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Abstract: The Hermite reduction is a symbolic integration technique that reduces al-
gebraic functions to integrands having only simple affine poles [1, 2, 8. While it is very
effective in the case of simple radical extensions, its use in more general algebraic extensions
requires the precomputation of an integral basis, which makes the reduction impractical for
either multiple algebraic extensions or complicated ground fields. In this paper, we show that
the Hermite reduction can be performed without a priori computation of either a primitive
element or integral basis, computing the smallest order necessary for a particular integrand
along the way.

Key-words: symbolic integration, algebraic fonctions, integral closure

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65



La réduction d’Hermite paresseuse

Résumé : La réduction d’Hermite est une méthode utilisée en intégration formelle pour
ramener les fonctions algébriques & des intégrands n’ayant que des poles simples dans le plan
affine [1, 2, 8]. Alors que cette méthode fonctionne bien dans le cas d’extensions radicales, elle
a besoin de calculer une base des entiers dans le cas de fonctions algébriques plus générales,
ce qui la rend difficile & mettre en ceuvre pour des intégrands faisant intervenir plusieurs
fonctions algébriques ou bien lorsque le corps des constantes est compliqué. Nous montrons
dans ce rapport que la réduction d’Hermite est possible sans connaissance préalable d’une
base des entiers.

Mots-clés : intégration formelle, fonctions algébriques, cloture intégrale



The Lazy Hermite Reduction 3

1 Preliminaries

We recall in this section some terminology and results from [2, 4, 6, 7] that will be needed
in the main algorithm. Let R be an integral domain, K its quotient field and E a finitely
generated algebraic extension of K. An element o € E is called integral over R if there is a
monic polynomial p € R[X] such that p(«) = 0. The set

Og = {a € E such that « is integral over R}

is called the integral closure of R in E. It is a subring of E, and if R is a Dedekind domain
and E is separable over K, then Op is a finitely generated torsion-free R-module [7] and
any R-submodule of Op is then finitely generated. A basis of E over K that generates Og
over R is called an integral basis.

Let now k be a differential field of characteristic 0 with derivation ’. An element ¢ in
a differential extension of k is called a monomial over k if t is transcendental over k and
t' € k[t], which implies that both k[t] and k(¢) are closed under differentiation. We say
that p € k[t] is normal (with respect to ') if ged(p,p’) = 1, and special (with respect to ') if
ged(p, ') = p. Factors and products of specials are special, and factors and least common
multiples of normals are normal. Note that normal polynomials are squarefree. Conversely,
for p € k[t] squarefree, let ps = ged(p,p’) and p, = p/ps. Then, p; is special and p,, is
normal.

Definition 1 For any p € k[t], the normal part of p, denoted p*, is the product of all the
irreducible normal factors of p.

The normal part can be computed as follows: let p = p;p2 ... p™" be a squarefree factorization
of p, pi,s = ged(ps,p;) and p;., = pi/pis- Then, p* = pin -+ Pm,n. In contrast with the
case of polynomials, the derivatives of integral algebraic functions can have denominators
(e.g. dv/z/dx), so we need some results about the denominators of such derivatives.

Lemma 1 Let t be a monomial over k, E be a finitely generated algebraic extension of
k(t) and (w1,...,w,) be an integral basis. Then, there are nonzero normal polynomials
P1,- .., Pn € k[t] such that p;w; € Oy for each i.

Proof. This is a consequence of Propositions 1.18 and 1.19 of [2], and the proofs of the
results of that section remain valid for curves over arbitrary monomial extensions. O

Lemma 2 Lett be a monomial over k and E be a finitely generated algebraic extension of
k(t). Then, for any w € Oy and for any p € k[t], if pw' € Oy, then p*w' € Oy, where
p* is the normal part of p.

Proof. Let (w1, ..., w,) be an integral basis, p1, . . ., p, be the normal polynomials of Lemma 1
and ¢ = lem(p1,...,pn) # 0. Then, ¢ is normal and quw; € Oy, for each i. Let w € Oy
and write w = Y - | a;w; with a; € k[t]. Then,

qu' = Z(qa;wi + a;qu;) € Oy
=1
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4 Manuel Bronstein

which implies that
1 n
I __ . .
w = J ,-E,I b;w;

where d,b1,...,b, € k[t], d | ¢ and gecd(d,by,...,b,) = 1. Let p € k[t] be such that
pw' € Oypy. If p=0, then p* =0, so p*w’ € Oy Otherwise, we have

pw' =

ISHLS]

Z bw; € Ok[t]
=1

so d | pb; for each i. Since ged(d, b, ...,b,) = 1, this implies that d | p, hence that d | p*
since d is normal. Therefore,

bw; € Ok[t] .

