77 0< 3)

The behavior of the Markov system is described by a system of differential equations of
the form U = Ay f(U), where U denotes the first derivative of sequence U with respect
to time. Quantity Ay f(U) is the generating operator of the Markov factor-chain. The
generating operator Ay f(U) has the form

U+_1+Ui++U,-_1+U1- (

ANf(U) = NALZ, (F(U+¢f/N) - £(U))=

U, - U)
+NY 2, ( — e/ IN) - (U)) (U+ Uz-i——l-l)
i /N)

)

K3 2

f(U i
+NAYR (f(U+e /N —f(U))M(Uiil_Uﬂ
f

N2, (U - /N) - 1) (U7 = Uz,)
FNTE S, (FU+ (e —e)/N) = F(0)) U7
FNT= T (F(U = (e +e0)/N) = £(0)) U}

Here e is a vector (0,...0,1,0...), with i-th coordinate equal to 1 and with all other

coordinates equal to 0.
Let us comment on (4). For example, the first RHS term of (4) indicates that a server
in mode “on” with a queue of length ¢ — 1 is selected. That happens in two cases:

1. the server is selected at the first step and at the second step a server with the queue
length not shorter then ¢ — 1 is selected. That happens with probability (U: 1-

U+) 1+U

2. the server is selected at the second step, while at the first step a server in mode
on” with the queue length not shorter then ¢ — 1 was selected. That happens with

. Ut +ut
probability (Ui";1 -Ut ) =t
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6 Philippe Jacquet, Nikita Vvedenskaya

The second term indicates that a service at a server in mode “on” with a queue length i is
finished. The last two terms stand for the change of the modes of the servers with the queue
lengths equal to ¢. Other terms can be explained similarly.

We will show that as N — oo the performance of Sy can be described by a dynamical
systems.

UHt) = MNUL () = UFO)UE () + U (t) + Ui (t) + Us(t)] /2 (5)
+U () = U @) + 7707 () — 77U (1), i>1,
U (t) = MU (t) - U ¢)(U;"(t) + UF(1)]/2 6)
+U4(t) — Ui (t)—r*U ®)+7UF®), i>1,
Uf(t) =705 () — 77U (t), Uy (¢) = —77Uy () + 77U (). (7)
Uf (t)+ Uy (t) =1, (8)

The sum of ( 5) and ( 6) gives

Ui(t) = )\(Ui_l(t)Uit () = Ui(t)UF (t)) + Ui (t) = Us(t). (9)

Consider the initial-value problem for equations (5)- (9) with the initial conditions at
t=0:

UE(0)=GF, GF >G5, i>0, Gf +Gy =1 (10)
Note that the condition (3) can be rewritten in the form
AU (00) = Ao < 1. (11)

The solution of (5)- (10) will be sometimes denoted by U(¢, @) to indicate the dependence
on initial values G. _

Investigating the properties of solution of (5)- (10) we introduce the space U of sequences
U={U"U; }

U: {U, UF+Uy =1, UF>UE, >0, i=0,1,..}, (12)

with the norm

+(1) _ 17£(2)
p(U(l),U(Q)) = sup | U; Ui |

UL U@ ey
i>0 1+ 1 ’ ’

and the spaces

U:{Uell, > Ui<oo}, (13)
i=1
Uy :{Un €U, Uy, =Ri/N}. (14)

The space Uy is the set of attainable sequences Uy when N is fixed and ¢ varies.

INRIA
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3 The analysis of the identical sources case

By identical sources we mean sources with same 7% and A parameters. Our aim is to present
the asymptotic analysis of the stationary distribution when N — oco. We will first focuse
on the tail of the stationary distribution. Second we will present an analytical method to
obtain a numerical estimate of any coefficient of this limiting distribution.

3.1 The solution properties for some differential equations

To investigate the initial-value problem (5)- (10) we consider first a similar problem for a
truncated system.

UA®) = AU O - U050 +UF 0+ Ua O+ T2 )
+U L (6) = U @) + 71U () — 77U (1), 1<i<K,
70 = UL~ LR O 0 U )2 )
(t) Ui (t) - 7707 () + 7 U (1), 1<i<K,
U t) = U5 (t) — 77U (1),
Up (t) = —m+Us () +77US (1),
U () + Uy (1) = 1. (17)
Ui(t) = MU (UL, (t) = U:()U;F () + Uipr — Ui, 1<i<K, (18)
UF(0)=Gf, 0<i<K, G§{+Gy =1. Ug,, =c=const>0, (19)
e < mf (U (6,05 (9)
Lemma 1 If initial values of problem (15)- (19) satisfy conditions
U ( )>Uz-l-—}—1( ) U ( )>Uz+1( ) 7::0717"'7K7 (20)

then the solution of the problem satisfies these conditions for all t.

