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Abstract: In this paper, we propose a methodology essentially based on the Central
Limit Theorem for Markov chains to monitor convergence of MCMC algorithms using actual
outputs. Our methods are grounded on the fact that normality is a testable implication
of sufficient mixing. The first control tool tests the normality hypothesis for normalized
averages of functions of the Markov chain over independent parallel chains started from a
dispersed distribution. A second connected tool is based on graphical monitoring of the
stabilization of the variance after n iterations near the limiting variance appearing in the
CLT. Both methods work without knowledge on the sampler driving the chain, and the
normality diagnostic leads to automated stopping rules. The methodology is developed for
finite state Markov chains, and extended to the continuous case. Heuristic procedures based
on Berry-Esséen bounds are also investigated. These stopping rules are implemented in
a software toolbox whose performances are illustrated through simulations for finite and
continuous state chains reflecting some typical situations (slow mixing, multimodality) and
a full scale application. Comparisons are made with the binary control method of Raftery
and Lewis.
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Une régle d’arrét automatique pour le contrdle de

convergence
des algorithmes MCMC

Résumé : Nous proposons une méthodologie de controle des algorithmes MCMC fondée
sur le Théoréme de Limite Centrale (TLC) pour les chaines de Markov. La normalité est
en effet une conséquence vérifiable du fait que la chaine a suffisamment visité le support
de la loi cible. Le premier outil proposé teste la normalité d’un échantillon de sommes
de fonctions de la chaine construit & partir de chaines paralléles initialisées suivant une loi
suffisamment dispersée. Une seconde technique naturellement liée & la premiére consiste
a controler la stabilisation de la variance asymptotique intervenant dans le TLC. Cette
approche conduit & une méthode de controle non spécifique de I’algorithme MCMC étudié,
pour laquelle nous proposons des critéres d’arrét automatiques. Le cas des chaines & espace
fini est d’abord étudié, car il permet un développement précis du controle de la stabilisation
de la variance et la comparaison avec des techniques utilisant 1’inégalité de Berry-Esséen.
L’extension aux chaines générales est ensuite proposée. L’aspect générique de la méthode
a justifié la réalisation d’un logiciel de controle qui implémente ces critéres de convergence.
Ce logiciel est utilisé ici pour illustrer la pertinence de ces outils de controle dans diverses
situations typiques, discrétes ou continues (chaines a faible mélangeance, lois multimodales,
applications réelles). Notre méthode est & chaque fois comparée avec le contrdle binaire de
Raftery et Lewis.

Mots-clé : Algorithmes MCMC, chaines de Markov discrétes, controle de convergence,
TLC pour les chaines de Markov, stationnarité, variance asympotique



An automated stopping rule for MCMC convergence assessment 3

1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms, introduced by Gelfand and Smith (1990),
generate ergodic Markov chains (z(*)) with state space E and invariant probability measure
for which direct simulation is not tractable (i.e. independent random variables distributed
according to m cannot be simulated), or for which computation of integrals of the form

/f@ﬂw) (1)
E

cannot be achieved. Since 7 is the only invariant probability measure of the ergodic Markov
chain (z(*), the z(T*%)’s, t > 0 are approximately 7 distributed for T large enough and (1)
is approximated by

n
LY p(atm), )

g
Objectives of the end user are to gather information about the precision in the approximation
of (1) by (2), to provide a detailed picture of 7 and in some situations to output an iid sample
from 7.

Convergence control (or diagnosis) techniques have been addressed to answer such ques-
tions, and several methods have been proposed in the recent literature (see, e.g., Brooks
and Roberts 1995, and Robert 1996, for a survey). These diagnostics can be based upon
one single output (single chain) or upon outputs from several independent replications of
the chain started from a preassigned initial distribution (parallel chains). An important
criterion is the computer investment: diagnostics requiring problem-specific computer codes
for their implementation (e.g., requiring knowledge of the transition kernel of the Markov
chain) are far less usable for the end user than diagnostics solely based upon the outputs
from the sampler. The latter can use available generic code. Last but not least, interpreta-
bility is important. As Brooks and Roberts (1995) point out, “a diagnostic which produces a
definitive solution will generally be preferred to one which requires subjective interpretation
and/or experience on the part of the user”.

Both parallel and single chain methods have well-known advantages and drawbacks
(Brooks and Roberts 1995, or Robert 1996), but we believe that only parallel chain me-
thods can provide satisfactory control tools. Although parallel methods obviously require a
larger computational expense, they are more dedicated to output iid random variables from
7 and convey more confidence that the whole support of 7 has been explored (see Gelman
and Rubin 1992 for a discussion). Above all, checking convergence to stationarity of (z(*)
basically requires comparing the distributions of z(*) for different values of ¢. This involves
comparing probabilities of z(*)-measurable events for different values of . Such probabilities
are limits of occurrence frequencies of these events for sequences of independent identical
experiments. Therefore, they can reasonably be evaluated only through several independent
sequences started from a same initial distribution.

In this paper, we propose a new methodological approach for assessing convergence of
MCMC algorithms. Our approach is grounded on the fact that normality is an implication
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4 Didier Chauveau and Jean Diebolt

of sufficient mixing, which is testable across parallel sequences issued from a dispersed initial
distribution, and allows for controlling precision. Hence, instead of checking for stationarity
of (), we primarily aim at controlling the precision of estimates like (2). A natural way
to do this is through confidence regions based on normal approximation resulting from the
Central Limit Theorem (CLT) for Markov chains. Difficulties arise since we have to make use
of two asymptotic results (as n — 00), the CLT and the convergence to the limiting variance.
This is the reason why we propose, first, to use statistical tests for testing normality of the
normalized sums

% t_il (h(m(t)) — 7rh) , wh= /Eh(x)ﬂ(dl")a 3)

using samples obtained from parallel chains, and second, to monitor variance stabilization.
Our approach results in control techniques which comply with the above criterion, i.e. they
are not problem-specific (hence a generic computer code has been developed and is publicly
available), and they provide automated diagnostics. The ideas are first presented thoroughly
in the case of finite state Markov chains. Our motivations for adopting this point of view
are first that more precise mathematical tools exist for finite chains. In particular, the
limiting variance in the CLT can be consistently estimated and compared to an estimate
of the variance after n iterations. Also, the stationary probabilities 7; for each state i can
be estimated together with confidence intervals. Finally, the proposed control methods can
be applied to large finite chains resulting from actual situations or to finite chains obtained
from continuous state Markov chains through a theoretically valid discretization procedure
(Guihenneuc and Robert 1998), or through the duality principle (Diebolt and Robert 1994).

A single chain technique making use of finite Markov chain theory has already been
proposed by Raftery and Lewis (1992, 1996). Their binary control relies on an approximation
of some binary process issued from a general MCMC algorithm by a two-state Markov
chain. However, this approximation is rather weak (see, e.g., Robert 1996). This method is
nevertheless one of the most popular and commonly used, mainly because it is not problem-
specific, delivers an automated stopping rule and is available in existing software libraries
(STATLIB). These are the reasons why we will compare our approach against this competing
method.

Section 2 contains the theoretical background for finite ergodic Markov chains which will
be used in the paper. Connections between the CLT and the renewal theory are recalled.
The main tool of this section is a CLT for the time spent in a state during the first n
steps of an ergodic Markov chain, with the limiting variance available through algebraic
computations involving the transition matrix and the invariant probability (Kemeny and
Snell 1960). A heuristic procedure for MCMC convergence assessment using Berry-Esséen
type error bounds in the CLT (Feller 1968) is also investigated. Section 3 describes the
two control methods we propose for finite Markov chains: A test of normality for (3) with
indicator functions f = 1;, i« € E, and a comparison, using graphical monitoring, between
consistent estimates of the limiting variance and of the variance after n iterations. Section 4
extends this methodology to continuous state space Markov chains. The extension of the
normality monitoring to the general case is almost straightforward, and automated stopping
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An automated stopping rule for MCMC convergence assessment 5

rules are proposed. The variance comparison is also carried out, at the expend of some
approximation for estimation of the limiting variance. Section 5 is devoted to illustrative
examples and comparisons with the binary control, which is briefly described there. A toy
example for a finite state Markov chains is then studied. It shows that the normality control
is a powerful tool for detecting slowly mixing chains, and that our parallel chains method
is preferable to — and faster than — a single chain method. Comparisons between the
time needed to reach approximate stationarity and the time needed to accept normality
hypotheses are given on a second example based on a random walk over the d-dimensional
cube. Examples for continuous state MCMC algorithms, arising from typically illustrative
situations (multimodal posterior), and actual applications (mixture of distributions) are also
proposed.

