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approach of the equations of electromagnetism leads to consider the fields as
exterior differential forms tied together by the operator of differentiation by
Hodge operator. The spatial discretization uses mixed finite-elements, and the
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- it exactly preserves the Gauss laws and a discrete energy,

- on a regular mesh, it amounts to a finite difference scheme which is of order
2 in space an time,

- it, preserves the Hamiltonian feature of Maxwell system which leads to inter-
esting properties in long time computations.

The method is numerically tested on cavity modes for cubes and homogeneous
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Une méthode d’éléments finis pour le systéme de
Maxwell conservant les lois de Gauss et I’énergie

Résumé : Nous construisons une méthode en éléments finis pour la résolution
du systéme de Maxwell en trois dimensions d’espace, dans le domaine temporel
et pour des maillages non structurés. L’approche géométrique des équations de
I’électromagnétisme, que nous adoptons, nous conduit a considérer les gran-
deurs physiques comme des p-formes différentielles liées par I'opérateur de
différentiation extérieure et I'opérateur de Hodge. Nous discrétisons la partie
spatiale par les éléments de Whitney, reformulés par Nédélec, et la partie tem-
porelle par un schéma saute-mouton. Pour cette méthode, nous montrons les
propriétés importantes suivantes :
- elle préserve exactement les lois de Gauss électrique et magnétique, ainsi
qu’une énergie discréte.
- sur un maillage régulier, la méthode peut étre vue comme un schéma aux
différences finies. Nous montrons & ’aide des équations équivalentes qu’elle est
alors d’ordre deux en temps et en espace.
- elle conserve le caractére hamiltonien du systéme de Maxwell. Les champs ob-
tenus dérivent donc d’un quadripotentiel et minimisent un lagrangien discret,
ce qui leur confére de bonnes propriétés pour des calculs en temps longs.
Nous validons la méthode obtenue sur la simulation de différents modes
dans des cubes, des sphéres homogénes ou hétérogénes. Nous comparons ces
résultats aux solutions exactes. De plus, nous présentons les avantages et les
inconvénients de cette méthode par rapport & une méthode de volumes finis
commercialisée.

Mots-clés : géometrie différentielle, éléments finis mixtes, électromagné-
tisme, systéme de Maxwell, simulation numérique, conservation de la diver-
gence
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1 Introduction

Most of the time, numerical schemes discretizing Partial Differential Equations
are studied from a local viewpoint, focusing on properties like consistency, sta-
bility, order of approximation in the limit of small time steps and spatial steps
and so on. In the framework of Maxwell equations, we will derive a numerical
method which aims at satisfying two global features of the continuous equa-
tions. The first one is the conservation of the electric charge and the nullity of
the divergence of the magnetic field and comes from the fact that the exterior
differentiation d satisfies d o d = 0. The second one is the fact the equations
derive from the extremalization of a Lagrangian, leading to the conservation
of a Hamiltonian which actually is the electromagnetic energy. In the first
section, we show that these two features lie on differential geometry. Then,
we propose a discretization lying on a discrete version of differential geometry.
It is based on Whitney finite elements which have been adapted to numerical
analysis by Raviart and Thomas [16], Nedelec [14] and Bossavit [4], for in-
stance. The third section is devoted to the numerical analysis of the proposed
discretization. In the last section we present numerical results of simulation.

We first remind Maxwell system, fix some notations and make some general
remarks. We study

%—1: +curlEE =0 Faraday
a—? —curlH =J Ampére 1
divD = p (1)
divB =0 Gauss

where B is the magnetic induction, F the electric field, D the electric induction,
H the magnetic field, J the density of electric current and p the density of
electric charge. Since the conservation of electric charge equation

dp

— 4+ divJ =0 2

5 (2)
is also fulfilled, one can see that Gauss laws are automatically satisfied, if
they are satisfied at initial time. For this reason, they are generally not taken
into account in numerical schemes, a consequence being that these laws are
not numerically fulfilled (except on regular orthogonal meshes). This leads to
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4 Lala, de La Bourdonnaye

some non physical effects like creation of electric charge or artificial heating of
plasmas when Maxwell system is coupled to transport equations for charged
particles. Indeed, most of the schemes are using finite differences (FDTD)
(see [24, 19] for instance). Finite Volume methods (FVTD) have also been
developed, first based on a characteristics method (see Shankar, [17]) with
conforming meshes and then modified to be simpler (see [15]).