&S
g\
Il
als,

=1

O

Lemma 8 Let t be a monomial over k, E be a finitely generated algebraic extension of k(t)
and f € E. If there exist an integer m > 0 and a normal polynomial p € k[t] such that
pmf € Ok[t] and p™f' € Ok[t]; then pm_lf € Ok[t]-

Proof. Suppose that p™f € Oy and p™ f' € Oy, but that p™~'f ¢ Oypy. Then there
is a k-place p of E with order function v such that v(p™~'f) < 0. Since p™f € Oy,
0<v(p™f)=v(p)+v(p™1f), so v(p) > 0, which implies that v(f) < 0. Since p is normal,
by Lemma 1.7 of [2], whose proof remain valid for curves over arbitrary monomial extensions,
v(f") = v(f)—v(p), sov(p™f') = muv(p) +v(f') = v(p™ 1 f) <0, in contradiction with our
hypothesis. Therefore, p™ ! f € Oppy. O

2 Extending a Module

Let R be a Euclidean domain, K its quotient field, V a finite-dimensional vector space over
K with basis (wy, ..., w,) and M, = Rw;+- - -+ Rw, the module generated by (wy,...,w,).
Let w € V and M = Rw + M,, be the module generated by (w,w,...,w,). We describe in

this section an algorithm for computing a generating set (m1, ..., m,) of M over R.
Since (wy, . ..,wy) generates V over K, we can write
1
w = E(alﬂh + -+ anwn)

INRIA



The Lazy Hermite Reduction 5

where d,a1,...,a, € R and d # 0. This implies that M is the submodule of R(1/d)w; +
-+ 4+ R(1/d)w,, generated by wy, ..., w,,w, i.e. by the rows of

d

d

a1 ao e A

Using Hermitian row reduction, we can zero out the last row of M, obtaining a matrix of
the form

bin big - bin
baa b2 - b2

N=| 1 5
bn,l bn,2 e bn,n

0 0 --- 0

with b;; € R. A generating set for M over R is then given by

n
m; = Zbijw]- fOI‘lS’iSTL.
Jj=1

3 Suitable Bases

Let k be a differential field of characteristic 0 with derivation’, ¢ a monomial over k, R = k|t],
K = k(t), E a finitely generated algebraic extension of K and O the integral closure of R
in E. Given any vector-space basis (w1,...,wn) of E over K, let f;; € K be such that

w;:Zf,vjwj for1<i<n 1)
=1

and F,, € R be the least common multiple of the denominators of all the f;;’s. We say that
(w1, ..., wy) is suitable if F,, is normal and w; € O for each 1.

Let (w1, ..., wy) be any vector-space basis of E over K. We describe in this section an
algorithm for transforming it into a suitable basis. By multiplying each w; by a suitable
power of the leading coefficient of a polynomial annihilating it, we can assume that w; € O
for each i. Let then O, = Rw; + ...+ Ruwy, the f[;s be given by (1), and F; € R be the
least common multiple of the denominators of f;y,..., fin for each ¢. F,, is then the least
common multiple of Fy,..., F},. Suppose that F,, is not normal. Then, one of the F}’s, say
Fy, is not normal, so let F}* be its normal part and FIT = Fy /Fy, which is not a unit in R.
We hayve,

n

I— . .

Flwl— E A]ﬂ)]
j=1

RR n° 3562



6 Manuel Bronstein

for Ay,..., A, € R with gcd(Ay,...,A,, F1) = 1. By Lemma 2, Fj'w] € O. But

1 n
Fl*wll = _TZAjwj’
Fl Jj=1

which is not in O,, since ged(Ay, ..., An, Fi) = 1. Let M = RFjw} 4+ O, and (by,...,b,)
be a generating set for M over R, obtained by the algorithm of Section 2. Since M C O, the
b;’s are integral over R, so we can replace the basis (w1, ...,wy) by (b1,...,b,) and repeat
this process. Since this process produces a submodule of O that is stricly larger than O,,,
it computes a suitable basis in a finite number of iterations.

4 The Lazy Reduction

With the notation as in the previous section, let (wy,...,w,) be a suitable basis for E over
K, the f;;s be given by (1), F, be the least common multiple of the denominators of all the
fi;’s, and M., be the n by n matrix with entry F,, f;; at row ¢ and column j. Let f € E*

and write
Alwl +--- Anwn

f = D
where D, Ay, ..., A, € k[t] and gcd(Ay, ..., A, D) =1. Let D = dd3 .. dzi} be a square-
free factorization of D, d; s = ged(d;, d;) and U; = d;/d;, s for each i, S = dl,sdg’s .- -dzﬂ,s,
U=UU2---U™ and V = Up1. Then,

D = suym

where S is special, V' and all the squarefree factors of U are normal, and ged(U,V) = 1.
Let Gy = Fy/ ged(Fy,UV). Note that Gy | Fy | G, UV. In addition, ged(Gy, V) =1 by
construction, and since the basis is suitable, F},, and therefore G,,, are normal.