PROOF. Because of the continuous dependence of a solution on initial values it is suffi-
cient to consider a case where strict inequalities hold in (20) for ¢ > 0 and to prove that such
inequalities are valid for all ¢. Suppose that the contrary takes place. Let strict inequalities
hold for ¢ < to, and let some equalities to appear at t = to. Since U (t) > Ulfﬂ(t), t >0,
at least one of two cases takes place :

1. there exists ¢ such that U;" ; (to) > U;" (to) = Uy (to) or U1 (to) > U; (to) = Uip4(to)
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8 Philippe Jacquet, Nikita Vvedenskaya

2. there exists i such that U;t,(to) = U (to) > U (to) or U7 ,(t0) = U; (to) >
Uiz (to)-

Let, for example, the case 1 takes place and let the equality holds for U}, ;fl_l. It follows

from (15) that

Ut(te) = MU () = UF@)UL () + U () + Ui () + Ui(0)]/2 + 71 U(E) — (v~ + 79U (t)
> Uspa(to) = Uo(t) = Uy () + 71 Ui (8) — (77 + 70U (D) -

These inequalities contradict the assumption U;"(t) > U (¢) for t < to. Other cases

K3
are considered similarly. A

Lemma 2 Let (U;L(l)(t),U;(l)(t)), (Ui+(2)(t),U;(2)(t)), i =0,..,K, be two solutions of
Egs. (15)- (19). IFUF(0) > UFP(0), i = 1,..K, Uy V) = U5 P @), UzH®) >
UER) (1), >0, then UFM (1) > UFP (1), i=1,..,K, fort > 0.

K3

PRrOOF. It is sufficient again to consider the case where strict inequalities (for i > 0) take
place at t = 0 and show that Uii(l)(t) > Uii(2)(t), i=1,...,K, Ugt(l)(t) = Uf(z)(t), t>0.
The equality for ¢ = 0 follows from (7). Suppose that strict inequalities hold for ¢, 0 < t < ¢g
and are broken at t = ty. Let j, 7 > 0, be the largest or the smallest index with U;r(l)(to) =
U;'(Q)(to) or Uj_(l)(to) = Uj_(z)(to). Let, for example, the equality take place for Uf' where
j is the largest index with the equality. It follows from (15) that U;'(l)(tg) > U;'(Q)(to). This
contradicts the assumption that U;L(l)(t) > Uj+(2)(t) for t < to. Other cases are considered
similarly. A

We turn to the problem (5)- (10)

Lemma 3 Let G = (GY,G™) € U. Then there erists in U a unique solution of problem
This solution can be obtained as a limit as K — oo of the solutions of (15)- (19) with
Ui, (t) =0.

1 GEM(0) > ¢E?(0), i >0, GEV(0) = GE(0) then

U () > U ), i >0, t>0. (21)

PRrROOF. Denote by U (¢), K = 2,3, ..., the solution of (15)- (19) with Ul-i(K)(t) =
G%,i=0,..,K. By Lemma 1 U;t(K)(t) satisfy conditions (12), therefore U;(KH)(t) >
U;(E(K)(t) = 0. It follows from Lemma, 2 that for any fixed ¢, t > 0 and for ¢, 7 < K, the values

Uii(K)(t) do not decrease as K increases, and U_z-i(K)(t) < 1. Therefore lim g, o Uz.i(K)(t) =
U;(t) exists and U(t) = {(U; (t),U; (t))}2, € U. Turning from differential equations to the
integral ones we confirm that U (t) satisfy Eqs. (5)- (9). The uniqueness of this solution in

the class of function from U/ can by proved by the Picard successive approximation method.

INRIA



on/off sources with routing in interconnection network 9

Lemma 4 Let G = (GT,G™) € U and let the non-overload condition (3) hold . Then
Uel Vi< oo.

Proor. Consider

V(U)=(VH Vo), VE={VAR,, V=) Uf =V +V,. (22)

1=k
If U(0) € U, then it follows from (9) that
Vi(t) = AU (1)U, () = Ui(2), (23)
Vi(t) = AUs (U () — Ur(t) = AU () — Us(8) < A,

thus V3 (t) < oo for ¢ < 0.
By (7) we have lim;_o.Uy (t) = Uy (00). Let Mg < A1 < 1, AUy (00) < 1, and

= \TF
T = gg{t FAUG () < A}

By ( 7), ( 11) we have T' < co. Therefore V1(T') < co. Further,
Vi(t) = AU ())UF | (t) = Ui(t)
<MU1(t) =Us(t) = (Vica = Vi) + Vigr = Vi, t > T
It follows from this differential inequality that
Vi(t) <Vi™(b), t>T,

where V() = {V}i"(t)}2, is the solution of a boundary value problem for a system of
linear equations:

Vi) = MV () = VIR @) + Vi () = ViR (t), i >0, t > T, (24)

Vo (1) - Vi) =1, VI™T) =Vi(T), i > 0.

The solution of ( 24) with V}!"*(T') bounded is bounded for all ¢ > T, thus U € U (See,
for example, Lemma 12 of [6].) A

Lemma 5 There exist in U a stationary solution U** of problem ( 5)-( 10).

ProoOF Consider the solution of ( 5)-( 10) with the initial data

-
Gf=——— Gf=0i>1.
0 T++T77 7 J,L_

It follows from Lemma 3 that the values UZ(t), i > 1, increase as t increases (Ui (t) =
Ui (0)), therefore U(t) — U as t — oo, and by Lemma 4 U* €Y. A

RR n° 3570



10 Philippe Jacquet, Nikita Vvedenskaya

Lemma 6 Let (U; (1), U,V (t), ;P (t),U;P(t), i = 0,1,..., be two solutions of
Egs. (5)- (10). If UXD(0) e U, j=1,2, then

lim (UM ) - U@ @) =0, i=1,2,....

t—o0

PRrROOF. We use the following equality

sy _p@ @) = 1

: ((g;(l) — @)y @ 4 (5D —y@D )M 4 (1) _z@)y D) 4 (1) _y<2>)$<2))_

Denote
Af ) =T (@) - U ).
The equations for AF(t) are (we write A, U% instead of AE(t), UE(¢).)
Af =—1 A +77A7 + AF, — A}

A
P20, - AU +UFO) + (AL, + AHETFY - U7 )

+HAL, — AHEOEY + U + (AL, + AHOEY - U M))

A _ _
+5 (AL - an U + U7 V) + (AL, + ADTEDY - )

2

W

+HAL, - ANOZY + U7 + (AL, + AT - U D)),
A7 (t)=7"AF —7TA] + AL, — A]

A - _
+2 (@ - @Y + Uy + (AL + AN O Y - U7 )

HAL - AW + U+ (AL AN ~ U7 ™).