2 CLT and renewal theory in the discrete case

The beginning of this section contains classical theoretical result for finite state Markov
chains which will be used in the paper. We consider a finite irreducible aperiodic Markov
chain z(!) with finite state space E, |E| = K, transition matrix P and invariant probability
m = (m;,1 € E).

2.1 Renewal times

For each subset A of E, we denote by N,(A) = 31, I (z(Y) € A) the occupation time of A
during the first n steps. For each real function h defined on the state space, consider
Sa(h) =Y h(a®) and Sp(h) = [n(=®) —E*[n]].

t=1 t=1

We assume for simplicity that the Markov chain starts from z(°) = i. When 2(9) is generated
from an initial distribution pg, we only have to shift the starting time to the first time
z® =i, Let T;(1) = inf {t > 0: (¥ =4} be the first time ¢ > 0 the chain returns to the
state 4, and T3(0) = 0 by convention. The r.v. T;(1) is a stopping time with respect to the
sequence (2());>¢. Define the stopping time T;(p), p > 2, as the pth return time to state i.
Let 7;(p), p > 1, be the duration of the pth excursion out of state 7. The 7;(p)’s and T;(p)’s
are connected by T;(1) = 7;(1) and T3(p) = Ti(p — 1) + s(p), p>1.

Proposition 1 For any i € E, the 7;(p)’s, p > 1, are iid and have finite moments of all
orders. Moreover, E;[7;(1)] = B, [:(p)] = 7; " for p > 2.

Proposition 1 can be found in Chung (1967). Note that it holds for any starting distribution
by considering only the 7;(p)’s for p > 2. Let ¢;(t) be the random number of returns to state
i before time t, ¢;(t) = max{p > 1: Ti(p) < t}. We have ¢;(t) +1=Y'_,I(z(®) =), from
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6 Didier Chauveau and Jean Diebolt

which it follows that E; [¢;(¢) + 1] = EZ:O pt¥), where P* = (pgf )). Therefore,

i )

. qi(t)+1
1 i | ———— | = ™,
tE{.loE’ [ t+1 T

and a consequence of the strong law of large numbers for ergodic Markov chains is that
gi(n) +1 _

N (i
lim N (@) = lim ——— =m; as. 4)
n—oco N n—oco m+1

Finally, we define for p > 0 the block sums over the excursions out of i:

Ti(p+1) B Ti(p+1)
Zy= Y @) and z,m)= > [p(=®)-En]].
t=Ti(p)+1 t=T;(p)+1

Proposition 2 Let the finite state Markov chain (a:(t))tzo start from z(©) = i. Then for
any h the Zy(h)’s, p > 0, are #id random variables and have finite moments of all orders.
Moreover, By, [Zy(h)] = wh/m; for p > 1.

Proposition 2 can be found in Chung (1967). It also holds for any starting distribution by
considering the Z,(h)’s for p > 1.

2.2 CLT and limiting variance
We will make use of Wald’s equation (see e.g., Billingsley 1986, p. 306):

Theorem 1 Let Zy,Zs, ... be iid random variables such that E[Z}] < oo, and T be a stop-
ping time for (Zy)¢>1 such that E[T| < co. Then

(i) E[ Ty Z,| = EIT)EZ)]

(ii) var [ Y5, Zp| = EIT] var{Z3].

Wald’s theorem for square integrable martingales can also be found in Dacunha-Castelle and
Duflo (1986, p. 96).

As detailed in Kemeny and Snell (1960), the variance of the random variables n~'/2
Sn(h) converges to a limiting variance
o*(h) = lim n~"var,, [Sn(h)], (5)

which is related to the variance of the Z,(h)’s through the following result:

Theorem 2 If the finite Markov chain is irreducible and aperiodic, then for any initial
distribution L,
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An automated stopping rule for MCMC convergence assessment 7

: o?(h)
(i) var; [Zo(h)] = vary, [Z,(h)] = — for p>1.
a(h)\/n
Proof. Tt suffices to prove the result for nonnegative h’s and to assume that 2(°) = i. Since
Ti(q:(t)) <t < Ti(g;(t) + 1), it follows that

(ii)

N(0,1) as n — oo.

0 < Ti(qi(t) +1) —t < 7i(qi(t) + 1).

Since h > 0,
(1) i (t)+1
Y Zp(h) < Si(h) < Y Zp(h).
p=0 p=0
Therefore,
Sy(h) = 50 7 (h (a;
t( ) tp—O P( ) < CStTl(qZ(? + 1)’ (6)

where cst is an appropriate constant. It follows from (5) and (6) that

¢i(1)
Jim ¢~ var; ZO Zy(h)| = lim ¢ 'var [Sty(g(1) (B)] = 0® (). (7)
I):

Let 0% denote the common variance of the Z,(h)’s. The event {g;(t)+ 1 = n} is measurable
for (7;(1),...,7(n)) or, equivalently, (Zo(h), ..., Zn—1(h))-measurable. We apply Wald’s
equation (Theorem 1) for the iid Z,(h)’s:

var; [Zo(}_l) +---+ Zqi(t)(ib)] = var; [ST,-(q,-(t)-l—l)(E)]
= var; [Z() (il)] E [q,-(t) + ].] . (8)
In view of (4), (7) and (8), we have

ST.(a: h _
o?(h) = tlim var; [%H)()] = var;[Zo(h)] 7,

implying (4). The proof of (ii) relies on a CLT for a random number of summands (Billingsley

1986, p. 380), applied to the Z,(h)’s for 1 < p < ¢;(n) — 1. It makes use of (4) and (6). O

The main tool that we will use in Section 3 is a CLT for the time spent in a given state
during the first n steps of an ergodic Markov chain, with the limiting variance available in
closed form using P and 7, as given in Kemeny and Snell (1960). We define two matrices of
interest: the matrix A with all rows equal to 7, and the fundamental matriz

Z:(I—(P—A))_1=I+§:(P’°—A). (9)
k=1
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8 Didier Chauveau and Jean Diebolt

The limiting variance in the CLT depends on Z in the following sense: let h and g be two
real-valued functions defined on E (considered as column vectors). The limiting covariance
matrix is the K x K symmetric matrix C' = (¢;;) such that, for any starting distribution g,

n n

K
lim ~covy, |3 hE®), 3 g@®)| = hTCg= 3 h(i)eig0)- (10)

n—oo N
t=1 t=1 3,j=1

Note that (10) is stated in Kemeny and Snell (1960) with 7 as the starting distribution to
keep computations simple. However, (10) holds for any starting distribution po. The matrix
C is related to Z = (z;;) and 7 through

Cij :7rl-z,~j —|—7Tj2’ji —71'1'(5,']' —7!','7I'j, (11)

where 6;; = 0 for ¢ # j and 6;; = 1. For each state ¢ € E, let Ny(i) denote, as in §2.1,
the occupation time of 4 during the first n steps. Specializing (10) to the indicator function
h = g =T, gives the limiting variance

o?(I;) = lim lvaruo [N, ()] = I7CT; = cy. (12)

n—oo N

The Central Limit Theorem for Markov chains (Theorem 2), when applied to h = (I;,i € E),
leads to a multidimensional CLT for the occupation times:

N,(1) — nm N, (K) —nnk

2.3 Berry-Esséen bounds for finite Markov chains

) < A0, 0.

In this discrete setting, one purpose of the convergence assessment is to obtain approximate
confidence intervals for the m;’s. For this, we need to know how large n should be for the
normal approximation to be valid. This addresses the question of the convergence rate in
the CLT, which naturally leads to the Berry-Esséen theory. In good settings, upper bounds
for this rate are given by the Berry-Esséen Theorem for Markov chains, which holds when

Su(R)
Fro L(h)\/ﬁ

where & is the standard normal cdf. General conditions have been given for (13) to hold
in both the discrete and continuous cases (see Bolthausen 1982). However, a workable
bound requires precise estimation of the constant involved in the right-hand side of (13).
This question has been investigated by Mann (1996) and Lezaud (1998) for countable state
chains, but the proposed constants are far too large for practical use in our case. Moreover,
computing these bounds requires knowledge of unavailable quantities (e.g., the gap of the
transition kernel).