Recently, FVTD methods inspired by Computational Fluid Dynamics have
been developed for electromagnetism (see [6, 7|). Nevertheless, none of these
methods exactly fulfills Gauss laws and energy conservation on general meshes.
We just mention a penalisation method for FVTD (see [8]) which aims at
diminishing the error on the divergence. We propose in the following a method
based on differential geometry.

2 Differential geometry and Maxwell system

In this section, we remind some classical links between Maxwell system and
exterior differential geometry.

In differential geometry, on space R®, one has differential forms of order p
(p=0,1,2,3), which are p-skew symmetric linear forms over R®. We are going
to link these forms with classical objects like functions and vector fields.

e A O-form f is indeed a function : R® — R,

e A 1-form a is coupled with a vector field V! so that for x € R?, a(x) :
U Viz).U,

A 2-form b is coupled with a vector field V}? so that for x € R®, b(z) :
(O, V) = Vi (z).(UAV),

e A 3-form F is linked with a function fr so that for z € R, F(x) :
(U, V,W) = fr(x)(U(VAW))

where U, V, W denote here vector fields. With these forms, we present two
operators which are of interest. The first one is the operator of exterior dif-
ferentiation d, and the second one is the Hodge operator, denoted by * in the
sequel.

The exterior differentiation operates as follows.

INRIA
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e On O-forms, it coincides with gradient,
e On 1-forms, it coincides with curl,

e On 2-forms, it coincides with div,

e On 3-forms, it is null.

We can check here the classical property d o d = 0. This property is of great
importance in our case since it ensures that the divergence laws are fulfilled
for all time.

The Hodge operator is involutive and couples p-forms and (3-p)-forms so
that :

e for a 3-form F, xF = fr,
e for a 1-form a, V2 = V!

which means, that a form and its Hodge transformed are associated to the
same function or field.

Now, we have the Maxwell system presented in the introduction coupled
with the medium constitutive laws :

B
Z,)—b +curlE =0 Faraday
— —curlH=1J Ampeére
ot
divD = p G (3)
divB =0 auss
D =¢cFE

B = puH Medium constitutive laws

A natural way to express this system with differential geometry is the following.

Since they support a “curl” action, F and H are considered as 1-forms. In the
same way, J, D and B are considered as 2-forms and p as a 3-form. So, the
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6 Lala, de La Bourdonnaye

system rewrites

0B
é’)—b +dE=0 Faraday
o —dH=1J Ampeére
ot
= Gauss (%)
dB =
D = x(eF) ) o
B = x(uH) Medium constitutive laws

This formalism will prove its efficiency in the sequel, since we will present
a discretization which is an adapted version of the concepts of differential
geometry we have presented in this section. Namely the relation d o d will be
also satisfied at the discrete level.

3 Discretization

In order to discretize the fields, we use mixed finite elements (see [14, 16] for in-
stance). We consider a mesh 7 made of tetrahedra. We denote by «; the edges
of the mesh and by ¢; its faces. The 1-forms (E, H) are discretized with edge
elements, and the 2-forms (B, D) are discretized with face elements. Hence,
the div and curl operators are exactly implemented using Stokes formula, and
so, the relation

divocurl=0

is exactly fulfilled.

We now have to explain the most difficult part which is the discretization of
the Hodge operator. But first, let us remark that we use as primary variables
the fields D and B which are the conservative variables in the vocabulary of
hyperbolic systems of conservation laws. Then, we compute E and H with
Hodge operator, then we apply d to these fields and finally we increment the
value of D and B. So we have to compute * on 2-forms. Let b be a discrete
2-form. If a; is a basis of edge functions (a; is associated to edge «;) and f; is
a basis of face functions (f; is associated to face ¢;), b writes

bz b; f; with b; real coefficients,

INRIA
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*b writes

*b Z(*b)jaj with (¥b); real coefficients

J

and we look for the coefficients (xb);. We discretize Hodge operator weakly.
Then

(xb, a;) = (b, a;) for all a; in the basis of edges functions

Where (..., ...) stands for the L? scalar product. We then have

({ai; a;))((x0);) = ((ai, fi))(be)-

Hence, denoting by M;; the Mass matrix of edge functions :

My, ;= (ai, a;)

and by M, the matrix coupling edge and face functions :

MI,QZ',]' = <(Ii, f]ﬂ)

we can see that the matrix M, which corresponds to the discrete Hodge oper-
ator is

M* = M1_711M152.