First, we prove that [A}|+ A | = 0ast — oo. Let us estimate Yoo, (|AF ()| +|A; (¢)]), t >
0. Consider (322, (|AF| +|A7|)) Following [9] we suppose first that all AF are of the same

INRIA
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sign, say, are positive. Then A = |AF| and

(Z20AF1+1A7D) = AADIG/2+ vy D+ 10y @) + |ag))+

+ X A (- 1= = (@Y + U + 0D + U+
+UHY — D) + U — U )
O+ + O + U7 )+
1+ 20V - Ui D) + (0P - Ui D)+
+UFY + U + (U + U D)+
+3(@ P -+ 0 P -+ - D)+
+(Ui_(2) - Ui:—(f)) + (Ui_—(ll) + Ui_(l)) + (Ui_—(f) + Ui_(Q))))+
HATI( = 1= = (@Y + U + @D+ o)
14+t 4 2+ U+ (Y U)o Ut )+
+(@® +UED) + @V - Ui + 0P - UED)) =

(25)

—

~~

>

Here
- —(2 - _
S = MIAFIB/2+107 VL +107 D) + 145 1/2)]] - 1AF] - 147 ] (26)
Note, that all summands in second and fourth square brackets are not negative. If some of
the differences A are negative then the terms —|Af|—|AT | and the summands in the first

and third square brackets do not change (because from § = ay+b follows that |y| = aly|+b),
but the terms with AT and some of the summands in the second and fourth square brackets
can change there signs. Because these terms change there signs from '+’ to -’ in general
case where A;t have different signs we get an inequality

§ < AIAFI3/2+ (U7 V1 + 10T +1451/2] - AT - 1A (27)
By ( 7),( 9) we have that |AF(t)] — 0 as t — oo, If |AF| do not tend to 0 then by ( 26)
the sum Y 50, (|AF| + |A;|) will become negative. This is impossible, thus |AE(t)| — 0 as

t — 0o. (Actually the integrals [;° |A$(t)|dt have to be bounded).
By induction on i we get that |[AF(t)| — 0 ast — co. A

Lemma 7 Any solution of (5)- (10) with U* € U tends to the unique stationary solution

of (5)-(9).

Proor The statement follows from Lemma 6. A

Lemma 8 For the stationary solutions U™ € U the values of Ust decrease superexponen-
tially as i — oo.

RR n° 3570



12 Philippe Jacquet, Nikita Vvedenskaya

Proor For stationary solution we get from equation (23)
AU Ut > AUSPUt = Uty

If A < 1 the statement is obvious. Let us assume that A > 1. As AU ** < 1 the values
U, decrease as i increases, and for some iy we have ()\Ufot)2 < 1 and

AU > Ugh, U <OUR"°, i> o,
That shows the superexponential decrease of U;. A

For the proofs of Lemma 11 and Theorem 2 we need the following lemmas.

Lemma 9 (The Lemma is similar to Lemma 8 of [6] ) For the solutions of (5)- (10), for
any T there ezists such C = C(T) that

OUL(1)
0G;

O?Uk(t)
0G;0G;

<o),

<c(™), i,j,k>0, t<T.

We omit the proof of this Lemma.

Lemma 10 (Lemma 4 from [6]) For the solutions of (5)- (10) the estimates
k
Ui(t) <Y U0)(W)*/(k = )!, Vi(U(t)) < exp(At)V; (U(0)).
i=0

hold.

ProOF Use induction on k. For k = 0 the estimates are obvious. Since U;" < 1 we have
by (9) that U < AUp_1. This gives us the first inequality. The second inequality follows
from the first one. A

3.2 Main theorems
The queueing system Sy determines the Markov process
Un =Ux(t)

with state space U € U given by the operator (4). Corresponding to the process Uy is the
semigroup Tn = T (t) on the function space Uy. Namely, if f: Uy — R!, then

Tn(®)f(U) = (Bf(Un(®) | Un(0) =G), G €Uy, (28)

INRIA
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Let L = C(U) be the Banach space of continuous functions f : &/ — R! with uniform
metric || f ||= maxy g | f(u) |, and, similarly, let Ly = C(Uy). The inclusion Uy C U
induces a contraction mapping Iy : L —» Ly, Ixf(U) = f(U), f€L, U € Un.

We say that f € L depends only on k first variables, if for any UT(") U*(®) ¢ I/ from
U = gE® =1, .k, it follows that f(UD) = f(U*2).

K3 (]

Proposition 1 (Proposition 2 of [6]) The set of functions from L that depends on finite
number of variables is dense in L.

We omit the proof of this proposition.

The generator Ay of semigroup Ty = Tn(t) is defined by formula (4).

A mapping G — U(t,G), where U(t,G) is a solution of (5)- (10), defines in space U a
dynamical system with a corresponding semigroup 7' = T'(t) that acts in the space L. If
feL, Gel,then

T(t)f(G) = f(U(t, G)). (29)

The semigroups T and T are strongly continuous and contractive (see, for example, ( [2],
ch. 1. n® 1.1)).