=0(n™'?), (13)

sup
z€R

< x] — ®(x)

INRIA



An automated stopping rule for MCMC convergence assessment 9

Another approach consists in using the Berry-Esséen Theorem for the iid case (Feller
1971), since in this setup the constant has been precisely evaluated. If X;, ..., X, are iid
random variables with zero expectation, variance o2, and such that p = E[|X|*] < oo, then

sup
T€R

p
< Cpg———,
BEO_3\/E

where the constant, initially evaluated at 33/4, has been lowered down to Cpg < 0.7915
(see, e.g., Seoh and Hallin 1997). This approach can be transposed to the case of Markov
chains with the help of renewal theory, through the iid random variables Z,(h)’s defined in
§2.1. As a consequence of Proposition 2 and Theorem 2, the distribution of the normalized
sum St;(4)(h)/+/q converges to a normal distribution with zero mean and variance o2 (k) /m;,
and the error in the approximation by the normal distribution is given by the Berry-Esséen

inequality (for the iid case), provided that E [|Zp(h)|3] < 00t

ST (o) (h Cee L, [|Z,(h)?

sup ]Ppo |:\/7T T,(q)( ) S$:| —@(.'I»') BE Hpq [l_ p3( 2)' ]

z€R o(h)yva vary,[Zp(h)] / Va
Copl|hlim; B[] (14)

- o*(h)vq
The sum T;(p) = 3°%_, 7i(j) also satisfies a CLT for iid random variables together with a
Berry-Esséen inequality. Defining Ti(q) = >!_, [ri(p) — 1/mi], Ti(q)/ /@ < N (0,var[r))
with the error bound
Ti(q) CprE[|ri —1/mif’]

sup |P ——<z| —P(x)| <L 15
S0 o | e = | T )‘ RN (15)

Using the Berry-Esséen bounds for convergence assessment

A method for MCMC control can be sketched, based on normality assessment for the indi-
cator functions II; for i € E, and using Berry-Esséen inequalities to take care of the error.
Let us assume that estimates for quantities appearing in upper bounds (14) and (15) are
available for some i € E (essentially we need to estimate E[r?] and ;). Then, for a gi-
ven g1 > 0 which represents the acceptable error (the right-hand side of (14)), we can
compute the number of “blocks”, ¢;1 = g;(e1), achieving this error. This choice of g¢;1 is
related to Sy, (h), where n; = 37" 7i(p) ~ ¢i1 /mi, and the precision in this approximation
by the expectation depends essentially on var[r;] and the asymptotically normal behavior
of T;(g). We can control the error in this last normal approximation using (15) in the same
way. For a given error €9, this leads to ¢;2 = ¢;(¢2). Finally, we need to run the chain up
to the observation of g; returns in ¢, where ¢; = max(g; 1, ¢;,2), to assess normality for both
sums. Hence, this control method requires, for state ¢, the simulation of n; iterations of the
chain, where n; = ¢;/7; can be estimated together with an approximate confidence interval.

RR n~ 3566



10 Didier Chauveau and Jean Diebolt

This procedure seems appealing from a theoretical point of view, but unfortunately has
two major drawbacks. First, it suffers from the same criticism as many other control methods
(e.g., Gelman and Rubin’s (1992) variance criterion), since it relies on preliminary estimates
of unknown quantities depending on the MCMC algorithm under control itself. Second, it
suffers from the poor quality of the standard Berry-Esséen bound. It is known that, even
in simple iid situations, the Berry-Esséen bound leads to fairly large sample sizes to ensure
that the Kolmogorov-Smirnov distance between the distribution of the normalized sums and
the standard normal is smaller than a given € > 0 (Seoh and Hallin 1997). The simulations
in Section 5.2 show that this is also the case in our situation, and that this heuristic leads
to dramatically conservative values for the times required to achieve convergence. Hence
this procedure is of little practical value, but has been presented here for completeness. We
do not discuss it any further (e.g., how to select the states chosen for monitoring; what is
the impact of the needed estimates over convergence time) and rather propose empirical
methods of control based on normality assessment in the next section.

3 Convergence diagnostics with parallel chains

Since we want to use a normal approximation, we need to estimate the time needed to reach
approximate normality for suitable functions of (z(*)). Intuitively, normality occurs when
the parallel chains have “mixed enough” to explore their entire domain. This is particularly
relevant in the case of chains issued from an MCMC algorithm with a multimodal stationary
probability, which actually appear in practical situations and for which usual convergence
control methods based on graphical evaluations of cumulative sums or similar quantities
do not reveal multimodality (see Robert 1996). It appears that normality is reached only
when the parallel chains have “spent enough time near every mode” (see the example in
Section 5.2), and that multimodal situations are revealed by the occurrence of strong non-
normalities for small to moderate values of n.

In this section, we investigate the case of finite state Markov chains. The proposed
convergence assessments are basically derived from the discrete setting given in §2.2, and
rely on the asymptotic behavior of o2 (h) and Sy (h)/+/n for h =1;, i € E, or more generally
h =14, A C E. If stationarity is reached for (z(*)), then the variance after n steps, o2(h),
should be close to the limiting variance o?(h) and the distribution of S, (h)/+/n should be
approximately normal. We propose two complementary methods to guarantee that the CLT
can effectively be used after n steps of the algorithm under consideration, in order to build
reliable confidence intervals for a class of normalized sums S,,(h)/y/n. The first method is
based on normality assessment and the second one monitors variance stabilization. Both
methods use independent parallel chains started from a suitably dispersed distribution pg.
(See the debate in Gelman and Rubin (1992), and Geyer (1992), about the feasibility of this
requirement. )

INRIA



An automated stopping rule for MCMC convergence assessment 11

3.1 Convergence assessment by normality monitoring

Basically, the normality control method consists in running m parallel chains azgt), et ,a;g;)

started from some preassigned distribution, and testing a normality hypothesis Hy for the
r.v.’s N, (i), 1 € E, at arbitrary selected times ny < ns < - - -, until acceptance of normality.
It is important noting that using a normality test at successive times here is only a way of
avoiding graphical monitoring of the approximate normality. It should not be understood
as a manner to test the normal model as in the usual statistical practice (with a frequentist
interpretation of the type I risk). Consider first a single state i € E. Define

NO @) = zn:]l (xi,t) - z) , 1<l<m,
t=1

the occupation time of state ¢ for chain ¢ during the first n steps. We propose to check
approximate normality using the Shapiro-Wilk test (Shapiro and Wilk 1965) with a preas-
signed significance level a to be tuned. This test is one of the most powerful tests against
alternative hypotheses as general as “the sample is issued from a non-normal continuous
distribution”. The Shapiro-Wilk test statistic SV belongs to (0,1), and assumes values
close to 1 if the null hypothesis Hy is true (see, e.g., Capérad and Van Cutsem 1988). It
does not require prior knowledge of the expectation nm; of N, (). For m chains with initial
distribution po, and arbitrary increasing times ng = 0 < m1 < n2 < -- -, the control method
starts with k = 1 and proceeds as follows:

1. Run the m chains for (ny —mp_1) more iterations.

N3 () NTST’u)) _

1
) 1]
3. Compute the Shapiro-Wilk statistic SW(i,ny).
If Hy is rejected,
set k«—k+1 and go to 1;
else return ng.

2. Update the sample (

Let Ap, o be the acceptance region associated with the level «; this algorithm returns
T; = infy>1{nk : SW(i,nr) € Amn,y,a}, the first time in the sequence of n;’s for which
the hypothesis has not been rejected. We may in addition plot SW(3i,-) and monitor its
stabilization in Ag,  (see §5). Note that [1] is not a sequential test in its classical meaning,
since we are not doing hypothesis testing at times nqy < n2 < --- based on nq,na,... iid
observations, but rather testing H, using a sample of constant size m, of iid observations
from a distribution depending on n1,ns, .. ..

In practice, we need to assess normality of the r.v.’s N, (%) for states in a subset E' C E,
and Steps 2 and 3 of algorithm [1] are easily modified to simultaneously test all states
i € E' over the same m simulated sequences. The normality control method then returns
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12 Didier Chauveau and Jean Diebolt

(7;,i € E'). Automated diagnostics resulting from empirical stopping rules (without gra-
phical monitoring) can be proposed. For instance, a simple rule is to run the chains for
at least Tpy = max{7;,% € E'} iterations. Alternative stopping rules can be considered as
well. For example, a more conservative rule can be: “stop at the first time all the controlled
states simultaneously do not reject the null hypothesis”. We will call this stopping time Tg
for future reference.