The last point of this section is to present the time discretization. We use
a classical leap-frog scheme.

B™: = B" i — Atd-D"

* © 1 1 (5)
D"t = D" + Atd—B"t2 — AtJ" Tz

I

We have to point out here that our scheme is implicit since the discrete Hodge

operator requires to solve a linear system. Nonetheless all the usual ways we

know to precisely control the divergence laws are implicit (see [2, 12]). But

here we have only to solve a Mass-Matrix instead of a Poisson problem as in

the case of the above referenced methods.

RR n° 3557
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4 Numerical analysis

In this section, we will study the numerical properties of the scheme presented
above. First, viewing it as a finite difference scheme, we will compute its
“modified equation” (see [21, 1, 18]) in order to evaluate the accuracy of the
scheme in time and space. Then, we will show that our scheme preserves
a numerical energy and the divergences of the conservative fields D and B.
Finally, we will show that the numerical solutions of our system derive from a
discrete quadripotential which minimizes a numerical Lagrangian.

4.1 Modified equation

In order to study the stability and the accuracy of the scheme presented in
this paper, we will view it as a finite-difference one. Thus, we change a little
our spatial discretization and use a regular parallelepipedic mesh with the
associated mixed finite elements (see [14]). Let us remind that the modified
equation is the partial differential equation which is exactly satisfied by the
discrete fields. An exhaustive but fastidious computation of this equation is
presented in [13| and uses a technique developed in [5] and symbolic calculus
tools. The result is that the modified equation is :

0B
% +dE = O(A.’EQ, Atz) ( )
6
— —dH = O(Az?, At?
at ( x ) )
It follows that our scheme is an order 2 scheme, both in time and space. Let us

stress on the fact that the proof of this result does not require the mesh to be
orthogonal but only to be regular (i.e. the cells are all the same parallelepiped).

4.2 Divergence laws
We show the proposition
Proposition 1 if BY/? =0, then dB" '/? = divB™ '?> = 0 for all n > 0.

n+l _ n
if D = p° and divJ" /% + F_—F _ 0, then D™ = p" for all n > 0.

At
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Proof :

Indeed, we remind that our discrete curl and div are the exact continuous oper-
ators and satisfy divo curl = 0. Hence, since B"*/2 = B"=1/2 — Atcurl(*D"),
we obtain

divB"tY/? = djwB"1/2,

By induction , if BY/? =0, B**Y/2 =0, for all n.
Similarly, since D"*! = D" + Atcurl (iB““/ 2) — AtJ"+/2 we obtain that

divD" ' = divD" — AtdivJ" /2.

Using discrete charge conservation law one has divD"*! = div D" + p"*t! — p".

So
divD" — p"tt = diy D" — p".

By induction, if divD°® — p® = 0, then divD™ — p" =0, for all n. O

4.3 Conservation of energy

In this section, we show that there is a approximate energy which is exactly
preserved by the scheme. We stress on the fact that this is better than ap-
proximately preserving the exact energy. Let

& = / D".E" + B* 2 H" 2 — AtdH" /2 E"
M
Here M denotes the domain of computation and we suppose that we have

metallic boundary conditions. We remark that it can be rewritten as :

Bn—l/Q.Hn—Fl/Q Bn—|—1/2.Hn—1/2
e = / D"E" + T
M 2

With this notation, it is clear that £" is symmetric with respect to the fields,
and is an order 2 approximation of the continuous energy. We show the

Proposition 2 The energy E™ is preserved by our scheme.
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Proof :

The first point is to prove that if a and b are discrete 1-forms, then the duality
product < *xa,b > is a symmetric bilinear form. Indeed, let a = > o;a; and
b=>" fia;. The product < xa, b > is expressed by

< xa, b >= (ﬁi)TMf ZMillMl’g(Ozj)

Matrices M;; and M,y are the ones presented in the discretization of Hodge
operator. On this expression, the symmetry is obvious.

Now we can prove that £"*1 — £" = (0. First we rewrite the energy using
fields D and B only.