Denote by A the generator of the semigroup T, and denote by D(A) the domain of its
definition. It follows from (29) that if f is a function from L that has partial derivatives
df JOUE € L, and if sup; || 8f /OUZ ||< oo, then f € D(A) and

< Hf . 9f .
Af(U) = Z; (%U; + %U) (30)

Here UZ is defined by (5)- (8).
Denote by D the set of all functions f € L that have derivatives 8f/0U and
0? f |0U;0Uy, for which there exists C = C(f) < oo such that

of(U) % f(U)
<c, 97
Wl oz 150 5 | apzanz

<cC. (31)

Lemma 11 (Lemma 15 from [6]) The set D is a core for the operator A

PROOF It is obvious that D is dense in L and D C D(A). Let Dy be the set of functions
from D that depend only on a finite number of variables. It follows from Proposition 1 that
Dy is dense in L. Therefore it is sufficient to show that for any ¢ the operator T'(¢) does not
lead Dy out of D. Select an arbitrary function F € Dy and let f(G) = F(U(t,G)), G € U.
It follows from Lemma 9 that f has partial derivatives 8f/0G;, 8 f/0G;0G), that satisfy
conditions (31) for ¢ > 0. Therefore f € D. A
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Theorem 1 Let f be any continuous vector-function f : U — R'. Then for all t > 0

lim sup | Tw(t)(G) — F(U(t,G)) |= 0. (32)

N—oo getty
The convergence in (32) is uniform with respect to t on any finite interval of t.

Proor. We use the known result that connects the convergence of semigroups with the
convergence of their generators [2]( ch. 1, Theorem 6.1]). By this result and by Lemma 11
it is sufficient to show that for any function f € D

im sup | Ayf(U)—Af(U)|=0. (33)

1
N—coyecuy

Consider, for example, the terms of the first sum at the right sides of (4) and (5). We have
fori >0

N (s et N) - o) - 1)) = B (CHE2 Braen/ )

aur /N U2 =N’

where 0 < ¥;; < 1, j = 1,2. Similar estimates are valid also for other terms in formulas (5)—
(7). Therefore, after summation

| Anf(U) = Af(U) I %Z (4(U,~ — Uip1) + 2Vi(U) (= + T*))_
That gives (33). A

Proposition 2 Under the condition (3) for any Un(t) = {Ur,n(t)}32 with Un(0) =G €
Un there exist such T, No and A\, Ao < Ay <1 that for N > Ng, t>T

)\E(U:N(t)Uka(t)) < MEUi n(2). (34)

PRrOOF. We have U,y (t) < Ujy < 1 and the variance of Uy y () tends to 0 as N — oo.

Therefore for any € > 0, § > 0 there exist such Ny, T that Pr(|Ug y(t) — Ug y(00)| > 6) < €
for N > Ny, t > T, and

E(U{ v (0)Ukn (1) < By (OUkn ()] Uy () = Ug y(00)] < 6) +e.

The needed estimate follows from this inequality. A
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Lemma 12 a) Let U € Uy, N > No, Vi = Vi(U), where Vi is given by ( 22). Set
Win (t,U) = Tn(t)Vi(U), (35)
and let VI (t) = {V}Fin(t)}32, be a solution of (24) for t > T, VF™(T) = Tx(T)Vi. Then
Wi n(t,U) <VE™(t), k=1,2,.., t>T, (36)

where T is defined in Proposition 2.

b) Let U(t) be a solution of problem (5)- (10), Wi(t) = Vi (U(t)), k=0,1,..., and let
Vlin(t) be a solution of (24) for t > Th, VI™(Th) = Vi(U(Th)), where Ty if defined by the
condition: A\UY(t) < A1, t>Ty. Then

Wi(t) < Vi), k=0,1,..., t>Ti. (37)

PROOF. a) Using formula (4), find the action of operator Ay on function f(U) = UZ,
fe(U) = Uy.
AN fr(U) = MU (Up—1 = U UL) + Uppr = Ux,, k=1,2,...
Since Vi = Y ooy fi, we get
ANV (U) = MU (Ug—1 — Uy, (38)
It follows from (38, (34), and from Preposition 2 that
Wien (6, U) < M (Wiei,n (6U) = Wiy (8,0)) + Wiga,n (8,U) = Win (8,0), ¢t > T.

Besides, Wo,n (t,U) —Wi,n (t,U) = Tn(t)(Vo(U) = V1 (U)) = 1 and Wi, v (T, U) = Vi(U(T)).
Therefore, W;, v is upperbounded by the solution of (24).

b) is proved in similar way. A

Theorem 1 states the convergence of the mean value of any continuous function
Ef(Un(t)) to the function f(U(t)). In the next theorem we prove that EV (U (t)) converges
to V(U(t)) for any t < oo. This fact needs a proof because V' (U) is not a continuous function
on U € U. Note, that NV (Ux) is equal to the number of packets in the system, and that
V(Un) is the mean number of packets per server.