In our use of a normality test, the choice of the individual level « is not a crucial matter,
but merely a way of detecting a reasonable stabilization of the test statistic. Clearly, our
stopping rules are becoming more and more conservative as « increases (e.g. Ty increases
with @), and too large values like @ > 10% are not advised (see §5.2).

Finally, the choice of E' (and K') is crucial here, and obviously depends to some extent
on the size K of the state space. Whereas controlling the normality of occupation time
for a number of randomly selected states can be a good choice for strongly mixing chains,
this is obviously not true in multimodal situations. For example, consider a chain with
a partition (Ey, Es) of E, corresponding to two modes of 7 such that transitions between
E; and E5 occur with small probabilities. Checking normality for i € Ej, say, and too
small values of n would obviously result in strongly multimodal histograms, typically with
one mode corresponding to the chains started within E; (many visits to 4), and another
mode corresponding to the chains started within Es (no excursion to E; and no visit to 7).
However, such multimodal histograms would be observed only if several parallel chains
started within Es (i.e. for uo dispersed enough). In such a case, excursions between E; and
E, for the m chains would be more and more likely to occur as n increases, finally allowing
us to accept the normality hypothesis for N;(n). An ideal choice would select one state near
each mode of m here. However, this would require a preliminary rough knowledge of the
global shape of 7, which is not available in general (also, this requirement is not in the spirit
of a generic method).

We will generalize [1] in Section 4 by proposing a more definitive and automated solution,
which encompasses both the discrete case with large K and the general (continuous state
space) situation. We will then discuss more thoroughly the impact of the tuning parameters.

3.2 Convergence assessment by variance comparison

A convergence control tool naturally coupled with the normality monitoring consists in
checking whether an estimate of the variance after n steps, o2(h), is close to an estimate of
the limiting variance o?(h). For a single state i € E (i.e. for h = I;), the natural estimate
of o2 (h) based on m parallel chains observed up to the nth transition is simply the sample
empirical variance over the m chains,

= % i (VO n(z‘))2 . where Ny 2 NOG)
=1

Besides, an estimate of o%(h) is available by replacing in (9), (11) and (12), the unknown P,
Z,C and 7 with consistent estimates based on the nm available simulated steps. A natural
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estimate for the (7, k)-th entry of P is then given by

> 1) =gt =¥)

Pix(m,n) = f=11t=1m — (16)
—> D1 (=" = 4)
=1 t=1

A related estimate of 7 can be obtained from the empirical mean occupation times after nm
steps,

m n (t) _ . oo
:%ZZH(‘””_Z):N’;@, 1<i<I. (17)
=1 t=1
Then
= {I - [B(m,n) — A(m,n)]} ", (18)

(11) gives C(m,n), and 62 (m, n, h) = hTC(m,n)h. We are interested here in the asymptotic
properties of these estimators when n is fixed and m goes to infinity.

Proposition 3 For any initial distribution po and any fized integer n large enough, we
have, a.s. as m — 400:

(i) Pjx(m,n) — P,
(i) 6*(m,n,h) = o*(h),
(ii) 6% (m,h) — o2 (h),

Proof. These results follow from the strong law of large numbers, with n large enough,
typically to allow any state to be reached from any initial state in less than n steps. To
illustrate this, consider the strongly aperiodic case, for which P;;, > 0 for any j and k. Then
running m — oo chains for just n = 1 step is sufficient for the consistency of I@jk(m,n).
Generally, (3) is proved for fixed n > 2 since

m n—1 n—1
1

13 S ICIESRCL B S FURPRTII

=1 t=1 t=1

3

a.s. as m — oo, and

nilpuo [a:(t) = j, 2t = k] — Z P[m(t+1) = k|2® = j] P, [x(t) _ j]
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14 Didier Chauveau and Jean Diebolt

Similarly,

hence #(m,n) — 7 a.s. as m — oo. Using (18) and (11) gives (i7). The consistency of
62(m, h) follows from the strong law of large numbers applied to the iid random variables

(NO@)? 1< e<m. O

The control by variance comparison uses the setup already described for the normality
control. Actually, the two methods can be executed simultaneously, and step 2 of algorithm
[1] needs just to be augmented to compute the estimates 62 (m,h) and 62(m,ny,h). In
addition to the stopping rule 7s issued from the normality control, we end up with plots
of 62(m,h) and 62(m,n,h) against n from which we may check the stabilization and ap-
proximate coincidence of the two variance estimators. Note that widely available software
systems with algebraic capabilities (e.g., Mathematica or Matlab) can be used to solve the
inversion involved in (18) without additional work for the end user.

These control methods need some adaptation when K gets large. The monitoring using
variance comparison requires the computation of the limiting variance, which may not be
feasible for large dimension matrices. In such cases this side of the method reduces to
graphical monitoring of the stabilization of 62(m, h), with no guarantee against apparent
stabilization far from the limiting variance. This would result in wrong convergence diag-
nostics and biased confidence intervals. This is the reason why this control method should
not be used alone, but rather coupled with the normality monitoring. The latter is less
affected by the size of the chains from a computational perspective (no matrix is involved
in the computations), but it can lead to a dramatically conservative method for large K’s.
Moreover, estimating the probabilities 7; for the K states ¢ € E is meaningless and mislea-
ding when K is large (just think of continuous state spaces). A reasonable way to overcome
this problem is to choose a partition (Ai,...,4,) of E and to apply the normality control
method to the corresponding indicator functions h; = I4;, j = 1,...,p. These adapted
versions are leading to the proposed extensions for the continuous state case, and we thus
reserve their descriptions for Section 4.

4 Extension to continuous state chains

In this section, we consider an ergodic Markov chain (:c(t)) with continuous state space E
and invariant probability distribution = with density f. We suppose in addition that z(*)
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satisfies conditions ensuring that the CLT applies, i.e. for every h € La(f), there exists
0 < 0%(h) < +oc such that

% 3 (n=®) ~ B [1]) 4 N (0,0%(h). (19)
t=1

For general state space the CLT applies, for instance, when the Markov chain is geometrically
ergodic. The basic ideas are first to extend the previous results from renewal theory to
atomic Markov chains (the renewal state i being replaced with an atom A) and second, to
transform general Markov chains to atomic Markov chains by splitting a small set. Various
sets of sufficient conditions for the CLT to apply in the context of general MCMC’s (e.g.,
for Metropolis and Gibbs kernels) have been investigated (Tierney 1994). A comprehensive
survey can be found in Robert (1996).

We do not base our extension to the continuous case on renewal theory for atoms or small
sets. Since the construction of appropriate small sets generally requires a deep knowledge
of the transition kernel or the target density f (see Guihenneuc-Jouyaux and Robert 1998),
this would result in strongly problem-specific control techniques (thus not in the spirit of this
normality control principle). Rather, we suggest to select a finite collection of measurable
subsets A, C E, 1 < r < p, typically “almost” partitioning F, and to check normality and
variance stabilization of the normalized sums Sy, (h.)/+/n, where h, =14, for 1 <r < p. We
can then only obtain estimates and confidence intervals for the P¥(A4,)’s; moreover, since an
estimate of the limiting variance can no longer be algebraically computed with formulas (9)
to (12), another control of the variance stabilization must be carried out.

This approach through a partition of E is theoretically valid in the continuous setup and
in particular does not require any Markovian assumption on the h, (w(t)) ’s. Furthermore,
it can apply to general processes (a;(t)), provided that they converge to a unique stationary
regime and satisfy a strong law of large numbers and a CLT similar to (19). This is of
particular interest since in general marginal sequences issued from multivariate MCMC al-
gorithms are not Markov chains. Actually, in multivariate situations, we check the normality
of posterior marginals for simplicity. In addition, approximate normality of S, (h)/+/n for
other functions h may be checked simultaneously. For instance, we have always tested the
approximate normality for h(z) = z (or higher moments) in the illustrative examples in
Section 5, since posterior means for the parameters are generally desired in Bayesian setups.
In multivariate situations, marginal sequences were controlled in the same way.

4.1 An automated normality monitoring

We propose a methodology for monitoring a general MCMC algorithm, which is grounded
on the normality control for finite state case, deals with the specificities of the continuous
state case, and has several advantages: (i) it does not require prior knowledge of the target
pdf f (and consequently we propose a generic computer code for the normality control);
(ii) it requires very few tuning parameters; (iii) the correct “guess” for these parameters are
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given on-line by the computer program, through a few preliminary short runs on a trial and
error basis (i.e. wrong parameter settings are quickly detected).