D" , xB""3 B3 D"
gnz/ pr 2P gy KB N dx BT (7)
M £ n 7 €

and energy at time (n + 1) At , denoted by £""! |writes :

n+1 "+% 'IH—% n+1
gntl :/ Dn+1_*D —|—B"+%.*B B Atd*B .*D (s)
M £ I I €
Since
D"t = D" + At@B"% + At s,
1
one has :
n+3 n n+1
£nl =/ proy ag BT (AP g ppdx BT
M 1 £ el
n—l—l
+B”+%.*Bu ’ 9)
dxB": [ xDn dx Brts
—AtE ’ <* + AtL>
7 £ Ep

INRIA
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As order 2 terms cancel, one obtains
entl :/ o 0 A (D kdxB"s | +D".dxB +z>
€ el el
" (10)
+Bn+%'*B”+% B Atd*B"Jf%. * D"
UE
Using the symmetry property of the discrete Hodge operator,
D" D".xdxB"*3 , xB"3
EMtl = / pr T AR + Bt (11)
M € Ep M
Using the discrete Faraday law :
Bt — pb - P, (12)
€
One has :
apr D" (xdxBYE - Atwdx D)
Entl = / D" + At
€ €
M H (13)
: dx D" B"> d* D"
+<B"‘5—At x )(* — AT )
€ 1 el
Here also, the order 2 terms cancel. So,
D" D" «d+B"2 B"2
S"“:/ pr T RO g 22
M € el M
, , (14)
(B“_z.*d*D“ d*D".*B”‘z)
—At +
el el
Integrating by part, one has :
*Dm L B d* B2, % D"
EMtl = / D™ + B"7 3. — At =£&" (15)
M € H Ep

RR n° 3557



12 Lala, de La Bourdonnaye

So discrete energy at time (n + 1) At is equal to discrete energy at time nAt :

Etl=¢m vn (16)

O

Let us remark here that the discrete energy is a good approximation of the
continuous one when the time step is small. Nevertheless, it is generally not a
positive form. So we have a Courant-Freidrichs-Levy condition to ensure that
E™ is positive so that the preservation of this energy implies the stability of
the scheme.

4.4 Quadripotential and Lagrangian

In order to obtain a long time quality for our scheme, we want to show that it
has the same global features as the continuous Maxwell system. Here, we will
show that the fields B"*'/2 and E™ derive from a quadripotential (A"*1/2, V™)

in the following sense :

B"% = dA" s
and
A™3 — A3
F=———— —qv"
At V5
using only
Bn—i—% _ Bn—%
— 4+ dE"=0
At *
and
dB™z =0

Here, A"+1/2 is a 1-form (discretized on an edge element basis) and V" is a 0-
form (discretized on a P1-Lagrange basis). We will then show that (A™1/2, V'),
is an extremum of a discrete Lagrangian which approximates the continuous
one.

We begin by reminding the following result.

INRIA
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Proposition 3 If f is a discrete closed p-form (that is to say df = 0), then
it is an exact discrete form in the sense that there exists a discrete (p-1)-form
g such that dg = p.

On the continuous level, it is an old and classical result of cohomology. Here,
the original part is to prove that g belongs to the set of discrete forms. The
proof is done by exhibiting an isomorphism between discrete forms and sim-
plexes of the mesh and using a classical result of simplicial homology (see
[10, 20]). For a detailed proof, one can refer to [13]. We are now able to prove
the

Proposition 4 The fields E and B solutions of the discrete scheme discretely
derive from a quadripotential, that is to say, if B"tY/? and E™ satisfy

Bn—|—% _ an%

E" = 1
N 0 (17)

and
dB""2 =0 (18)
Then, there exists a discrete 1-form A"=% and a discrete 0-form V™ such that
B = dA™:
and

An+l _ An—%

E" =
At

+dV"

Proof -

The proof of the proposition relies on the discrete exactness of the closed
discrete forms. Indeed, using (17) one can deduce that there exists a discrete
1-form A" such that :

B""3 = dA™3  Vn
This implies that :

Bn—i—l _ Bn—%

E" =
A TdE"=0

RR n° 3557
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which rewrites :

dA™3 — dA™3

dE" =
AL + 0

or

An+% _ Anf%
d|——+E"| =0.