Theorem 2 Let G € U, and let the sequences Gy = {Gn;}529 € Un, N = 1,2, ..., be such
that Gy — G as N — oo. Let series Vi(Gn) = > poy Gnr converges to Vi(G) uniformly
with respect to N. Then

lim Ty(t)Vi(Gn) =WV1(U,G)), t2>0. (39)

N—oo

The convergence in (39) is uniform with respect to t on any finite interval of t.
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16 Philippe Jacquet, Nikita Vvedenskaya

Proor. Fix Ty > 0. Let U(0) = Gn, We,n(t) = Wi,n(t,U) (see (36).) Represent
functions V1(U(¢,G)) and Wy, n(¢) in the form

Vi(U(t,g)) = i Ur(t,G) + Vo (U(t,G)), Win(t)= i Tn(t) fe(GN) + Wa n (1),

where fi(U) = Uy. For any n < oo the needed convergence of sums Y ;_; - is given by
Theorem 1. To prove the theorem it is sufficient to show that for any € > 0 one can find a
large n such that for all ¢ < T and for any N

Va(U(t,G)) <€, Wrn(t) <e. (40)

For the solution U(t, G) of (5)— (10) and therefore for the first inequality in (40) the needed
estimates are given by Lemma 9. The second inequality follows from Lemmas 10 and 11.
A

In Theorems 1, 2 the convergense of functions on Uy (¢) to functions on U(¢), t < 0o, was
shown. In the next theorem we show the convergence of stationary distributions, namely,
so to say, the convergence at ¢t = co.

Theorem 3 Let the condition (3) be valid. Then
a) the process Uy, N > Ny is ergodic, i.e. there exists an unique stationary probability
measure such that for any initial distribution the distribution at a moment t converges to
this measure as t — oo. Let En be the mean value with respect to the stationary measure of
the process Uy . Then EnV; < oo.
b) there exists on the set U a unique probability measure I that is invariant with respect to
the dynamic system G — U(t;G), G € U. This measure is concentrated at the fized point
II = {IL;}32, of the dynamical system.
¢)
Jim EnU; =1I;;) (41)

where II; decrease supererponentially with respect to i as i — oo.

Proor
a) The process Uy is a Markov process, with a denumerable number of states Uy, and all
states are attainable. Therefore it is sufficient to show that for a function V; : U — [0, o0)
the following statements are true:
1. Any subset of U € Uy with bounded V3 (U) is bounded.
2. For any U € Uy
sup Tn ()V1(U) < oc. (42)
>0
Statement 1 is easily checked directly.
Statement 2 follows from Lemma 12.
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b) is proved in Lemmas 5- 8.

¢) Let 1y be an invariant measure of the process Uy. The set I{ is compact, therefore the
set of probability measures on I{ is also compact with respect to the weak convergence. It
follows from Theorem 1 that any measure g that is a fixed point for a sequence of measures
1N, is invariant under the semigroup 7. Therefore, by item b), it is sufficient for the proof
of (41) to show that for the measure p

p) = 1. (43)

Byitem a) EnV; < 00, ¢ =1,2,... Therefore, in accordance to (34) for stationary distribu-
tion,

MENUi—1 > AEN(U Ui—1) = ExUs, k=12, ...
It follows from this inequality that EU; < A¥ where E is the mean value with respect to
the measure u, and EV; < oc. That gives (43). The superexponential decrease was shown
in Lemma 8. A

3.3 Numerical estimate of the stationary distribution coefficients

It is possible to derive exact estimate of the probability distribution of the limiting stationary
process. Indeed, some algebra gives:

Uty = 3QUF+U)UF + U - 4,
Ui = U US Ut +4 (44)
k1 = U Uf — U + 4y
with
i=k A
Ap =) S(UNUT UL U - UF +77 U7
i=1
Therefore provided that U;" is known (and U; = % —U;h), it is possible to recursively

derive on integer k every value for U, ,f In this case every U, ;t is formally a function U ,f(Ul‘" )
of U;t. Indeed U ki are polynomials of degree 2¢ — 1 of U;t. In order to get rid of unknown
U it suffices to remark that U; is the only positive value such that

Jim Ut =0 (45)

Therefore U is the only limit of the roots of U7 in the interval [0, 1]. Furthermore since
we know that U, ,f is bounded by a super-exponential bound it is easy to get very acurate
estimate of U™ via the analysis of the neighborhood of the roots of the U (z). Knowing an
estimate of U;" the estimates of the U7 follow.
For example figure 1 display the values of U;" versus A computed for (7+,77) = (0.7,0.3).
Knowing U;" we can compute the sequence U ,gh For example, for A = 2 we obtain the
following table:
k |0 1 2 3 4 5
UF 103 0.227870 0.122257 0.033256 0.002326 0.000011
U, | 0.7 0.372130 0.151187 0.033605 0.002121 0.000010
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0.28 7
0.26
0.24
0.22

0.29
0.18 1
0.16 4
0.14 4
0.12 4

0.14
0.08
0.06
0.04 4
0.02

lambda

Figure 1: Quantity U,;" versus ) obtained via analytical model. The knowledge of U;" allows
the complete knowledge of the queue size distribution
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4  Groups of servers with different 7+

4.1 Groups of servers without routing
In [11] inspired from [10] it is proven the following

Art

Theorem 4 The size Q of a queue under a single “on/off” source such that = <1
satisfies the following distribution:
Tt 1—k
Pr{Q >k}=A——p (46)

Tt + 77

with p being the largest root of equation ((z—1)+277)((z—1)(1—2A)+277) = 2277~ = 0.

If A > 1 but still with Ti‘jr;_ < 1, which is now set as hypothesis, we have

L 14+A+7 477+ /(A=12+2(r— +7H) +2(r— —7H) A+ (7~ +77)2
== (47)
2 A+ ATt

Consider a system with J groups of servers with different T]:-t, j=1,...,J. When a user from

group j generates a packet it randomly selects a note from the j group.