In classical settings where the support E of f is the real line or an infinite denumerable
set, we obviously cannot measure the tails of f over E accurately: tail regions with almost
zero probability would require a dramatically large number of iterations to reach approximate
normality, without a noticeable improvement in the precision over estimates like (2). This
is one specificity of the continuous case, therefore a preliminary requirement is to restrict
our investigations to a suitable compact subset A of E, which needs to be chosen large
enough so that P7(A) is close to one. This choice, without preliminary knowledge of f,
has to be validated by the estimate P(A) given on-line by the algorithm. The normality
hypothesis may be checked for a collection of indicator functions h,. of subsets A, of equal
length or volume, such that A = |J¥_, A,. The “controlled region” A and the “sharpness” p
of this partition of .4 are preliminary parameters of the procedure (the sharpness p is directly
related to the final desired precision for the approximate picture of f given by the histogram
(P(A1),...,P(A,))). Since A may be chosen fairly large (larger than the unknown support
of f), anatural idea is then to perform the normality control only over the normalized sums of
indicator functions of the A,.’s representing a significant probability, e.g. such that ]f’(AT) >e¢
for a tuning parameter ¢, where these estimated probabilities are updated and checked on-
line along with the parallel simulations. The regions representing a non significant proportion
of the total mass are thus simply discarded from the set of controlled regions. They would
typically correspond to tails of f, regions between almost disconnected modes, or regions
outside the support of f.

More formally, let C'(n) be the set of indicator functions h, = I 4, which correspond to
subsets of significant estimated probabilities for which the normality hypothesis has not yet
been accepted at time n, with C(0) = {h1,...,hp}. The number of functions in C(n) is
decreasing since, at time n, normalized indicator functions that have reached approximate
normality, or which correspond to subsets of too small probabilities are deleted from C'(n).
A validation of this deletion procedure is given on-line by the algorithm, in terms of the
estimated mass of the subset Ac C A consisting of the controlled sets at convergence,

P(Ac) =Y To(A,) B(A,), (20)

r=1

where I¢(A;) = 1if A, has been controlled and finally accepted, and I¢(A,) = 0 if A, has
been discarded.

For m parallel chains argt), e ,x%) started from an initial distribution gy uniform over A
(or even over a larger subset of E), we define the sum S, (h) for the chain £ by

SOMm) =Y h(=), t=1,...,m,

t=1
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and the consistent estimate of P(A,.) over the parallel chains by

B(4,) = .+ where S,(hy) = - 32 SO(h). (21)
=1

For a choice (A, p,e) of the tuning parameters and given arbitrary increasing times ng =
0 <m < mn2 < ---, the algorithm for controlling the target distribution is (starting with
k=1):

1. Run the m chains for (ny —nj_1) more iterations.
2. For r=1,...,p update the samples

SO(he) S (k)

3. For r=1,...,p update P(4,); 2]
update C(ng) = {hr € Clnp_y) : P(4,) > 6(nk)}.
4. For each h € C(ny):

compute the statistics SW(h,ny);
if Hy is accepted for SW(h,ny), C(ng) — C(ng) \ {h}.

(¢,

. If C(ng) =0, return ng;
else set k+— k+1 and go to 1.

The sequence e(n) which appears in [2] is just a refinement of the probability threshold e.
Its purpose is to lower the effect of the poor estimations of the Pf(A4,)’s which may occur
during the first few iterations of the m chains. Actually, we do not want to wrongly discard
an A, from being controlled, just because of an underestimation of Pf(4,). Choosing a
sequence £(n) increasing smoothly from 0 to € may avoid such a behavior.

Algorithm [2] returns a “time required to assess normality” 7Tps which corresponds, as
in the discrete case, to the smallest number of iterations required to reach approximate
normality in all the subsets A, with significant estimated probability. For each h, € C(0)
controlled up to acceptance of Hy, the time to reach approximate normality is

T, = Ikn>1111 {ng : SW(hy,ny) € AHo,a}

and 7Tjs is the maximum of these times. To be meaningful, this result must be validated
by the estimated mass of the region on which the control has been imposed, ]f’(A), and the
estimated mass of the sets within which approximate normality has been reached, ]f”(.Ac),
given by (20). Both probabilities should be close to one, and good settings for (A,¢) can
be found quickly by trial and error over a few preliminary runs of algorithm [2]. Too small
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a value for P(A) indicates a wrong choice for A, which misses a significant proportion of
the total mass. Too small a value for I@’(Ac) indicates that a significant mass has not been
controlled (typically in the tails or between distant modes), and consequently that ¢ needs
to be lowered down.

The algorithm [2] ends up with the overall normality control time, and a detailed picture
of f exhibiting all its specificities (e.g., modal regions), together with precise estimates and
confidence intervals for the P#(A,)’s, based on reliable normal approximations. Simulta-
neously, normality control over the mean of the parameter or its higher posterior moments
are provided. They may be used to give a more conservative stopping rule, and to compute
confidence intervals for the parameter (or marginal coordinates in multivariate situations)
using the approximate normality.

4.2 Variance comparison

In the continuous setup, we can still consistently estimate the variance after n steps, o2 (h),
by the sample empirical variance

52m ) = =3 (80h) - 3u(h)” (22)
- nm TL I
=1

where S, (h) is given in (21). Unfortunately, the algebraic computations leading to an
estimate for o2(h) are no longer feasible and we need some sort of discretization of the
continuous Markov chain to mimic the discrete case. Since we do want to keep the generic
aspect of this methodology intact, we are not deriving our discretization from small sets as
in Guihenneuc-Jouyaux and Robert (1998). Instead, we propose to apply a discretization
directly over the partition (Ai,...,A,, Apt1) of E (where Apy1 = E \ A), by considering
the process

p+1
€0 = 3"l (o) (23)
r=1
which takes values in {1,...,p + 1}. This can be seen as a generalization of the binary

discretization proposed by Raftery and Lewis (1992). It is no more valid from a theoretical
perspective, since (£()) is not a chain for two reasons: (i) when (z(*)) is a Markov chain,
(1) does not (usually) satisfy the lumpability condition, and (ii) in multivariate situations,
the marginal (z(!)) is not even a Markov chain. We could determine a batch size (number
of iterations ignored between two recordings of the Markov chain) as in Raftery and Lewis
(see §5.1), but this seems to make the implementation more difficult without bringing actual
improvement. We thus propose this approximation as a trade-off between theoretically-valid
discretization and easily implementable and generic control method.

If we consider the process ¢(*) as a discrete Markov chain over the state space {1,...,p+
1}, with pseudo-transition matrix P; and related matrices Z¢, A; and C¢ as in §3.2, we can
algebraically derive, for each r € {1,...,p}, an estimate &g(m, n,1,.) of the limiting variance
0Z(I,) which can be compared with the estimate of o}, (h,) given by (22) for h, = I4,,
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which is computed on the continuous chain (z(*). As in the discrete case, this estimate
provides a graphical tool to check whether the variance after n steps stabilizes around a
value which may be considered here as an approximation of the true limiting variance.
From the implementation point of view, [2] needs only to be augmented to compute the
above estimates along with the tests for the normality hypothesis, for each h, € C(n;) at
each step k.

5 Examples and comparisons

This section contains several examples for both the discrete and continuous (multidimen-
sional) situations. Our purpose is to illustrate the ability of our method to detect delicate
situations such as slowly mixing chains, to show its automated and generic aspects, and to
compare it with one of the most popular competing method: the binary control of Raftery
and Lewis which is first briefly described below.

5.1 Raftery and Lewis’ binary approximation

The binary control (Raftery and Lewis 1992, 1996) proposes to approximate the time ¢
required to reach convergence, and the sample size T' necessary to evaluate (1) with a desired
precision. The authors consider the two-state process z(*) derived from z(*) by 2() = Tom<es
where the threshold ¢ is an arbitrary point in E. They assume that z(!) is a Markov chain
(which is in general wrong) with transition

l1-a «a
P= ,
(157 1%)
known stationary probability # and second eigenvalue A;. The warm up time #; is derived
from the condition max; ; |]P(z(t0) =iz =j) = #;| < 1 which leads to

to > log (%) /10g(|)\2|).