Consider the following linear system in k[t]/(V):

B, A
B A

(G;UVM; - mGwUV’In> “l=cust| @)
B, A,

where M! is the transpose of M., I,, is the n by n identity matrix, and S~ is the inverse
of S modulo V. The classical Hermite reduction (where the w;’s form an integral basis)
proceeds by computing a solution of (2) in k[t]/(V) and using it to reduce the poles of the
integrand. We first show that even with only a suitable basis, any solution in k[t]/(V') does
reduce the poles of the integrand.

INRIA



The Lazy Hermite Reduction 7

Theorem 1 For any solution (By,...,By) of (2) in k[t]/(V),

_ Zin:1 Biw; ' Z?;l Ciw;
f= ( vm tsG,uvm (3)
where
GwAi SGwUVIB,‘ m
Ci= =3~ — SGUB[+ m=—"—— =3 5G,Uf;:B; €Hklt]. (4)
7=1
Proof. From (4) and using that f;; = My, i;/Fuw, we get
Cl A1 B{
CQ A2 Bé
V : = Gy : - SUvVG@a,
B
B
+ (mSGwUV’In LA ) ?
B,

Since F,, | G,UV, the right hand side is in k[t]", so VC; € k[t] for each i. Reducing the
above modulo V' and using that the B,’s are a solution of (2) in k[t]/(V'), and that the B}
are in k[t] since ¢ is a monomial over k, we obtain

Cl A1 Bi Al
Co Ay B A,

vV . =Gy . — SUV@G, . — Gy . =0 (mod V)
C, A, B! A,

hence that C; € k[t] for each 4. The proof of (3) follows by a straightforward calculation,
putting the right hand side over a common denominator, and using (4) to replace VC;:

(Z?:l Bi’wi)l L Xz Gows
vm SG,UV™
S (SGLUV B! = mSG,UV'B; + VCi)w; + SG,UV Bw!
- SG,UVmH1
7 (GwAi — T SGLUV fﬁBj)wi + 30, SGLUV B, fijw;
SG,UV™+

— Z?:l GwAi _f
- SG,UVmtL

O
There remains to study under which circumstances the system (2) has a solution in

k[t / (V).

RR n° 3562



8 Manuel Bronstein

Lemma 4 Let ,
- m41 (Wi ;
S; = SUV (Vm) fori<i<n. (5)
If there are Q,Th, ..., Ty € k[t] such that ged(Q,V) =1 and

n

i Agw; = % > TS
i=1 =1

then (2) has a solution in k[t]/(V).
Proof. Suppose that Q Y., Ayw; = > | T;S; for some Q,T,...,T, € k[t]. Since

. ! ! VI
S = SuvmH (L) = suym (“’— - mwi—)

ym ym+l
= S (g,—:]éf”w] - mUV'wi>
equating the coefficients of each w; yields
T A
S(G}UVM; . mGwUV’In) 1:2 - QG, %2
: T, 4,

If ged(Q,V) = 1, then (T3Q~1,...,T,,Q1) is a solution in k[t]/(V) of (2), where Q™1 is
the inverse of @ modulo V. O

Lemma 5 Let A, B € k[t] with B normal, (w1,...,wn) be a basis for E over K such that
w; € O for 1 <i<m, m>0 be an integer, and

R = ABm“(;”—;)' fori<i<n.

Then, for any Ty, ..., T, € k[t],
lEH:TR-E(Oiéf:T- €0
Bi:l o Bi—l o .

Proof. Suppose that B~' )" | T;R; € O and let

A - 1—-m
w:E;Tiwi and h=wB .

INRIA



The Lazy Hermite Reduction 9

We have

n ! n n
B™K = Bm(Z A;i‘”) :BmZATi(;U—;)I+Z(ATi)Iwi

i=1 i=1
Since B™h = Bw = A, >, Tyw; € O, it follows from Lemma 3 that w = B™'h e 0. O
Lemma 6 Let A, B € k[t] with B normal, (wy,...,w,) be a basis for E over K such that
w; € O for 1 <i<mn, m>0 be an integer, and

R, = AB™ (o

Then, for any T1,...,T, € k[t] and any C € k[t] such that C | B,

!
) for1<i<mn.

1 A(B/C) &
GO TRi€0= =7 Tuw €0.

=1 =1

Proof. Suppose that C~'Y"" | T;R;, € O and let D = B/C,
AD & e A
_ o _ m41 % .
w= ol iEZI T;w; and r; =(AD)C <—Cm) for1<i<m.