Let R; = R;ﬁn denotes the number of nodes in the jth group (3°; R; = N.) For every
node in jth group we have 7% = Tji. Denote p; the quantity p computed with quantities
Tji. We therefore have

R; 7 _
Pr{Qu > k} = Z F])\ﬁp; * (48)
j J J

The aim of this section is to exhibit a sequence of quantities (R;, T]:t) such that the queue
size distribution without routing shows polynomial (heavy) tails and such that, of course,
queue size with routing has super-exponential tail.

+

For this end we introduce self-similar “on/off” sources where the pairs T, are propor-

tional to a same vector 7F, i.e. (7f,7;) = (g;7F,¢;77) for some ¢;. More precisely we
5 . . , .
select R; = %N and ¢; = j 7 for some 3 > 1. Function ((s) = >_; 77", or Riemann zeta

function, is a convergent series for R(s) > 1.

Theorem 5 The distribution of the queue size Qu without routing when groups setting
satisfy Rj = Nj=P/{(B) and e; = j=P, for an arbitrary B > 1, satisfies the asymptotic
eTPansion.

Pr{Qu > k} = pk~+1/P £ O(k=2+1/P) (49)
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with
Mt TA=18), T iy
e I e R

p=( (50)

Proof: Let denote f(z) the function }; sj)\ﬁp;ﬂ”, therefore Pr{Qu > k} = f(k).
Since f(z) is an harmonic sum, as explained in [10], it is useful to make use of the Mellin
transform: f*(s) = [ f(z)z*~'dz and of its inverse:

1 c+1ic0 . .
f@ =g [ £ (51)
where ¢ belongs to the definition set of f*(s). We get
f7(s) = g(s)I'(s) (52)
where
— S (log p) e A (53)
g9(s) = Z( og p;)~°¢; Jp—

J
and I'(s) is Euler Gamma function.
Since the ¢; tend to zero, we have the asymptotic expansion

pi = 1+(5=5 — e+ 0
(logp)™ = (=5 —7) " "(1+50(c;)
Therefore
916) = (T ) (5 = 761 = )9) + O (—sR(2 - )8)  (54)

which basically means that g(s) and f*(s) are defined for R(s) €]0,1 — %[ Excepted the
pole with residue 1/8 of {((1 — s)B) at s = 1 —1/8, f*(s) can be analytically continued
for R(s) €]0,2 — %[ Since the expansion of p; can be arbitrarily continued in power of ¢;,
the error term on the right-hand side can be expanded into a series of factors (((k — s)03)
for k > 2. Therefore g(s) can be analytically contined on R(s) €]0,+oco with poles on
s=k—-1/fork > 1.

Using the inverse Mellin transform it comes:

c+ico
f() ij' o(s)T(s)a*ds (55)

24w c—1i00
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for ¢ €]0,1 — 1/3[. By moving the integration line on the right of the first pole of g(s) at
s =1-—1/p, and applying residue theorems:

_ At r1-1/8),,
fa) = ]

TNt 4o
for any ¢z €]1—1/3,2—1/p[. The integral on the right-hand side is of order O(z~¢?) which
can be arbitrarily close to order O(z~211/#). By applying a second time the residu theorem

on the second pole of g(s) at s = 2 — 1/3 we obtain an exact determination of the error
term which is O(z—2+1/#). A

_ 1 co+ico .
) 1+1/5+%/ g(s)T(s)z™°ds (56)

9 —100

4.2 Groups of servers with routing

Consider a queueing system Sy ; with N nodes. On each node there is a user, a server and a
FCFS queu. As in the last subsection there are J groups of servers, each with its parameters
T]-i"], j=1,...,J, N> J, of Markovian transition from state “on” to state “off”. In state
“on” the user generates the Poisson flow of packets of rate A. The service time of a packet
is distributed exponentially with meat one.

The number of servers in jth group is RE-J), Ejzl R§J) = N, R§J), R() are the same
as in the last subsection.

The routing protocol:

1. when a user from jth group generates a packet it randomly selects a remote note, all
N nodes are i.i.e. distributed;

2. if the queue at the remote node is shorter than the local queue in jth group, the packet
is directed to the queue of the remote node, if the remote queue is greater than the
local queue, the packet is directed to the local queue;

3. if both remote and local queues are equal then the packet is randomly directed to the
local queue with probability 1/2 or to the remote queue with probability 1/2.

Let r]j.f;cj be the number of servers from the jth group in modes “on” and “off” where
the queue length is equal to k, and let R;.%,;J be the number of servers from the jth group
where the queue length is not less then k, R;J) = R;-':(’)J + R;(;J. Denote

k
+,J +.J /a7 ptad
Uii" = Z%i /N =R, (57)
1=0
J
Ul =3 U, (58)
=1
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Ui =UR + U (59)

Further we are interested in case J — oo and in the limit case J = oo.

In case of finite N, J the system Sy can be described in terms of a Markov chain. The
generating operator for this chain can be easily written, its form is similar to (4) and we do
not present it here.