The sample size T required for the convergence of zr = Zthto 41 2 /T to 7, comes from
the condition P(|zZ — 71| < €2) > 1 — e3, with a normal approximation of zZr from which

they obtain
2
T> a2ﬂ(/\2 +1) [q)—l (2—53>] .
es(a+B)° 2

Since z(!) is not a Markov chain (it does not, in general, satisfy the lumpability condition
of Kemeny and Snell (1960)), Raftery and Lewis propose to use a batch size B (number of
iterations ignored between to recordings of the Markov chain) to approximate independence.
However, their procedure for determining B seems rather weak theoretically and outputs
quite small values for B (often B = 1) in the examples (see Robert 1996). The binary control
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only requires a preliminary run to estimate («, 8) from which ¢, and T are computed. The
question of the duration T}, of this preliminary run should itself address a convergence
control problem.

The comparison between our approach with parallel chains, and the binary control which
uses a single chain needs to be clarified. In particular, we cannot directly compare the
precision of the confidence intervals (CIs) for the estimates, since the binary control does
not directly deliver CIs for the parameters or the 7;’s in the discrete case, but merely for
71 (and without checking for normality before using the normal approximation). Since
both methods produce automated stopping rules, we will do the comparisons in terms of
these rules. The binary control proposes to run a single chain for ¢, iterations (after what
stationarity is supposedly achieved), and then to use the next T' jumps to compute the
desired estimates. The normality control concludes that 7y (or 7g) iterations are needed
for the normalized sums of the chain to reach normality, but it runs m parallel chains to
establish its diagnostic, and then uses all the available information — i.e. the m x 7y, jumps
— to compute estimates. Hence we believe that a fair way to compare the methods consists
in facing t9 and 7Tp; for the burn-in duration, and T against m x 7 for the estimation
duration. The latter comparison may thus provide answers to the usual question about
“single versus parallel chains”. We will also compare the true 7 (when available) with the
stationary probabilities estimated by following each methods’ diagnostics.

5.2 A miniature example

Our purpose here is to illustrate on a toy (but meaningful) example for K = 15 states the
control methods of Section 3, and to show how the stabilization processes of the variance
estimates and test statistics may differ between two finite chains. We defined a chain (w(t))
with a random transition matrix allowing for quick transitions between all states, and having
consequently a roughly uniform invariant probability 7(z) (Figure 1, top left). We construc-
ted also a chain (y(”) with a transition matrix tailor-made for generating a multimodal
invariant probability 7(y) with three modal regions E; = (1,2,3), E5 = (7,8,9) and the
smaller mode E3 = (13,14,15) (Figure 1, top right). The transitions were chosen so that
jumps between modal regions follow the scheme E; <« Ey < E3 — FEj, resulting in a slowly
mixing chain.

For both examples, we ran m = 50 independent parallel chains, started according to a
uniform initial distribution over E. We then controlled four to six states with algorithm
[1] together with the variance comparison of §3.2, using the asymptotic level o = 0.01. We
implemented the two stopping rules 73, and (the more conservative) 7g defined in §3.1. The
estimated invariant probabilities in Figure 1, and Student’s ¢ 95%—confidence intervals (CIs)
based on the normality assumption for the sample of occupation times were computed at the
former stopping time, which was similar to 7g in this example. We always ran the parallel
chains up to a fixed large amount of iterations to show stabilization after the stopping time.

For the simple chain 2z, convergence occurred after only 100 to 200 iterations, whatever
the four arbitrarily selected controlled states, and for both stopping rules. All the CIs
at this time contained the true values. Figure 1 (bottom left) shows a typical output for

INRIA



An automated stopping rule for MCMC convergence assessment 21

Figure 1: Top: Invariant probabilities w(z) (left) and w(y) (right). The true probabilities
are in gray, and their estimates at convergence time in black. Bottom, left: chain x, control
for state 2. The true variance is o2(I2) = 0.0598. The stopping rule gives 7> = 100. Bottom,
right: chain y, control for state 15. The true variance is 0%(I;5) = 2.494. The stopping rule
gives 715 = 101, 000.
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state 2 for which we obtain the 95%-CI [0.060,0.074] for the true value ms(z) = 0.0706
after 200 iterations. Since 7Ty is small, we just ran the chains up to 10,000 iterations. The
stabilization of 62 (m,I,) seems to be achieved after about 2400 iterations, and shows merely
noise around 62(m,n, ) after that. The latter estimate stabilizes in a time comparable to
Tar. The heuristic procedure of Section 2.3 using the Berry-Esséen inequality (14) required
a dramatically too large convergence time of about 109 iterations for this example.

For the “multimodal” chain y, we applied our controls over one state near each mode
and one state between two contiguous modal regions. Here, convergence (in the normality
control sense and for both stopping rules) required not less than 100,000 iterations. Again,
at convergence, the Student’s ¢t 95%—ClIs contained the true values for each of the controlled
states, and we ran the chains up to 200,000 iterations to show stabilization. For states
in the most frequently visited regions F; and FE, stabilization was achieved comparatively
quickly (about 10,000 iterations). Surprisingly, the same behavior held for state 5 between
E; and E,, although 75(y) = 0.00298 is very small. Finally, the normality check provided
the most conservative time for states in Ej like, e.g., state 15 displayed here (Figure 1,
bottom, right). Although m5(y) is four times larger than ms(y), the normality control
required 101,000 iterations, and the Shapiro-Wilk statistic stabilized after that. Note that
the procedure based on the Berry-Esséen inequality (14) required up to 10?° iterations to
assess convergence.

This typical behavior for the chain y arises because many jumps occur between the first
two modes. Therefore, the chain frequently visits states 4, 5,6, leading rather quickly to a
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normal-like histogram for those states. When started outside E3, a chain usually does not
visit it for a very long time. Roughly 1/5 of the 50 chains started from this third mode and
spent time within it, whereas the remaining 4/5 started outside this mode and remained
outside it for many iterations. This explains why samples of occupation times for state 15
are far from normality at the beginning. In this example, about 100,000 iterations allow for
enough visits to E3 for most of the 50 chains to attain normality. This miniature example
shows that it is basically multimodality, and not only estimation of small probabilities for the
stationary distribution (e.g., w5(y)), that really affects the normality of samples of occupation
times. It also highlights the ability of our parallel chain method, started with a dispersed
initial distribution, to detect such delicate situations.

As pointed out in Section 3.1, the choice of a is not crucial. The a-quantile of the
Shapiro-Wilk statistic (the horizontal dashed lines in Figure 1, bottom) increases with «,
resulting in more conservative rules. Reasonable modifications of « give stopping times of
same order. For instance, the normality control with o = 5% delivered here 7, = 700 for
the chain z, and 7y = 123,000 for the chain y. However, too large values of a are not
recommended, e.g., the 10%-quantile was never reached during the first 400,000 iterations
of chain y.

Comparison with the binary control

For each chain z and y, we ran the binary control with starting values drawn uniformly in E,
fixed errors €y = 0.001 and &3 = €3 = 0.01, batch sizes B = 1,2,10,20 and pre-run sizes
T,. = 1000, 10,000 and 100,000. The binary control is extremely sensitive to the choice
of £, and we illustrate this by running the control for each £ € F and summarizing the
results using the most conservative stopping rules maxec g to(§) and maxecg T'(£), and the
less conservative ones mingc g to(§) and minge g T'(€).

For the quickly mixing chain z, results were not significantly influenced by our choices
for the parameters (T,,, B), and we obtained 1 < to < 3, and 3909 < T < 17,616. By
comparison, the normality control gives 100 < 73r < 200 and 5000 < m x Ty < 10,000.
The values proposed by the binary control for ¢ are indeed not realistic and 73, should be
preferred, but both methods compute their estimates based on a number of iterations of the
same order.

For the slowly mixing chain y, results are displayed in Table 1 (B = 20 provided results
similar to B = 10; (T}, = 1000; B = 1) is not given since (a, 8) could not be computed with
that setting for most of the £’s). The incredibly wide range of variation in the rules given by
the binary control, depending on ¢ but also on 7}, and B, shows that this method should
be used with caution. By comparison, the normality control gives about 73s = 100,000 and
then computes the estimated 7 using m x Ty = 5,000,000 iterations. Note that even a
preliminary run of 73, = 100,000 iterations for computing « and 8 does not improve the
binary control’s results.

To find which method provides the best guess, we compared the qualities of the resulting
estimates of 7. For the binary control, we started a single chain from a value drawn uniformly
in FE, ran tg iterations, and used the subsequent T iterations to compute the 7;’s from the
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Table 1: Binary control results for the chain y and selected tuning parameters.