Again using discrete exactness of closed discrete forms, we finally derive that
there is a discrete 0-form V™ such that

An—l—% _ An—%

En — n
AL + av™ V¥n

that is to say :

An+l _ An—%

E" =
At

+dV"

which completes the proof. O

We are now going to show that the discrete quadripotential is an extremum of
a discrete Lagrangian. The continuous Lagrangian corresponding to Maxwell
system is

L= /t /M E(t).D(t) — H(t).B(t)

or

Ec:/t/ME(t).g*E(t)—;B(t).B(t)

We propose as a discrete Lagrangian :

*
L= Z/M E"ex E" — ;B"%.B"%

INRIA
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Using the quadripotential derived from the previous proposition, it rewrites :

An—l—f _ An—f An—|—% _ An—%
L= Z/ ( +dV") .a*(—T+dV”)

Zn: /Mi (dA"—%) . (dA“—%)

We will show the

Proposition 5 The quadripotential A™*Y/2 V™ is an extremum of the La-

grangian L if the fields D™ and H™t'/? satisfy

Drtt — pr 1
- _ Hn—i-f —
A7 d 2 =0
and
dD"™ =0
Proof :
We want to check that the quadripotential satisfies
oL oL
0L =—10A+ —0V =0
94" v

for all variations (6A,0V) of the quadripotential. One has that :

5L = 22/ ( — _—An__ +dV"> £x (_5A"+5A—t(5,4”—5
_ 22 / dA”" (déA”")

RR n° 3557
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Integrating by part, one obtains :
ek AT — AT
oL = 2 SA™ — | ——————— —dV"
£ zn:/M At ( At v )
Amts - A3 *
2 A (52228 gy ) A
+ Z/Mé 2 (At( ~ +dv>+d# >

1

14n—|—‘l _An—i
+ 22/ 5V".ad*(—A—t+dV">

Since we have :

n+% _ n—% 1
Z / sA3 [ ZX —u +dv | +dZdans
At W
APtS _ Ants )
= Z/ sAME. i _A A P gt ) 4 gl gants
At 7

the condition of extremalization writes :

Y

1

— A 24" — A2
L= 2 sA™E EX J (Vv
£ Z/M At At (v )
+ 22/ SA™S. g*d*dA“’

An+2 _An—%
+ 22/ 5V”.ed*<—T+dV">
n M

INRIA



Gauss law preserving finite-elements 17

That is to say :
_An—|—% +An+% _An—|—% +An—%

5L = 2y / SA™S £ % At N At
n M

At

1 * 1
+ 2 /5A"+2.5*d—B"+2
; M 12

An—i—% o An—%
2 oV"™.ed —_ 4+ dV"
+ Zn: /M £ *< ~ + )
which rewrites :

1 —En+1—}-En 1
—_ 'n+§ 'n+§
5L = QZn:/MM .(w(—m )—i—dH )
+ 22/ SV".de x E™
n M

) D+t _ pr )
— n+§ _ - - n+§
5L = zzn:/MéA < ( ~ dH ))
+ 2 / sV™.dD"
2.

Assuming H"t/2 and D" satisfy
pr+t — pr
—x
dD" =0

) n+l _ n
+ 22/ At o W = AVt
—~ Jm

Hence :

—dH"3 =0

one finally obtains :

6L =0 VSA™ 3 et V5V™

RR n° 3557
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This ends the proof. O

5 Numerical experiments

In this section, we presents numerical tests of our method in order to check the
properties presented in the previous section. The chosen tests are computa-
tions of eigenmodes of cavities. They generally are tough tests because of the
possible comparison with an analytic solution and because of the possibility of
long time simulations.

5.1 Eigenmode of a metallic cubic cavity
5.1.1 The test case

we consider a cubic cavity of size L = 1. We simulate the mode (1,1,1) for
which fields F and B are defined by

kymx sin komy sin kamz
L L L
T kamz

I COS I Sin I

A sin kimx sin kymy cos ksmz
e A A L

A; cos

and
B si klﬂ'ﬁﬂ kQﬂ'y k37TZ
1 sin 7 cos 7 cos 7
k k k
B = - sin(wt) B, cos ( 12“) sin 22y cos 322
Bs cos ki cos kamy sin ka2
3 L L L
with
ky 1
k= kQ = 1 ;
ks 1

INRIA
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1 -1
A=1| o0 and B = !%
1 73

5.1.2 Spatial comparison

On figures (1) and (2) we present exact and approximated solutions after 10
periods. We can observe the good quality of the results. The mesh step is
about the wavelength divided by 21. We remark here that the main differences