In the limit NV = oo, J < 0o we get the differential equations for Uz o J=1,..J. This
equations are (to ease the notations the upper index ’J’ is omitted):

Uhi(t) = /\(Ufz (&) = UL O)UE L (8) + U () + i1 (8) + Ui(t)] /2+ (60)
+U z—l—l( ) — U;,—i(t) + T;—U]Ti(t) - T]'_U;,—i(t)a i 2>1,

U:(t) = )\((i,fi_j(t) - Ul-fi(i))(U,-tl_(t) +UF0)/2+ Uy 141 (8) = Uj (1) - (61)

—7; Ujﬂ-(t) +7; Uj’i(t), i>1,
U;,_o(t) = T]—'FU]TO(t) - TJ'_U;,—O(t)a U;O(t) = _T;—U]TO(t) + T]'_Uj—i,—o(t)- (62)

J
Uo(t) + Ujy(8) = Ry /N, D (Uf(t) + Usy (1) = 1, (63)
Ui = MU 1 (DU, (8) = U(OUF (1)) + Ui (8) = Ui(8), (64)
U(0) =G5, G >GFyy >0, i20, Y (Ghy+Gjp) =1 (65)

J
We suppose the nonoverload condition
J R(J)

A =X) Ui(oo) <X <1 66
ZN T +T Z 0 (66)

Note that equation (64) is the same as (9). This is an important property of the
system 60, it helps to prove the statements similar to the ones proved for the system (5)-
(10).

We introduce the space U of sequences U = {U},, U Jro0

gir Yisi=1,i=0 *

U: {U, 12Uf,>U,, >0, 1>U;;>U;,,, >0, j=1,...,J,i=0,1,..}, (67)

with the norm

| U-j’:i(l) _ Ui(2) |

U(l); U(2) = su .. Lt ’ U(1)7 U(2) € 27’
p( ) 1§j§JI,)i20 Ji+1)
and the spaces
J oo
U:{Uel, Y > Uji< oo}, (68)
7j=11:=1
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Uny:{Uns €U, Uy} =R /N}, (69)

It is not difficult to prove that in case J < oo all statements of the sections 2 and 3 are
valid.

Here we will be mostly interested in the case where J — 00, N — o0, N > J.

Suppose that

1. as N — 00,J — oo for any j, j < 00, the ratio of servers of jth group, U 0= R /
converge to U;,o )(: lim o0, N o0 Rg- )/N uniformly with respect to NV, J.

+ _ :tJ +,00

2. as J — oo the parameters 7; T converge to 7,77 uniformly with respect to N, J.

Nee)

(In particular, it may happen that 7' —0asj— o00.)

3. the nonoverload condition takes place

. ! R(J)T_ i _ +, o
lim AZ ) ,\ZU =X <1 (70)

J—00,N—00

4. the sequences Gi(']) = {GN],c }J 1,k=0 € U, are such that Gi(J) — Gi(m) as J —
00, N — oo uniformly with respect to J, N, and G*(*) € i/,

Proposition 3 There exsist such Jy < oo, Ny < 00, T < o0 and A1, Ay < A1 <1 thatV
J>Jo, N> Ny, t>T

(Z Ut i U},O(oo)) < At (71)

j=Jo+1

Further we list the statements similar to the statements of sections 3, 4.

Lemma 13 Let J < 0o, G = G™ = (G',G™) € U. Then there exists in U a unique
solution U(t) = U(t,G) of problem (60)- (65). If G1i"(0) > G71(0) i >0, Gz (0) =
G(jf(z)(O) then

vE@) > viP@), i >0, t> 0. (72)

M 7,

Lemma 14 Let J < oo, G® = (G"°°,G™°) € U and let the non-overload condition (71)
hold. Then a solution of problem (60) — (65) U € U, Vit < 0.
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Proor.(Compare with the proof of Lemma 4.) Consider
VU) =(VH V), VE=Y YU, e=Vi+V. (73)
j=1i=k
If U(0) € U, then
Vi(t) = NU() U (t) — UL (t) = AUS () — Us(t) < A,
thus V1 (t) < oo for ¢t < oo. Let Ay be such that A\; < A2 < 1 and let

T =(T(\)) = tigg{t D AU (1) < A}

Because of (71) we have T' = T'(Jp) < oo and therefore V1 (T') < oo. Further, Vi (t), t > T is
upperbounded by the bounded solution of a boundary value problem

ViR () = Mo (VR (8) — VIR (1) + Vi () — Vi (), i > 0, t > T, (74)
Vo (8) = Vi) = 1, V(D) = VD), i > 0. & (75)

Lemma 15 Let J < oo. There erist a stationary solution U € U for the differential
exuations (ref(5,5))- (65).

Lemma 16 Let J < oo, (U; V), U, V), 0P @),u,P®), i = 0,1,..., be two
solutions of Eqs. (60)- (65). If U (0) e U, r =1,2, then

lim (UM ) - U@y =0, i=1,..

t—o0

Lemma 17 Any solution of (60)-( 65) with UL € U, j < oo tends to the stationary
solution of (60)-( 65).

Lemma 18 The values of stationary solution U* = 377 US: of (60)- (64) decrease
superexponentially as i — 0.
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Lemma 19 For the solutions of (60)- (65) the estimates
k .
Ux(t) < Y _T(0)(A)* 7/ (k= i), VA(U(#)) < exp(A)V1(U(0)).
1=0
hold.