Tm B | min(t0) max(¢t0) | min(7T) max(T")
1,000 2 2 4,653 1 2,834,980
1,000 10 1 966 1 3,484,659

10,000 1 1 9,676 7 34,887,061
10,000 2 4 5972 | 4249 21,511,126
10,000 10 4 800 692 4,188,248
100,000 1 2 8,029 691 42,028,953
100,000 2 4 5304 | 1,851 25,924,892
100,000 10 4 971 1,856 4,653,923

Table 2: Chi-square distance between the true and estimated 7 (y) for selected couples (¢, T")
reflecting typically less and more conservative rules. The last row gives the normality control,
based on m7Ty; = 5 millions iterations.

T. B to T | xX*(n(y), 7(y))
1,000 2 3 1,091 0,654445
1,000 2 979 2,834,980 0,000242
10,000 2 9 4,249 0,104466
10,000 2| 5972 21,511,126 0,000188
100,000 2 8 1,851 0,655096
100,000 2| 5,304 25,924,892 0,000158

NC 100,000 5,000,000 0,000024

observed occupation times. For the normality control, the equivalent estimates are the
#:(m,n)’s given by (17). Table 2 shows the results for y, in terms of the chi-square distance,
for selected solutions (to,T) proposed by the binary control, and for the normality control.
It appears that many choices for £ would lead to dramatically wrong estimates for 7 with the
binary control. Still more impressive, even the most conservative rule given by the binary
control results in a 7 which is not as good as the estimate given by the normality control. The
latter estimate is computed with far less iterations than the former though (5 millions against
25 millions), but it uses a parallel method. We observed similar results for the simplest chain
x, for which the binary control with a conservative rule gives x?(n(z), 7 (z)) = 0.00054, and
the normality control gives x2(m(z),7(z)) = 0.000036. This illustrates the benefits of our
approach for slowly mixing chains, and the advantages of parallel chains versus a single
chain.

5.3 Comparison between stationarity and normality

Relations between stationarity and normality are not clear, at least from a mathematical
point of view. There is no obvious theoretical reason to think that one is reached before or
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after the other, but if we are interested in confidence intervals, we have to collect enough
information relative to occupation times to construct confidence intervals based on the nor-
mality assumption. Furthermore, this would still hold true even if we knew the stationary
distribution and actually used it as the initial distribution. In order to compare the times
needed to reach stationarity and normality, respectively, we selected the discrete example
below, for which the number of iterations needed to reach approximate stationarity can be
theoretically computed.

We considered the random walk X on the d-dimensional cube E = {0,1}?. Two states
in E are connected together (neighbors) if they differ only by exactly one coordinate, i.e. if

E;-izl |z; — yi] = 1. For 0 < 8 < 1, the transition matrix of this chain is given by:

Pm,z =1-p8, z€FE
P,, =p3/d if xis connected to y
P, , =0 ifzisnot connected to y.

This Markov chain has been studied in details by, e.g., Diaconis, Graham and Morrison
(1990). In particular, when 8 < d/(d + 1), the second eigenvalue of the transition matrix
can be analytically computed and for each small ¢ > 0, the time to reach e-approximate
stationarity (in the total variation norm) can be expressed by the following relation:

if n> %(logd —loglog(1+¢)) then [|Px, —7|lrv <k, (24)
where Py, denotes the distribution of X,,. To illustrate relations between stationarity and
normality in this case, we simulated this random walk for dimensions d = 3 and d = 4,
and several values of 3 decreasing from 0.5 to 0.01. We always run 50 parallel chains, and
applied the normality control over 8 states, that is all the state space for d = 3 and half
of it for d = 4 (states were chosen randomly in the latter case). For simplicity, we still
took a = 0.01. For each dimension, we plotted the following number of iterations against 3
values:

7. the theoretical time required to attain an e-stationary regime for ¢ = 107%, as given
by (24) (solid bold lines in Figure 2);

Tmin the time of first entrance into the acceptance domain, i.e. the minimum over the
controlled states of each state’s first entrance time (solid line above the previous one);

Tu the time of last entrance into the acceptance domain (i.e. the time given by our first
stopping rule, solid line above the previous one);

Ts the conservative stopping rule for the normality assessment, as defined in §3.1, i.e. the
first time at which all the controlled states simultaneously accept the null hypothesis
(dashed line).
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Figure 2: Measures of convergence for the random walk with d = 3 (top) and d = 4 (bottom).
The represented convergence times are, from top to bottom: 7g (dashed), 7as, Tmin and 7¢
(bold).
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These times satisfy Tnin < 7y < 7g. Figure 2 displays these measures of convergence
expressed in numbers of iterations for 8 € [0.1,0.5] and 8 € [0.01,0.09] (in separate pictures
for better readability), and for d = 3 and d = 4.

In this experiment, 7, is close to the theoretical value 7., and the three empirical mea-
sures are increasing (as 7. does) when 3 decreases to zero (i.e. when the chains mix slower).
Moreover, Ty; and 7g are both really conservative. Reaching approximate normality seems
to take more time than reaching approximate stationarity. This seems natural, since even
a stationary process needs to run for a while to obtain a useful precision. We should notice
that we controlled 8 states, giving obviously a rather conservative procedure, especially for
Ts. Finally, the plots for the normality control (state by state), which are not displayed
here for brevity, always showed a clear stabilization after the convergence time 7js, with
only some short excursions out of the acceptance regions.

We also ran the binary control on this example, with ¢; = 107° i.e. the precision set
for 7.. The results are less sensitive to £ than in 5.2, due to the total symmetry in £ of
this example. Results for d = 3 and several 3 values are in Table 3, where T is again
compared with m x 7p;. The conservative rule for ¢y is close to the theoretical time to
reach e-stationarity here, but the proposed conservative rules for T are again overestimated
when the chains mix slower, as shown by Table 4 which gives the chi-square distances. The
estimates given by the binary control are better than ours for quickly mixing chains, but
they are computed using much more iterations. For a slowly mixing random walk (e.g.,
here for 8 = 0.01), our parallel method gives a comparable estimate of 7 in 14 times less
iterations.

RR n~ 3566



26 Didier Chauveau and Jean Diebolt

Table 3: Binary control versus normality control for the random walk (d = 3).

¢ T. | min(ty) max(tp) | min(7) max(T) | m x Ty
0.50 23 10 17 12,385 43,373 4,050
040 | 28 13 21| 14,884 54,830 | 5,800
0.30 38 17 30 | 19,046 75,606 6,600
0.20 56 28 47 | 30,993 117,747 22,500
010 | 112 58 97 | 59932 244131 | 32,750
0.09 125 59 109 | 56,656 274,765 56,000
0.05 224 106 204 | 102,095 513,990 | 143,000
0.01 | 1,119 731 1004 | 901,048 2,533,891 | 178,000

Table 4: Chi-square distance between the true 7 and estimates 7 given by the normality
control (NC) and the binary control’s most conservative rules (BC), for the random walk
(d=3).

8 to T | mxTy Xz(ﬂ',ﬁ'Nc) X2(7I',7?Bc)
0.5 17 43,373 4,050 0.001331 0.000323
0.1 97 244131 32,750 0.002152 0.000701

0.01 | 1004 2,533,891 | 178,000 0.000595 0.000520

5.4 A continuous example with multimodal posterior

To illustrate our methodology for continuous state chains, we consider the following example
from Robert (1996), which results in a multimodal target density. This example is relative
to Bayesian inference for the location parameter § of a Cauchy C(6,1) distribution using a
normal prior A'(0,02). With three observations z;, z2, z3 from C(, 1), the posterior density
is

2 3 -t
7r(0|$1,$2,$3) X €xp (%) lH (]‘ + (6 - mi)2)l (25)

i=1
and (25) appears as a marginal of the augmented density

—02\ £
7(0,m1,m2,M3|21, T2, T3) < exp (W) HGXP [— (140 —2:)*)ni/2], (26)
i=1

with the three instrumental r.v.’s 71,72, 73. The conditional distributions derived from (26)
are available for simulation, and Robert (1996) proposes the following Gibbs Sampler for
simulation from (25):

1. (7h|0,$1) ~E& (M), 1= 1,2,3.

3
. NiT; _ —1
2. (0|771u772u773:$1a$2;333)NN’(%’(2341 nj +o2) )

=1
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Figure 3: Estimated posterior distribution (25) at convergence time with Student CIs (in
black). Second row, control for A,’s corresponding to the fastest (left) and slowest (right)
convergence times. Third row, control for § and 2. Each control consists in two plots:
the variance comparison with the approximate asymptotic variance in dashed lines when
available (top), and the Shapiro-Wilk statistic, with its acceptance region above the dashed
line (bottom).
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For the selected observations z; = —8, 2 = 8 and z3 = 17, (25) is trimodal with a large
gap between the modes located in —8 and +8.