We have

: ! N
R = ADm“cm“(é”_;Dl_m) = ADC™ (25} —mD'C Aw,

so r; = R; + mD'C Aw;, which implies that

i=1

=1 i=1
Since C' is a factor of B, it is normal, so w € O by Lemma 5. O

We can now extend the module k[tjws + --- + k[t]Jw, whenever the system (2) has no
solution in k[t]/(V).

Theorem 2 Suppose that m > 0 and that {S1,...,S,} as given by (5) are linearly depen-
dent over k(t), and let Ty, ..., T, € k[t] be not all 0 and such that Y .- T;S; = 0. Then,

wzgiﬂwie(’).

=1

Furthermore, if ged(Ty,...,T,) =1, then w & Oy, = k[tjwy + - - - + k[t]ws,.

RR n° 3562



10 Manuel Bronstein

Proof. Since V=13 " T;S; = 0 € O, Lemma 5 applied to A = SU and B = V implies
that w € O. If ged(Ty,...,T,) = 1, then V cannot divide all the SUT;’s, so w ¢ O,, since
(w1, ...,wy) is a basis for E over k(t). O

Theorem 3 Suppose that m > 0 and that {S1,...,Sn} as given by (5) are linearly inde-
pendent over k(t), and let Q,Th, ..., T, € k[t] be such that

Then,

SU(V/ged(V,Q))
2cd(V, Q) ZTwZEO

Furthermore, if gcd(Q,T1,...,T,) =1 and (2) has no solution in k[t]/(V'), then w ¢ O, =
kltlwy + - - - + k[t]wn,.

Proof. Let G = ged(V, Q). Then,

1 & Q <
EET,'SZ':E;A#WEO,

s0 by Lemma, 6 applied to A = SU, B =V and C = G, we have w € O. If the system (2) has
no solution in k[t]/(V'), then deg(G) > 0 by Lemma 4. Furthermore, if ged(Q,T1,...,T,) =
1, then G cannot divide all the SU(V/G)T}’s, so w ¢ O,, since (wy, ..., w,) is a basis for E
over k(t). O

The lazy reduction algorithm follows from Theorems 1, 2 and 3: if m = 0, then D = SUj,
where S is special and U; is normal. Otherwise, we solve the system

=1 =1

for hi,...,hn € k(t). Any solution in k(t) whose denominators are coprime with V' is a
solution of (2) in k[t]/(V) as shown in the proof of Lemma 4. In that case, (3) reduces
integrating f to a new integrand whose denominator divides SG,,UV™. If the above equa-
tion has no solution in k(¢) whose denominators are coprime with V', then either the S;’s
are linearly dependent over k(t) or there is a solution whose denominator has a nontrivial
common factor with V', so either Theorem 2 or 3 produces w € O such that w ¢ O,, and
the algorithm of Section 2 produces a new basis by, ..., b, for the submodule k[tjw + O,
of 0. We make that basis suitable with the algorithm of Section 3, express f in the new
basis and continue the reduction process. In both of the above cases, the integrand after the
reduction step has an expression whose denominator has stricly less zeroes of multiplicity

INRIA



The Lazy Hermite Reduction 11

m + 1 than before the reduction step (it has none when the system has a solution), so after
finitely many reduction steps, we have produced a new basis made of integral elements, and
a new integrand, whose denominator with respect to that basis is the product of a special
and a normal polynomial. This is the same result obtained by the Hermite reduction (with
an integral basis) as presented in [1, 2, 8].

Conclusions

We have presented a lazy Hermite reduction for which each reduction step uses only rational
operations and performs Gaussian or Hermitian elimination on a matrices of sizes n by n or
n+ 1 by n, while computing an integral basis requires Hermitian elimination on matrices of
sizes n? by n, so the lazy reduction is expected to cost O(n?) operations in k(t) as compared
to O(n') for computing rationally an integral basis. In the case of pure algebraic functions,
this yields a complete algorithm for determinining whether the integral of an algebraic
function is itself an algebraic function. The natural direction in which to extend this work
is to ask whether the complete algebraic integration algorithm can be performed rationally
without computing an integral basis. Since Propositions 2.4 and 2.5 of [2] do not depend
on an integral basis, the inner resultant in Proposition 2.6 can be replaced by the norm
from E[z] to K|[z], yielding a polynomials whose roots are nonzero rational multiples of the
residues of the integrand at all the normal affine places, so divisors for the logarithmic parts
can be computed. The remaining problems are representing such divisors and testing them
for principality, and I am not aware of any rational algorithm for solving those problems
that avoid desingularizing the curve in some way. Another interesting direction would be to
generalize the Hermite reduction (and its lazy variant) to solve equations of the form y'+ fy =
g in a finitely generated algebraic extension of k(t), as was done for the transcendental case
in [5]. This could yield a better algorithm than the reduction to a linear differential system
in k(t) [3].
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