0.168308

._o 168955

L

0.139528

._o 139528

sLxLxact

Exact solution

Figure 1: z component of the electric field after 10 periods.
between exact and computed solutions are due to the error of approximation

of the initial solution corresponding to the analytic value of the mode (see [13]
for more details).
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2.04602

-

i
i
i
K

2o

S

SooT

RS
‘{‘\Egﬁa s‘ﬁ !
Sk \’%ﬁh&\i
RS \‘E‘\
o, =§§
N
i
5 .-3 06359
= 308039
‘ %‘Nﬂ
SRR
s \‘%sésh
R
TN .-3 09039

szLxact

Exact solution

Figure 2: z component of the magnetic induction after 10 periods.

5.1.3 Time evolution

For a given point we present the time evolution of the solution called “Hodge
solution” in the following. This will help us to obtain more precise comparisons.
We use a mesh with 6724 points. This approximately amounts to 20 points by
wavelength. It is a correct evolution though a little dispersive, in accordance
with the order 2 approximation of our scheme. On figure 4, we present a
long time simulation. We have checked that we loose half a period for 125
periods. This amounts to a dispersion of 0.4 %. We can also observe the
good quality of our scheme for long times. This is generally not the case for
methods able to handle arbitrary meshes. In the following plots we vary the
number of points by wavelength for the same mesh as above (it means that we
change the frequency). We observe that 10 points by wavelength is necessary
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Mode (1,1,1) - Cube 6724 pts
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Figure 4: long time evolution of the electric field.

to obtain a reasonable solution.

volume one (see [3] for details) on the (1,1,-2) mode. We begin by comparing
the two methods on the same mesh. The results observed on figure 9 seem to

indicate that our method has the same order of magnitude for dispersion as

the modified order 3 Finite

not a fair comparison since memory and computation costs are more important
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Figure 5: Evolution of the electric field (15 points by wavelength).

for the finite element method. It is why it is more honest to compare finite
volume results to ours obtained on a mesh having 2.5 times less points. With

memory and computation costs are equivalent for the two methods.

On figure 10 one can observe results which are really similar on short times.

this ratio,
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Figure 6: Evolution of the electric field (11 points by wavelength).
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Gauss law preserving finite-elements
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It confirms that is of order 2

space. One can also observe that for long times our method is less diffusive.
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Figure 9: Comparison with a finite volume method on the same mesh.
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Figure 10: Comparison with a finite volume method for similary costs.

INRIA



Gauss law preserving finite-elements 25

5.2 Eigenmode of a metallic homogeneous spherical cav-
ity
5.2.1 The test case

We are going to study a resonance problem in a spherical cavity of radius 1.
We choose the wave number k£ to be the first 0 of the spherical Bessel function
j1- The simulated mode is given by

. B y (sin(kr)
E, = cos(wt) = < . cos(kr)
) —x  (sin(kr)
E, = cos(wt) g3 (7 — cos(kr)
( E. = 0
and
)
He — sin(w?) % (sm (kr) (i kr ) — 3COS(/<JT))
Wi r kr
Hy — sin(wt) y_j <s1n (kr) (i kr ) —3cos(k7“))
) Wit r kr
sin(wt) 3
Hz = = Er -
2 o {,,4 <sm (kr) (kr kr ) 3(305(]”"))
—1
\ — (sin(kr) (= — kr) — cos(kr)) }

where (z,y, ) are the cartesian coordinates of R* and
r=+x?+y?+ 22

5.2.2 Spatial comparison

Now we compare the simulation on this mode with its analytical value. Once
again the picture shows a good quality of the simulation.
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Exact solution

Figure 11: x component of the electric field after 5 periods.

5.2.3 Temporal comparison

On figure 12 one can observe that our scheme gives correct results. We remark
that here, our mesh has 8905 points. This corresponds to about 6 points by
wavelength (here the wavelength is 0.445).
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Figure 12: y component of the electric field.