This example is one-dimensional, hence our automated normality control method of §4.1
directly applies. In order to illustrate the on-line determination of the tuning parameters
(A, p, ), we first blindly ran [2] for 1000 iterations of m = 50 chains on the erroneous region
A = [0,200], with p = 20 sets and ¢ = 0.004. Rightmost sets were quickly discarded,
and convergence occurred in remaining sets. But the wrong choice for A was revealed by
the poor estimates P(A) = 90.7% and P(A¢) = 90.6%, indicating that some significant
part of the mass (the third leftmost mode) is missing. The selection of an appropriate A
was then attained by a few runs on this trial and error basis, and resulted in the estimate
P(A) = 99.7%. We imposed a sharpness p = 50 here, to get a reasonable precision for the
trimodal histogram of the posterior distribution, and the threshold for controlling the sets
A,’s had to be lowered to £ = 0.002 to gain control over P(A¢) = 99% of total mass. Note
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Table 5: Binary control results with 7}, = 10,000 and batch sizes B for the multimodal
Cauchy example.

B | min(tp) max(tp) | min(T) max(T)
1 4 60 507 105,958
2 2 35 360 61,253

10 2 10 353 23,566

that p and ¢ are linked somehow, since the probabilities Pf(4,)’s decrease when p increases,
and consequently, the times needed to reach approximate normality increase (mostly for the
A,’s in the tails or located between modes, where less and less jumps are observed when
the |A,|’s decrease). For this reason, p should not be larger than a value imposed by the
precision wanted for the “picture” of f. In other words, the more precision we want for the
histogram of f, the more time it takes to get this picture with approximate normality. In
addition to our control over the posterior distribution, we controlled the functions g4 (6) = 6
and g»(f) = 2. Note that the additional stopping rules associated with the control of g;
and g9 are not influenced by the choices made for p and ¢, and in this sense act as moderators.

Approximate normality occurred around n = 3400 iterations, and we ran the m = 50
parallel chains up to 10,000 iterations to show stabilization. Figure 3 shows some selected
results. As expected, the stopping rule 7y, corresponds to a set A5 located around —2, bet-
ween the largest mode and the smallest distant mode (Figure 3, right). The plots for g; and
g2 show a quick stabilization; normality is reached after less than 500 iterations. This indi-
cates that the region of small probability between the two distant modes, although requiring
3400 iterations to reach approximate normality, has little influence over the estimation of 8
or 62. Note that the approximate estimates for the limiting variance 6¢(m,n, h,.), available
just for the indicator functions, behave as in the discrete case: they stabilize rather quickly,
but not always around the average value of the sample variance. This may be a side-effect of
the discretization, or an effect of the long-memory which characterizes the sample variance
process. However, as in the discrete case, they may be used as a complementary tool coupled
with the normality control.

We ran the binary control for this Gibbs sampler with the settings already used in §5.2,
and several values for £ € [—10;20]. Less and most conservative rules are summarized in
Table 5, and show again rather small values for ¢y, and a wide range of variation for 7.
The normalization constant of (25) could be computed with Mathematica here, and an
approximation of the cdf was available. We thus compare the estimates with the chi-square
distance between a discretized version of the true density (25) and the similar histograms
obtained by following each method’s stopping times (as in §5.2). The results in Table 6 show
that the normality control gives the most conservative rule. Our method seems to detect the
difficulties linked to multimodality, since it also provides the best estimate of the density.
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Table 6: x2 distances between the discretized 7 of the Cauchy example and estimates using
the binary control (BC) and the normality control (NC) rules.

Method to T | x*(m,7)
BC 2 360 | 0.17834
BC 10 23,666 | 0.00395
BC 60 105,958 | 0.00256
NC 3,400 170,000 | 0.00138

5.5 Mixture of distributions

We consider here a missing data model with a 5-dimensional parameter, consisting in ob-
servations issued from a two-component normal mixture distribution

PN (p1,01) + (1 = p)N (p2, 02) (27)
in a Bayesian framework with parameter 6 = (p, u1,0%, u2,03) and conjugate priors
p~Be(1/2,1/2), pi~N(&,0%/ni), of ~IG(v;/2,w7/2), (i=1,2).

We generated a sample of size 30 from (27) with the true parameter 8* = (0.3, —-3,1,3,4), and
used the Gibbs implementation given in Diebolt et al. (1994), which iteratively simulates the
missing data and the parameter §. We then applied the normality control [2] together with
the variance comparison marginally for each parameter’s posterior distribution, marginally
for each scalar coordinate (e.g., for functions g;() = 6;, ¢ = 1,...,5), and also over the
scalar function g() = p + pu1 + 02 + po + o2. The selection of the controlled region A for
each coordinate was easily done by short runs of [2] for a few iterations. It sketched out the
mass location for each marginal posterior. The resulting estimates ]P(.A) were always larger
than 99.9%. The threshold was set to & = 0.004, resulting in estimates for P(A¢) between
98.5% and 99.3%. Convergence in our sense, and for all the controlled functions, always
occurred before n = 2000 iterations, and we ran the m = 50 parallel chains up to 10,000
iterations to show stabilization.

Figure 4 shows a set of results for two coordinates. The estimates (I@(Al), e ,@’(Ap))
at time 7 are represented by the histograms together with their confidence intervals using
the normal approximation. We then give for each coordinate control plots for the h, =14,
requiring the largest time to reach approximate normality (typically in the tails here). In this
example, the function g(6) which can be seen as a global control for this MCMC algorithm,
required 1600 iterations to reach approximate normality. Actually, the largest convergence
time was obtained for the parameter o? (i.e. for the control over g5() = 0?) which required
2000 iterations. On the other side, the indicator functions of the A,.’s located near the modes
of the posterior marginals stabilized in less than 100 iterations, as expected.

We ran the binary control marginally on each coordinate, with the settings ¢; = 0.001
and g9 = e3 = 0.01, several batch sizes and pre-run T, between 1000 and 10,000. Here
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Figure 4: Control for the mixture parameters u; (left), and o3 (right). Each column gives
successively the estimated marginal posterior distributions at convergence time with student
CIs (in black), the control for selected A,’s, and the control for the coordinates. The last
row is the control for g(#). Control plot are as in Figure 3.
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Table 7: Binary control for the mixture model (B = 2 and T, = 3000).

0; | max(to) | min(T) max(T)

P 2 392 14,761
i 3 14 20,263
o1 5 840 24,020
1o 3| 4039 18,804
2 4 567 21,852

again, the batch size has a limited influence over (tg,T"), but the thresholds £ really influence
T, and they have to be selected from rough approximations of the posterior marginals of
each scalar parameter, since they must be in the support and not too far in the tails, for
the binary control to be worked out. Again, we observed unrealistic values between for
to, and a great variability in the proposed stopping rules for 7', which are summarized in
Table 7. By comparison, the global stopping rule given by the normality control was about
Tr = 2000, which is in accordance with the observed stabilization for the test statistics and
the empirical variances (see, e.g., Figure 4). In this case, the true posterior is unknown.
Therefore we cannot compare the methods on the basis of the quality of their estimates.

6 Conclusion

The aim of this paper was to propose a new method for controlling the convergence of MCMC
algorithms, based on parallel independent realizations of the Markov chain started from an
initial distribution dispersed enough to ensure a thorough and efficient exploration of the
support of the target density. Our purpose was to check that the distributions of a finite
collection of normalized sums of functions of the Markov chain have reached approximate
normality and that their variances have stabilized around their asymptotic value. We could
then construct reliable Student-Confidence intervals for the corresponding approximations.
Our methodology has several advantages from the end user point of view; it is not problem-
specific, i.e. it is completely independent from the MCMC algorithm under consideration
and a generic computer code implementing our methods is available. This code provides
automated stopping rules which do not require deep experience on the part of the user.

We have reported on numerical investigations and comparisons with the binary control in
both finite and continuous settings. These experiments show that: (i) test levels o between
1% and 5% are suitable for most examples, and result in comparable stopping times; (ii)
the tuning parameters (A, p,e) are easily determined on-line by trial and error; (iii) slowly
mixing chains and multimodal invariant distributions have been satisfactorily recovered; (iv)
the binary control provides rules with a large variability, and its extreme stopping times are
often not reasonable; (v) comparisons between the estimates given by each method and the
true distribution argue for parallel chains against a single chain (better estimates in a smaller
total number of iterations).
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