Lemma 20 For the solutions of (60)- (65) for any T there exists such C = C(T') that

OU(t)
0G;

2
OUi(t) <C(T), i,j,k>0, t<T.

<O, 3z8a. <
10

For finite N, J the system Sy determines the Markov process Uyy = Un (t). Corres-
ponding to this process is the semigroup Ty = Tn s(t), namely, if f : Un; — R! then

Tns&)f(U) = (Ef(Uns(?)) | Uns(0) =G), G€Uny-

Proposition 4 Under the condition (71) for any U’ (0) € U there exist such T, Ny and
A, A1 <A <1 thatforNZ Ny, t>T

AE(US{ (U (1) < MEU x (2). (76)

Lemma 21 a) Let U € Uyy, N > Ny, J > Jo, Vi = Vi, (U). Set
W (8,U) = Tn s (Vi (U), (77)

and let V" (t) = {V}"(t)}52, be a solution of (74) for t > T, V}i"(T) = Tn(T)Us, where
T is defined by Proposition ?7. Then

Wt U) S VIR, k=1,2,.., t>T, (78)
where T is defined in Proposition 4.
b) Let U(t) be a solution of problem (60)- (65), Wi(t) = Vi, (U(t)), k=0,1,..., and let
Viin(t) be a solution of (74) for t > Ty, VI™(T1) = Vi(U(Th)), where Ty if defined by the
condition (76). Then

Wi(t) < V™), k=0,1,.., t>T. (79)
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Theorem 6 Let N,.J < oo and let f be any continuous vector-function f : U — R'. Then
forallt >0
lim sup | Tws(t)f(G) — f(U(t,G)) |= 0. (80)
N—oco, J—>oo GelUy s

The convergence in (80) is uniform with respect to t on any finite interval of t.

PROOF follows the proof of Theorem 1.

Theorem 7 Let N,J < oco. Let series Vl(GS\}])) = E;:l Efcvzl GS\',],z converges to V1 (G™)
uniformly with respect to N, J. Then

Jim TnsO(GY)) =V (UtG)), t>0. (81)

The convergence in (81) is uniform with respect to t on any finite interval of t.

Theorem 8 Let the condition (71) be valid. Then

a) the process Unjy, N > Np,J > Jy, N,J < 00, is ergodic, i.e. there exists an unique
stationary probability measure such that for any initial distribution the distribution at a
moment t converges to this measure as t — oo. Let Eny be the mean value with respect to
the stationary measure of the process Uny . Then En;Vi < 0.

b) for N, J = oo there exists on the setU a unique probability measure I that is invariant
with respect to the dynamic system G — U(t;G), G € U. This measure is concentrated at
the fixed point II = {II,}3° , of the dynamical system.

¢)

lim En,U; =11;,) (82)

N—oo, J—>o0

where II; decrease supererponentially with respect to i as i — oco.

Below we present the simulation results to compare the performance of the systems with
and without routing. The simulations demonstrate that in case of finite NV the tails of queue
length distribution in cases of routing are really much “lighter” then in cases without routing.
The simulation is done on rather long period of time (800,000 time units), and queue length
are sampled 800 times during this period. We first present the case where all sources are
identical, 7.e. carry the same on/off parameters (7+,77) and A, for instance respectively
(0.7,0.3) and 2.0. Figure 2 and 3 respectively give the queue length distribution in the case
respectively without routing and with routing when NV = 5. Notice the dramatic change in
tail distribution significant even with such a small value of N. In the case without routing we
have compared the actual results obtained by simulation and the analytical model discribed
in theorem 4.

Figure 4 displays the queue size distribution when sources are identical and N = 50, and
routing is applied. Notice that there is no need to display the case without routing since
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it will be exactly the same as with N = 5 (figure 2): the queues don’t interact therefore it
does not make any change to simulate 50 instead of 5.

Figure 5 is interesting because it shows the same results of figure 4 but compared to the
analytical model explained in the subsection 3.3. The matching is very good since it holds
within few 0.001 range unit, better than what could be expected from 800 sampling (over
100 sources).

Next figures are related to the interesting case of several group of servers with different
(F,77) vectors (but with still same peak rate A = 2.0). Figure 6 displays the vectors
(7,77 versus source index. We choose the case where sources are self-similar, i.e. vectors
(rF,77) are colinear, for instance (77,77 ) = (0.7¢;,0.3¢;) with ¢; = j°, j being the index
of the group. The number of sources in group j is the closest integer to Nj—?/¢(8). We
choose 3 = 2, (and therefore {(8) = ’%—2.

Figure 7 displays the queue size distribution in the case of self-similar sources with
N =100 and without routing. With the actual results we also display the results obtained
by the analytical model of theorem 4. The simulation confirms the polynomial tail behaviour
of the queue length without routing.

Figure 8 shows the queue size distribution in the case of self-similar sources with N = 100
and with routing. The dramatic change from sub-exponential to super-exponential tail is
evident from figure 7.
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Figure 2: Queue length distribution: No routing case N = 5, A = 2, same (77,77) =
(0.7,0.3) on/off parameter, dots obtained by simulation, continuous line obtained via the
analytical model
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Figure 3: Queue length distribution: With routing case N = 5, A = 2, same (77,77)

(0.7,0.3) on/off parameter
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Figure 4: Queue length distribution: With routing case N = 50, A = 2, same (77,77) =
(0.7,0.3) on/off parameter, dots obtained via simulation
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Figure 5: Queue length distribution: With routing case N = 50, A = 2, same (71,77)

le-14

le-24

.1le-37

(0.7,0.3) on/off parameter, dots obtained via simulation, crosses obtained via an analytical

model
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Figure 6: distribution of 7% (grey) and 7~ versus server: self-similar group of on/off sources,
N =100, A = 2, same ¢; = j P with 8 = 2.
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Figure 7: Queue length distribution: No routing case N = 100, A = 2, self-similar sources
B = 2, dots obtained by simulation, continuous line obtained via the analytical model
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Figure 8: Queue length distribution: With routing case N = 100, A = 2, self-similar sources
B = 2, dots obtained by simulation
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