5.3 Eigenmode of a metallic heterogeneous spherical cav-

ity
5.3.1 The test case

In order to evaluate our method for heterogeneous media, we studied the evo-
lution of a mode in a spherical cavity made of vacuum which has in its interior
a smaller sphere of glass. Material coefficients and radii are indexed by 2 for

the big sphere and by 1 for the small one (the two spheres are concentric).
Thus, for the electric field,

Ifr<a;:

B, = cos(wt) 7 (M—cos(klr)>

72 kir
—x  (sin(kir)
. E, = cos(wt) = (?—cos(lﬁr»
E, = 0
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andifa; <r <as:

B = e L (sin(kgr)_cos(k2r)>

y Ey, = a cos(wt) - (Sm(kzr)—cos(kﬂ))
E, = 0

For the magnetic induction, if r < al :

) .
He — sin(wt) % <sin(k17“ (i k17“> — 3cos(kir) )
W r k17”
Hy = sin(wt) y_j (sin(kﬂ“ (i k1r> — 3cos(kir) )
W r k17'
. 2
H, — sin(wt) Z sin(kqr) i kir | — 3cos(kyr)
Wity r4 kir
1 . 1
— (sm(kﬂ“) (m k17“> — cos(kir) )}
\

) )
Hi — a sin(wt) x_j (sin(kzr (i kﬂ) — 3 cos(kar) )
Wy r kor
t
Hy = o Sln(w ) y—f (Sin(kgT <i k27'> — 3cos sz >
Wy T kor
< ) 5
Hz = « sin(wt) Z sin(kor) | — — kor | — 3 cos(kar)
Wky rt kor
1 . 1
\ —3 (sm(kgr (@ k2r> — cos(kor) >:|
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The continuity of the fields at the interface » = a; imply that « is a solution
of

( sin(kia
% — cos(kyay)
@= sin(kgal)
“har cos(ksay)
< sin(klal) <% — k‘lCLl) -3 COS(k‘lCLl)
191
o=
sin(kzal) (% — k2a1> -3 COS(del)
201
o= kz sin(klal)
\ N k‘l sin(kQal)

Furthermore one has to choose ks so that kqas is a 0 of same spherical Bessel
function 7; as for the homogeneous sphere in order to fulfill the metallic bound-
ary condition at r = ay. We choose

koy.ay = 4.49340
We deduce that
ky.a; = 3.14159
and
a=-1

So, with a; = 1 and ay = 1.4303, we are led to decide that the inside sphere is
made of glass with electric permittivity €; equal to 4.¢q and magnetic perme-
ability p; equal to po when the outside sphere is made of vacuum with ¢ and
1o as coefficients. Thus :

kl - 2]{}2
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5.3.2 Spatial comparison

On figures (13) and (14) one can check that the computations realized with
our method give aceptable results. Here, we remark that in the glass part, the
mesh has only 5 points by wavelength.
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.‘:h\;
/

A \i\
0

oo
Granny |
a5,

Exact solution

Figure 13: x component of the electric field after 5 periods.
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Figure 14: z component of the magnetic field after 5 periods.
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5.3.3 Temporal comparison

For this comparison, we check two points, one in the glass and one in the
vacuum. We remark that the error is as expected, taken into account that

0.004 T T T T T T T T

T
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lution exact@ -----

0.003

0.002

0.001

o
-0.001
-0.002
-0.003
_0.004 L L L L L L L L L
o 5e-09 le-08 1.5e-08 2e-08 2.5e-08 3e-08 3.5e-08 4e-08 4.5e-08 5e-08
temps(s)

Figure 15: Evolution of the z component of the magnetic field for a point
inside glass.
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Figure 16: Evolution of the z component of the magnetic field for a point
outside of the glass sphere.
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the mesh has 5 points by wavelength in the glass and 7 points by wavelength
outside. Furthermore, one has to remember that the divergence of the fields
are exactly computed.

6 Concluding remarks

The aim of this paper was to present a new discretization of Maxwell system.
It is based on a differential geometry approach of these equations and uses
Whitney finite elements.

In a first time we have shown the main properties of our scheme :

o It exactly preserves electric and magnetic Gauss laws,
e [t exactly preserves a discrete energy,

e the solutions derive from a discrete quadripotential which is an extremum
of a discrete Lagrangian,

e It is of order 2 in space and time.

In a second time we have proposed some numerical simulations of resonance
modes in various cavities. It appears that the method gives correct results
both in short time and long time since the scheme does not loose energy and
has a small dispersion. This method is a good one to solve Maxwell system
when it is coupled with other equations of physics, like for plasmas, charged
particles jets and so on. Nevertheless, it should be a little expensive for simple
scattering simulations.
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